
TP612

Testing J2EE Applications
with IBM Rational PurifyPlus

Goran Begik

Table of Contents

Introduction.. 1
About Jakarta Tomcat .. 1
About IBM Rational PurifyPlus .. 1
About Servlets and JavaServerPages ... 1

Preparing Java Servlets and JavaServerPages for Testing with Rational PurifyPlus............................ 2
Preparing the Windows Environment for Testing JavaServerPages and Java Servlets with Rational
PurifyPlus. ... 2
Preparing the Java Application Server Environment for Running with Rational PurifyPlus............... 3
Preparing PurifyPlus for Collecting Data from Java Applications Running in Apache Tomcat 3

The Demo Application... 6
Run-Time Testing of Java Servlets and JavaServerPages in Rational PurifyPlus 6
Profiling Application Execution Times with Rational Quantify.. 6
Code Coverage with Rational PureCoverage... 8
Memory Profiling with Rational Purify ... 10
Maximum Yield with Minimum Effort ... 11
SIDEBAR: Rational PurifyPlus in Action .. 11

Rational Purify Viewlet: http://www.therationaledge.com/content/sep_01/Viewlets/Purify/Purify_viewlet.html....... 11
Rational QuantifyViewlet: http://www.therationaledge.com/content/sep_01/Viewlets/Purify/Purify_viewlet.html.... 11

References.. 12

Testing J2EE Applications with Rational PurifyPlus

1

Introduction
This whitepaper addresses questions on how to use IBM Rational® PurifyPlus for a server side Java
application. Some general workarounds are available in the online Help section for PurifyPlus tools as
well as in the Rational Technical Support database
http://www.rational.com/support/technotes/index.jsp.

These instructions, however, may not be sufficient for every available deployment environment -- e.g.,
a Java application server that hosts and executes Java server side components. Plus, there are many
Java application servers on the market now. This whitepaper lpresents a proven and efficient way of
using PurifyPlus to test JavaServerPages (JSPs) and Java servlet applications running in Apache
Jakarta Tomcat, Version 4. Similar workarounds can be applied for the commercial Java application
servers; various J2EE applications have been successfully “Purify-ed”while running in BEA
WebLogic, Versions 5.1, 6.0 and 6.1, as well as in IBM WebSphere, Versions 3.5 and 4.

About Jakarta Tomcat
Jakarta is an open source project supported by Sun. The final goal of this project is to create a free
J2EE server side solution of a quality equal to those of commercial solutions. The Tomcat application
is the main part of this project, and in many people’s minds is synonymous with the whole Jakarta
undertaking. Tomcat is not a full size Java application server, but only the Servlet+JSP Engine, which
is more then enough to deploy and test JSPs and Java Servlet applications. It can either be run as a
standalone, or integrated into the Apache Web Server. Tomcat was chosen because it is very robust,
reliable, and available for free. More information about Tomcat and the Jakarta project can be found in
the list of references at the end of this article. The page listed in the references also contains a URL to
the Tomcat installation binaries and source code.1

About IBM Rational PurifyPlus
PurifyPlus is a complete solution for testing Java applications. It consists of three applications:

• Rational Purify -- A memory profiling tool (collects method and object level memory
profiling data and pinpoints application memory hot spots). 2

• Rational Quantify -- An application execution time profiling tool (collects method and line
level profiling data and pinpoints application performance bottlenecks).

• Rational PureCoverage -- A code coverage tool (collects information about the untested
parts of the application by highlighting the unexecuted methods and lines of code).

These three tools provide full support not only for Java, but also for Visual C/C++, Visual Basic and
.NET applications. In this whitepaper, the term PurifyPlus, refers to Rational PurifyPlus Version
2001A. In order to test Java server side applications with Rational PurifyPlus, you must install it on the
server machine.3

About Servlets and JavaServerPages
Servlets are Java applications running on the server side; their main purpose is to create content for
Web pages upon request from the client. The client side is normally a Web browser and a Web page
onto which users can enter data that will be processed by the servlet running on the server side. The
results of servlet operations are displayed on a Web page on the client side.

