
85

C H A P T E R 4

Testing with JUnit
4.1 Refactoring 86
4.2 Java main() testing 86
4.3 JUnit primer 87
4.4 Applying unit tests to our application 92
4.5 The JUnit task—<junit> 94

4.6 Test failures are build failures 97
4.7 Generating test result reports 100
4.8 Short-circuiting tests 105
4.9 Best practices 109
4.10 Summary 110

“Any program feature without an automated test simply doesn’t exist.” 1

Software bugs have enormous costs: time, money, frustrations, and even lives. How
do we alleviate as much of these pains as possible? Creating and continuously execut-
ing test cases for our software is a practical and common approach to address software
bugs before they make it past our local development environment.

The JUnit testing framework is now the de facto standard unit testing API for Java
development. Ant integrates with JUnit to allow executing test suites as part of the
build process, capturing their output, and generating rich color enhanced reports. In
this chapter, we cover in more detail what testing can give us beyond knowing that
our code is working well within some boundaries, then we cover the primary alterna-
tive to JUnit testing and why it is insufficient. The bulk remainder of the chapter, the
largest part, is devoted to Ant’s JUnit integration: how to use it, its limitations, and
the techniques to make seamless integrated testing part of every build.

1 Extreme Programming Explained, Kent Beck, page 57

86 CHAPTER 4 TESTING WITH JUNIT

4.1 REFACTORING

Assuming we accept the statement that all software systems must and will change over
time, and also assuming that we all want our code to remain crisp, clean, and unclut-
tered of quick-and-dirty patches to accommodate the customer request du jour, how
do we reconcile these conflicting requirements? Refactoring is the answer! Refactor-
ing, as defined by Fowler, is the restructuring of software by applying a series of inter-
nal changes that do not affect its observable behavior (Fowler 1999).

Refactoring is one of the primary duties in agile methodologies such as eXtreme
Programming. How can we facilitate constant refactoring of our code? Some of the
key ways this can become easier is to have coding standards, simple design, a solid
suite of tests, and a continuous integration process (Beck 1999). In an eXtreme Pro-
gramming team, the names of the refactorings “replace type code with strategy” can
become as commonplace as design patterns such as “the strategy pattern.” Fowler’s
definitive Refactoring book provides a catalog of refactorings and when and how to
apply them, just as the “Gang of Four” book (Gamma et al. 1995) is the definitive
guide to design patterns.

We are not going to tell you how you should write your Java programs; instead,
we refer you to some of the books in the Bibliography, such as The Elements of Java
Style (Vermeulen et al. 2000) and Bloch’s Effective Java (2001). These should be on
the desk of every Java developer. We address Ant coding standards in appendix D. Just
as good Java code should be simple, testable, and readable, your build file should be
simple, testable, and follow coding standards; the XP methodology applies to build
files and processes as much as to the Java source.

The remainder of this chapter is all about how to use Ant for testing. Continuous
integration is a topic that will be touched upon in this chapter, but covered in more
detail in chapter 16.

4.2 JAVA MAIN() TESTING

A common way that many Java developers exercise objects is to create a main method
that instantiates an instance of the class, and performs a series of checks to ensure that
the object is behaving as desired. For example, in our HtmlDocument class we define
a main method as

public static void main(String args[]) throws Exception {
 HtmlDocument doc = new HtmlDocument(new File(args[0]));
 System.out.println("Title = " + doc.getTitle());
 System.out.println("Body = " + doc.getBodyText());
}

We are then able to run the program from the command-line, with the proper class-
path set:

java org.example.antbook.ant.lucene.HtmlDocument
 test/org/example/antbook/ant/lucene/test.html

JUNIT PRIMER 87

Using Ant as a Java program launcher, we can run it with the <java> task:

<java classname="org.example.antbook.ant.lucene.HtmlDocument">
 <arg value="test/org/example/antbook/ant/lucene/test.html"/>
 <classpath refid="test.classpath"/>
</java>

Writing main method checks is convenient because all Java IDEs provide the ability
to compile and run the class in the current buffer, and certainly have their place for
exercising an object’s capability. There are, however, some issues with this approach
that make it ineffective as a comprehensive test framework:

• There is no explicit concept of a test passing or failing. Typically, the program
outputs messages simply with System.out.println; the user has to look at
this and decide if it is correct.

• main has access to protected and private members and methods. While
you may want to test the inner workings of a class may be desired, many tests
are really about testing an object’s interface to the outside world.