JavaServer Pages (JSPs) are basically HTML pages with special tags that enable them to either embed
the Java code in the page or access Java beans and servlets running on the server. Rational PurifyPlus

1 TIP: I recommend installing Tomcat in the directory without spaces in the names. That makes it
easier to include Tomcat directories in the classpath when compiling the servlets, for example.
2 A full version of Rational PurifyPlus can be downloaded for the evaluation purposes from the
Rational web page. The evaluation license expires in fifteen days. Rational Purify, Quantify, and
PureCoverage are also available in the following suites of Rational tools: Rational Suite
DevelopmentStudio, Rational Suite TestStudio, and Rational Suite Enterprise.
3 TIP: When installing Rational PurifyPlus select the custom installation option and check the option:
“Add Purify (and Quantify and PureCoverage) to the system path”. This is not a default setting, and it
can be helpful when executing PurifyPlus tools from the command line.

Testing J2EE Applications with Rational PurifyPlus

2

cannot check the HTML syntax, but it can test the Java part of the JSPs by monitoring the events that it
collects from the Java Virtual Machine (JVM).4

Preparing Java servlets and JavaServer Pages for Testing

PurifyPlus offers two basic levels of data collection: the method level and the line level. To test Java
applications on the method level, you don’t need to recompile the tested Java application to collect all
the relevant data about the methods. If you are interested in the line level information, however, then
you need to recompile the Java code with the symbolic debugging information. The switch to get the
symbols in the Java class files with the Sun Java compiler is ‘–g’.

>javac –g MyServlet.java

All the information about Java applications run in the Sun Java2 compatible virtual machines will be
collected through JVMPI (Java Virtual Machine Profiling Interface). It is necessary to use the JVM that
is fully compatible with the Sun Java 2 specifications. Rational PurifyPlus also fully supports Microsoft
JVM.

You will need to include the servlet library ‘servlet.jar’in the classpath when compiling servlets. This
library is installed with Tomcat and can be found in the directory <Tomcat home>\common\lib. Here is
an example command line for compiling MyServlet.java with the symbolic debugging information:

Javac –g –classpath <<Tomcat home>\common\lib\servlet.jar>
MyServlet.java

Preparing the Windows Environment for Testing JavaServerPages and Java Servlets with Rational
PurifyPlus.

The environmental variable:

JAVA_HOME

specifies the home directory for the default JVM. It is also the default choice for the Java Virtual
Machine that will be used by Rational PurifyPlus. To correctly set up the Java run that allows you to
use PurifyPlus, however, you must execute the following command line before you start profiling for
the first time after a new Java service setup:

pstart <or qstart, or cstart> -setup

This command will update the Java policy file for the selected Java Run-time Environment (JRE).

Now, let’s look at another environmental variable.

JAVA_OPTIONS (or IBM_JAVA_OPTIONS for the IBM JVM)

Rational PurifyPlus collects all the information about Java applications through the Java Virtual
Machine Profiling Interface (JVMPI). Since PurifyPlus and JVM run as two different processes, the
Java process needs to load a PurifyPlus shared library called PureJVMPI that will listen to the JVM
events, collect information about the run through the JVMPI, and send this information to the
PurifyPlus tool. This dynamically linked library is loaded through an additional option for the run of
the Java executable:‘–Xrun’. Here is an example of how PurifyPlus can be started from the command
line:

>java –XrunPureJVMPI:Purify Java_App(or
>java –XrunPureJVMPI:Quantify Java_App or

4 For more information on building Java servlets and JSPs, see Kawar Ahmed and Loïc Julien’s article
in the February, 2001 issue of The Rational Edge. [DESIGNER: LINK TO
http://www.therationaledge.com/content/feb_01/t_entrose2_ka.html]

Testing J2EE Applications with Rational PurifyPlus

3

>java –XrunPureJVMPI:Coverage Java_App)

To profile server side Java applications and Java services, you need to manually create a special system
environmental variable with the ‘–XRun’ option that will launch the selected PurifyPlus tool every time
JVM is engaged. For the Sun JVM. the name of the variable is _JAVA_OPTIONS and the value for the
variable should be:

–XrunPureJVMPI:Purify (or –XrunPureJVMPI:Quantify
or –XrunPureJVMPI:Coverage)

If you use the IBM JVM (necessary for running the IBM WebSphere Java application server), then the
name of the environmental variable should be IBM_JAVA_OPTIONS.

The above option specified in the _JAVA_OPTIONS environment variable will launch Rational Purify
(or Quantify, or PureCoverage) every time Tomcat application is started, and Purify (or Quantify, or
PureCoverage) will automatically start collecting data for this Java process. You can keep the report
free of data collected from parts of the Java process that are irrelevant for testing servlets and JSPs by
using both pre-filters and the PurifyPlus Filter Manager.