• There is no mechanism to collect results in a structured fashion.

• There is no replicability. After each test run, a person has to examine and inter-
pret the results.

The JUnit framework addresses these issues, and more.

4.3 JUNIT PRIMER

JUnit is a member of the xUnit testing framework family and now the de facto stan-
dard testing framework for Java development. JUnit, originally created by Kent Beck
and Erich Gamma, is an API that enables developers to easily create Java test cases. It
provides a comprehensive assertion facility to verify expected versus actual results. For
those interested in design patterns, JUnit is also a great case study because it is very
pattern-dense. Figure 4.1 shows the UML model. The abstract TestCase class is of
most interest to us.

<Test>
run(TestResult)

TestCase
setUp
tearDown

TestSuite

Figure 4.1

JUnit UML diagram depicting the composite

pattern utilized by TestCase and TestSuite.

A TestSuite contains a collection of tests,

which could be either more TestSuites

or TestCases, or even classes simply

implementing the test interface.

88 CHAPTER 4 TESTING WITH JUNIT

4.3.1 Writing a test case

One of the primary XP tenets is that writing and running tests should be easy. Writ-
ing a JUnit test case is intentionally designed to be as easy as possible. For a simple
test case, you follow three simple steps:

1 Create a subclass of junit.framework.TestCase.

2 Provide a constructor, accepting a single String name parameter, which calls
super(name).

3 Implement one or more no-argument void methods prefixed by the word test.

An example is shown in the SimpleTest class code:

package org.example.antbook.junit;

import junit.framework.TestCase;

public class SimpleTest extends TestCase
{
 public SimpleTest (String name) {
 super(name);
 }

 public void testSomething() {
 assertTrue(4 == (2 * 2));
 }
}

4.3.2 Running a test case

TestRunner classes provided by JUnit are used to execute all tests prefixed by the
word “test.” The two most popular test runners are a text-based one, junit.textui.
TestRunner, and an attractive Swing-based one, junit.swingui.TestRunner.
From the command line, the result of running the text TestRunner is

java junit.textui.TestRunner org.example.antbook.junit.SimpleTest
.
Time: 0.01

OK (1 tests)

The dot character (.) indicates a test case being run, and in this example only one
exists, testSomething. The Swing TestRunner displays success as green and fail-
ure as red, has a feature to reload classes dynamically so that it can remain open while
code is recompiled, and will pick up the latest test case class each time. For this same
test case, its display appears in figure 4.2.

4.3.3 Asserting desired results

The mechanism by which JUnit determines the success or failure of a test is via asser-
tion statements. An assert is simply a comparison between an expected value and an

JUNIT PRIMER 89

actual value. There are variants of the assert methods for each primitive datatype and for
java.lang.String and java.lang.Object, each with the following signatures:

assertEquals(expected, actual)

assertEquals(String message, expected, actual)

The second signature for each datatype allows a message to be inserted into the
results, which makes clear identification of which assertion failed. There are several
other assertion methods:

• assertEquals(expected, actual)
assertEquals(String message, expected, actual)
This assertion states that the test expected.equals(actual) returns true,
or both objects are null. The equality test for a double also lets you specify a
range, to cope with floating point errors better. There are overloaded versions of
this method for all Java’s primitive types.

• assertNull(Object object),
assertNull(String message, Object object)
This asserts that an object reference equals null.

• assertNotNull(Object object),
assertNotNull(String message, Object)
This asserts that an object reference is not null.

• assertSame(Object expected, Object actual),
assertSame(String message, Object expected, Object actual)
Asserts that the two objects are the same. This is a stricter condition than simple
equality, as it compares the object identities using expected == actual.

Figure 4.2

JUnit’s Swing TestRunner

90 CHAPTER 4 TESTING WITH JUNIT

• assertTrue(boolean condition),
assertTrue(String message, boolean condition)
This assertion fails if the condition is false, printing a message string if supplied.
The assertTrue methods were previously named simply assert, but
JDK 1.4 introduces a new assert keyword. You may encounter source using the
older method names and receive deprecation warnings during compilation.

• fail(),
fail(String message)
This forces a failure. This is useful to close off paths through the code that
should not be reached.

JUnit uses the term failure for a test that fails expectedly, meaning that an assertion
was not valid or a fail was encountered. The term error refers to an unexpected
error (such as a NullPointerException). We will use the term failure typically to
represent both conditions as they both carry the same show-stopping weight when
encountered during a build.

4.3.4 TestCase lifecycle

The lifecycle of a TestCase used by the JUnit framework is as follows:

1 Execute public void setUp().

2 Call a test-prefixed method.

3 Execute public void tearDown().

4 Repeat these steps for each test method.

Any number of test methods can be added to a TestCase, all beginning with the
prefix test. The goal is for each test to be small and simple, and tests will usually re-
quire instantiating objects. In order to create some objects and preconfigure their state
prior to running each individual test method, override the empty TestCase.setUp
method, and store state as member variables to your test case class. Use the
TestCase.tearDown method to close any open connections or in some way reset
state. Our HtmlDocumentTest takes advantage of setUp and tearDown (see later
this chapter) so that all test methods will have implicit access to an HtmlDocument.

NOTE The setUp and tearDown methods are called before and after every test
method is invoked, preventing one test from affecting the behavior of an-
other. Tests should never make assumptions about the order in which they
are called.

4.3.5 Writing a TestSuite

With JUnit’s API, tests can be grouped into a suite by using the TestSuite class.
Grouping tests may be a benefit to let you build several individual test cases for a par-
ticular subsystem and write an all-inclusive TestSuite that runs them all.
A TestSuite also allows specific ordering of tests, which may be important—

JUNIT PRIMER 91

although ideally the order of tests should not be relevant as each should be able to
stand alone. Here is an example of a test suite:

public class AllTests extends TestSuite {
 static public Test suite() {
 TestSuite suite = new TestSuite();
 suite.addTestSuite(SimpleTest.class);
 return suite;
 }
}

You don’t need to bother with test suites when running JUnit tests using Ant, because
you can list a group of TestCase classes to run as a batch from the build file itself.
(See section 4.6.2 for discussion of <batchtest>.) However, running a single
TestSuite using the “running a single test case” trick in section 4.7.2 gives you
flexibility in the grouping and granularity of test cases. Remember that a TestCase
is a Test, and a TestSuite is also a Test, so the two can be used interchangeably
in most instances.

4.3.6 Obtaining and installing JUnit

JUnit is just a download away at http://www.junit.org. After downloading the Zip or
tar file, extract the junit.jar file. You must put junit.jar into ANT_HOME/lib so that
Ant can find it. Because of Ant class loader issues, you must have junit.jar in the sys-
tem classpath or ANT_HOME/lib; our recommendation is to keep your system
classpath empty by placing such Ant dependencies in its lib directory.

Many IDEs can create JUnit test cases automatically from an existing Java class—
refer to the documentation of your IDE for details. Be careful, however, not to let the
habit of automatic test generation deter you from writing the tests first! We also
encourage the exploration of the many great resources also found at the JUnit web site.

4.3.7 Extensions to JUnit

Because of its architecture, it is easy to build extensions on top of JUnit. There are
many freely available extensions and companions for JUnit. Table 4.1 shows a few.

Table 4.1 A few notable companions to enhance the capabilities of JUnit testing

Name Description

HttpUnit A test framework that could be embedded in JUnit tests to perform automated web
site testing.

JUnitPerf JUnit test decorators to perform scalability and performance testing.

Mock Objects Allows testing of code that accesses resources such as database connections
and servlet containers without the need of the actual resources.

Cactus In-container unit testing. Covered in detail in chapter 12.

DBUnit Sets up databases in a known state for repeatable DB testing.

92 CHAPTER 4 TESTING WITH JUNIT

4.4 APPLYING UNIT TESTS TO OUR APPLICATION

This is the first place in our book where we delve into the application built to accom-
pany this text. We could have written the book without a sample application and
contrived the examples, but we felt that to have a common theme throughout the
book would give you the benefit of seeing how all the pieces fit together.

Without a doubt, one of the key points we want to emphasize is the importance
of testing. Sure, this book is about Ant, yet Ant exists as a tool for assisting with the
development of software and does not stand alone. To reiterate: “any program feature
without an automated test simply doesn’t exist.” For developers to embrace testing as
a routine, and even enjoyable, part of life, it must be easy. Ant facilitates this for us
nicely with the ability to run JUnit test cases as an integral part of the build.

Why is the “Testing” chapter the right place to start seriously delving into our
application? Because the tests were written first, our application did not exist until
there was an automated test in place.