Preparing the Java Application Server Environment for Running with Rational PurifyPlus

To run Rational PurifyPlus with the Java application server, it is essential to specify the same
JAVA_HOME variable for both the server and the PurifyPlus tools. For Apache Tomcat, you can set
this up directly by executing the command:

SET JAVA_HOME=<path to JRE installation directory>

For BEA WebLogic Servers and IBM WebSphere, you can modify the batch files you use for setting
up the environment to run the server by changing the value of the variable JAVA_HOME as shown
above.

Preparing PurifyPlus for Collecting Data from Java Applications Running in Apache Tomcat

To enable Rational PurifyPlus to collect information from your Java servlets and JSPs running in
Apache Tomcat, you must create a custom set of pre-filters prior to testing.

PurifyPlus Filters. In PurifyPlus there are two ways of filtering data that is not relevant for testing.
The first way is by setting pre-filters for the tool you plan to use (Rational PurifyPlus, Quantify, or
PureCoverage). A pre-filter is a list of Java packages from which no data should be collected during the
run. This list is defined in the [Prefilter] section of the Profile.ini file that can be found in the main
directory of each of the PurifyPlus tools.

Each of the Java packages on the list should be in the new line. Let’s look at an example of how
prefiltering works in PurifyPlus functions.

Testing J2EE Applications with Rational PurifyPlus

4

Figure 1: A Profile.ini File for Rational Purify

Let’s say we would like to exclude the Java package com.sun. If we specify ‘com.sun.’ (please
note the dot at the end of the string) as a line in the pre-filtering section of Profile.ini, then the
file and all its sub-packages will be excluded from data collection by the selected PurifyPlus tool
during testing (see Figure 1). To prefilter individual classes you can use fully qualified names (package
first) without the terminating dot. For example, com.rational.MyClass would prefilter
MyClass in the com.rational package. If you specify just the class name (e.g. MyClass), then
this class will be prefiltered in all packages. PurifyPlus tools do not prefilter individual methods of a
class.

The PurifyPlus Filter Manager. The second way to filter data is through the Filter Manager feature
available through the Graphical User Interface of each of the tools (see Figures 2A and 2B). The Filter
Manager creates a special binary filter file for the tested Java application. It can be used only after the
profiling or the coverage data has been collected.

Testing J2EE Applications with Rational PurifyPlus

5

Figure 2A: Main window of the Rational PurifyPlus Filter Manager in Rational Quantify

The class files checked on the list will be excluded from the reports, but the data collected for them will
be kept in the overall results (i.e., the “Time” section in the lower right corner of the Filter Manager
window shown in Figure 2A).5

Figure2B: Using the Rational PurifyPlus Filter Manager in Rational PureCoverage

5TIP: You can check a large number of classes at once (e.g. all java.* classes) by marking them on the
list of classes with the mouse and holding the CTRL, or SHIFT key on the keyboard. A right-click on
the marked set of classes will bring-up the pop-up window, and you can then choose “Enable” to create
filters for all marked Java classes at once.

Testing J2EE Applications with Rational PurifyPlus

6

To run Tomcat in PurifyPlus, I recommend the following list of pre-filters to the Profile.ini file for each
of the PurifyPlus tools (Purify, Quantify, PureCoverage):

org.omg.
javax.servlet.
com.sun.
org.apache.
org.xml.
org.w3c.
sun.

For other Java server applications, you will need to create other pre-filters. See my tech tips
http://www.therationaledge.com/content/sep_01/t_techTips_gb.html, on how to run Rational
PurifyPlus with the BEA WebLogic and IBM WebSphere Java application servers.

The Demo Application
The demo application used in this article is an online bookstore called “Duke’s Bookstore.” This Web
application can be downloaded from Sun Web site. It was originally created as part of a tutorial for
creating and running Java servlets. It consists of a series of Web pages and servlets that create the
content for these pages. Rational PurifyPlus can be engaged in testing either the whole Web application
or only parts of it (individual servlets, for example.)

Run-Time Testing of Java Servlets and JavaServerPages in Rational
PurifyPlus
After compiling the Java components with the debugging information and setting up the necessary
filters for the tools, you will be ready to collect line level profiling and code coverage information from
the servlets and JavaServer Pages.