4.4.1 Writing the test first

At the lowest level of our application is the capability to index text files, including
HTML files. The Jakarta Project’s Lucene tool provides fantastic capabilities for
indexing and searching for text. Indexing a document is simply a matter of instantiat-
ing an instance of org.apache.lucene.document.Document and adding
fields. For text file indexing, our application loads the contents of the file into a field
called contents. Our HTML document handling is a bit more involved as it parses the
HTML and indexes the title (<title>) as a title field, and the body, excluding
HTML tags, as a contents field. Our design calls for an abstraction of an HTML doc-
ument, which we implement as an HtmlDocument class. One of our design deci-
sions is that content will be indexed from filesystem files, so we will build our
HtmlDocument class with constructor accepting a java.io.File as a parameter.

What benefit do we get from testing HtmlDocument? We want to know that
JTidy, the HTML parser used, and the code wrapped around it is doing its job. Per-
haps we want to upgrade to a newer version of JTidy, or perhaps we want to replace
it entirely with another method of parsing HTML. Any of those potential scenarios make
HtmlDocument an ideal candidate for a test case. Writing the test case first, we have

package org.example.antbook.ant.lucene;
import java.io.IOException;
import junit.framework.TestCase;

public class HtmlDocumentTest extends DocumentTestCase
{
 public HtmlDocumentTest (String name) {
 super(name);
 }

 HtmlDocument doc;

APPLYING UNIT TESTS TO OUR APPLICATION 93

 public void setUp() throws IOException {
 doc = new HtmlDocument(getFile("test.html"));
 }

 public void testDoc() {
 assertEquals("Title", "Test Title", doc.getTitle());
 assertEquals("Body", "This is some test", doc.getBodyText());
 }

 public void tearDown() {
 doc = null;
 }
}

To make the compiler happy, we create a stub HtmlDocument adhering to the signa-
tures defined by the test case. Take note that the test case is driving how we create our
production class—this is an important distinction to make; test cases are not written
after the code development, instead the production code is driven by the uses our test
cases make of it. We start with a stub implementation:

package org.example.antbook.ant.lucene;
import java.io.File;

public class HtmlDocument {
 public HtmlDocument(File file) { }
 public String getTitle() { return null; }
 public String getBodyText() { return null; }
}

Running the unit test now will fail on HtmlDocumentTest.testDoc(), until we
provide the implementation needed to successfully parse the HTML file into its com-
ponent title and body. We are omitting the implementation details of how we do this,
as this is beyond the scope of the testing chapter.

4.4.2 Dealing with external resources during testing

As you may have noticed, our test case extends from DocumentTestCase rather
than JUnit’s TestCase class. Since our application has the capability to index
HTML files and text files, we will have an individual test case for each document
type. Each document type class operates on a java.io.File, and obtaining the
full path to a test file is functionality we consolidate at the parent class in the get-
File method. Creating parent class TestCase extensions is a very common tech-
nique for wrapping common test case needs, and keeps the writing of test cases easy.

Our base DocumentTestCase class finds the desired file in the classpath and
returns it as a java.io.File. It is worth a look at this simple code as this is a valu-
able technique for writing test cases:

package org.example.antbook.ant.lucene;
import java.io.File;
import java.io.IOException;
import junit.framework.TestCase;

94 CHAPTER 4 TESTING WITH JUNIT

public abstract class DocumentTestCase extends TestCase
{
 public DocumentTestCase(String name) {
 super(name);
 }

 protected File getFile(String filename) throws IOException {
 String fullname =
 this.getClass().getResource(filename).getFile();
 File file = new File(fullname);
 return file;
 }
}

Before implementing the HtmlDocument code that will make our test case succeed,
our build must be modified to include testing as part of its routine process. We will
return to complete the test cases after adding testing to our Ant build process.

4.5 THE JUNIT TASK—<JUNIT>

One of Ant’s many “optional”2 tasks is the <junit> task. This task runs one or more
JUnit tests, then collects and displays results in one or more formats. It also provides
a way to fail or continue a build when a test fails.

In order to execute the test case that we have just written via Ant, we can declare
the task with the name of the test and its classpath:

<junit>
 <classpath refid="test.classpath"/>
 <test name="org.example.antbook.ant.lucene.HtmlDocumentTest"/>
</junit>

And, oddly, the following is displayed:

 [junit] TEST org.example.antbook.ant.lucene.HtmlDocumentTest FAILED
BUILD SUCCESSFUL

There are two issues to note about these results: no details were provided about which
test failed or why, and the build completed successfully despite the test failure. First
let’s get our directory structure and Ant build file refactored to accommodate further
refinements easily, and we will return in section 4.6 to address these issues.