As a first step, I suggest engaging Rational Quantify and collecting information for an execution time
analysis.

Profiling Application Execution Times with Rational Quantify
Assigning the value ‘–XrunPureJVMPI:Quantify’ to the environmental variable
_JAVA_OPTIONS will launch Quantify when you start Tomcat server application. As you’re
browsing through the demo Web application Quantify will record times spent in executing each
method and line of code that was triggered through the Web page. After Tomcat is initialised and
started, the test application can be reached by specifying the following URL in the browser:

http://localhost:8080/bookstore/bookstore.html

After you finish the test run, close the browser and stop the Tomcat server application. The results of
the profiling will be displayed in several different views in Quantify. The first is the CallGraph view, as
shown in Figure 3.

Testing J2EE Applications with Rational PurifyPlus

7

Figure 3: Rational Quantify Call Graph for a Web Application

The Call Graph highlights the chain of calls that consumed most of the execution time. The thicker line
highlights the slowest part of the application and represents the percentage of time spent executing the
highlighted method, compared to the overall execution time.

The line level information is included in the Annotated Source view for the selected method, as shown
in Figure 4:

Figure 4: Rational Quantify Annotated Source for One Method in a Web Application.

Further information can be obtained from other views that Quantify creates, including the Function
Detail view shown in Figure 5:

Testing J2EE Applications with Rational PurifyPlus

8

Figure 5: Rational Quantify Function Detail for One Method in a Web Application

The advantage of using Quantify over some conventional solutions is the way the profiling data is
represented. Quantify leads you straight to the hart of the performance bottleneck in the tested
application.

Code Coverage with Rational PureCoverage
If we now change the value for the _JAVA_OPTIONS environmental variable to
‘–XrunPureJVMPI:Coverage’ and repeat the test run of the sample Web application,
PureCoverage will record the methods and lines of code that were tested and highlight the untested
parts of the application:

As Figures 6A and 6B show, PureCoverage provides both method and line level information about
coverage of the tested Java servlet application:

Testing J2EE Applications with Rational PurifyPlus

9

Figure 6A: Rational PureCoverage Method Coverage for a Tested Web Application

In the method level coverage, PureCoverage provides statistics for the methods of the tested
application, sorted by the modules in which the methods reside, or sorted by the source file in which
the methods are defined.

The coverage information about the lines of code of the tested application is presented in the annotated
source code; different colors indicate that the code is hit, missed, dead, or partially hit.

Figure 6B: Rational PureCoverage Line level coverage for One Servlet Method from the Tested Web Application

Testing J2EE Applications with Rational PurifyPlus

10

This type of information can be very useful when determining the steps for run time testing or creating
script files that will automate the tests. PureCoverage also allows you to merge the coverage data for
different tests on the same application, thereby providing a clear overview about the quality of the tests
that have been made on the developed application.

Memory Profiling with Rational Purify
Using Rational Purify to obtain a memory profile of the tested Web application is similar to using
PureCoverage and Quantify. Taking “snapshots” of the memory usage for the running application,
however, gives you the opportunity to compare the memory footprint of the application at different
stages of its execution. It is a very useful method for detecting memory leaks.

Memory leaks in the server applications (which often run 24 X 7) can easily bring both an application
and the system down, because the application continuously uses more and more memory as it runs. The
impact of memory leaks on application performance is significant as well. The memory footprint that
you can record for Java applications by using Rational Purify enables you to analyze memory usage in
fine detail.6

When applied against Java Servlets and JSPs, Purify produces the same types of reports it produces for
Java applications and Java applets. Figure 7 shows a Purify recording for a tested JSP with the invoked
JavaBean methods.

Figure 7: Rational Purify Call Graph for a Demo JSP

The list of methods gives more information about the memory usage for this JSP session, as shown in
Figure 8.

6 For more information on using Rational Purify with Java applications, look for additional whitepapers
at www.rational.com or see related articles in theJanuary and June issues of The Rational Edge,

 http://www.therationaledge.com/content/jan_01/m_memjava_gb.html
http://www.therationaledge.com/content/jun_01/t_profiling_gb.html]

Testing J2EE Applications with Rational PurifyPlus

11

Figure 8: Rational Purify Function List for a JSP

Just as Rational Quantify leads users to the portion of the application that consumes the most execution
time, Purify leads the user to the application’s memory bottleneck. By sorting the methods in the
Function List view, it is easy to locate those with excessive memory usage; Purify also provides
numerous other views that can help you accomplish this.

Maximum Yield with Minimum Effort
It is easy to deploy Rational PurifyPlus on the server machine to obtain extensive profiling and code
coverage information for Java server side applications. You can use Rational PurifyPlus not only with
commercial Java server applications, but also with a lightweight -- and free -- Java servlet and JSP
engine such as Apache Tomcat.

SIDEBAR: Rational PurifyPlus in Action
To gain a better understanding of the procedures described in this article, you can download a brief,
animated viewlet about each Rational PurifyPlus tool. Just click on the links below.

Rational Purify Viewlet: http://www.therationaledge.com/content/sep_01/Viewlets/Purify/Purify_viewlet.html

Rational QuantifyViewlet: http://www.therationaledge.com/content/sep_01/Viewlets/Purify/Purify_viewlet.html

Rational PureCoverageViewlet: http://www.therationaledge.com/content/sep_01/Viewlets/Coverage/Coverage_viewlet.html

Testing J2EE Applications with Rational PurifyPlus

12

References

1. PurifyPlus Homepage http://www.rational.com/products/pqc/index.jsp

2. Jakarta Project Homepage http://jakarta.apache.org/

3. Java Servlet Specifications http://java.sun.com/products/servlet/

4. JavaServer PagesTM (JSP) Specifications http://java.sun.com/products/jsp/

5. Khawar Ahmed and Loïc Julien, “Enterprise Java and Rational Rose - Part II.” The Rational
Edge, February 2001. http://www.therationaledge.com/content/feb_01/t_entrose2_ka.html

6. Goran Begic, “Memory Profiling in Java.” The Rational Edge, January
2001.http://www.therationaledge.com/content/jan_01/m_memjava_gb.html

7. Goran Begic, “Monitoring Object Creation in Java Application Profiling with Rational
PurifyPlus.” The Rational Edge, June 2001.
http://www.therationaledge.com/content/jun_01/t_profiling_gb.html

8. Programmer's Guide to Servlets in Netscape Enterprise Server
4.0http://developer.netscape.com/docs/manuals/enterprise/40/servlets/1-intro.htm

9. Servlets Bookstore Example
http://java.sun.com/docs/books/tutorial/information/download.html

IBM software integrated solutions
IBM Rational supports a wealth of other offerings from IBM software. IBM
software solutions can give you the power to achieve your priority business
and IT goals.

• DB2® software helps you leverage information with solutions for data
enablement, data management, and data distribution.

• Lotus® software helps your staff be productive with solutions for
authoring, managing, communicating, and sharing knowledge.

• Tivoli® software helps you manage the technology that runs your e-
business infrastructure.

• WebSphere® software helps you extend your existing business-critical
processes to the Web.

• Rational® software helps you improve your software development
capability with tools, services, and best practices.

Rational software from IBM
Rational software from IBM helps organizations create business value by
improving their software development capability. The Rational software
development platform integrates software engineering best practices, tools,
and services. With it, organizations thrive in an on demand world by being
more responsive, resilient, and focused. Rational's standards-based, cross-
platform solution helps software development teams create and extend
business applications, embedded systems and software products. Ninety-
eight of the Fortune 100 rely on Rational tools to build better software,
faster. Additional information is available at www.rational.com and
www.therationaledge.com, the monthly e-zine for the Rational community.

Rational is a wholly owned subsidiary of
IBM Corp. (c) Copyright Rational
Software Corporation, 2003. All rights
reserved.

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Printed in the United States of America
01-03 All Rights Reserved.
Made in the U.S.A.

IBM the IBM logo, DB2, Lotus, Tivoli
and WebSphere are trademarks of
International Business Machines
Corporation in the United States, other
countries, or both.

Rational, and the Rational Logo are
trademarks or registered trademarks of
Rational Software Corporation in the
United States, other countries or both.

Microsoft and Windows NT are
registered trademarks of Microsoft
Corporationin the United States, other
countries, or both.

Java and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in
the United States, other countries, or
both.

ActionMedia, LANDesk, MMX, Pentium
and ProShare are trademarks of Intel
Corporation in the United States, other
countries, or both.

UNIX is a trademark of The Open Group
in the United States, other countries or
both.

Other company, product or service
names may be trademarks or service
marks of others.

The IBM home page on the Internet can
be found at ibm.com