4.5.1 Structure directories to accommodate testing

A well-organized directory structure is a key factor in build file and project manage-
ment simplicity and sanity. Test code should be separate from production code,
under unique directory trees. This keeps the test code out of the production binary
distributions, and lets you build the tests and source separately. You should use a
package hierarchy as usual. You can either have a new package for your tests, or

2 See chapter 10 for a discussion on Ant’s task types

THE JUNIT TASK—<JUNIT> 95

mimic the same package structure that the production classes use. This tactic makes it
obvious which tests are associated with which classes, and gives the test package-level
access privileges to the code being tested. There are, of course, situations where this
recommendation should not be followed (verifying package scoping, for example),
but typically mirroring package names works well.

NOTE A peer of one of the authors prefers a different and interesting technique
for organizing test cases. Test cases are written as public nested static classes
of the production code. The advantage is that it keeps the production and
test code in very close proximity. In order to prohibit packaging and de-
ploying test cases, he takes advantage of the $ that is part of a nested class
filename and excludes them. We mention this as an alternative, but do not
use this technique ourselves.

During the build, Ant compiles production code to the build/classes directory. To
separate test and production code, all test-generated artifacts go into build/test,
with classes into build/test/classes. The other products of the testing process
will be result data and reports generated from that data. Figure 4.3 shows the relevant
structure of our project directory tree.

4.5.2 Fitting JUnit into the build process

Adding testing into our build process is straightforward: simply add a few additional
targets to initialize the testing directory structure, compile the test code, and then
execute the tests and generate the reports. Figure 4.4 illustrates the target dependency
graph of the build file.

Figure 4.3 Our directory structure for unit test source code and corresponding compiled code

and test results

96 CHAPTER 4 TESTING WITH JUNIT

We use several build file properties and datatypes to make writing our test targets
cleaner, to avoid hard-coded paths, and to allow flexible control of the testing process.
First, we assign properties to the various directories used by our test targets:

<property name="test.dir" location="${build.dir}/test"/>
<property name="test.data.dir" location="${test.dir}/data"/>
<property name="test.reports.dir" location="${test.dir}/reports"/>

As we stated in chapter 3, when constructing subdirectories, like test.data.dir
and test.reports.dir, of a root directory, you should define a property referring
to the root directory and build the subdirectory paths from the root-referring prop-
erty. If, for example, we had defined test.data.dir as ${build.dir}/test/
data, then it would not be possible to relocate the entire test output directory struc-
ture easily. With test.dir used to define the subdirectory paths, it is straightfor-
ward to override the test.dir property and move the entire tree. Another benefit
could be to individually control where Ant places test reports (overriding test.
reports.dir), so that we could place them in a directory served by a web server.

Compiling and running tests requires a different classpath than the classpath used
in building our production compilation. We need JUnit’s JAR file compilation and
execution, and the test/classes directory for execution. We construct a single <path>
that covers both situations:

<path id="test.classpath">
 <path refid="compile.classpath"/>
 <pathelement location="${junit.jar}"/>
 <pathelement location="${build.dir}/classes"/>
 <pathelement location="${build.dir}/test"/>
</path>

We originally defined the compile.classpath path in chapter 3; we reference it
here because our test code is likely to have the same dependencies as our production
code. The test-compile target utilizes test.classpath as well as test.dir:

<target>
init

<target>
test

Any further targets should
directly or indirectly

depend on the target test

<target>
compile

<target>
test-init

Figure 4.4

Refactoring our build

process with unit

testing targets

TEST FAILURES ARE BUILD FAILURES 97

<target name="test-compile" depends="compile,test-init">
 <javac destdir="${test.dir}"
 debug="${build.debug}"
 includeAntRuntime="true"
 srcdir="test">
 <classpath refid="test.classpath"/>
 </javac>

 <copy todir="${test.dir}">
 <fileset dir="test" excludes="**/*.java"/>
 </copy>
</target>

Note that in this particular example we are planning on building a custom Ant task
so we set the includeAntRuntime attribute. Typically, you should set this at-
tribute to false, to control your classpaths better. We follow the compilation with a
<copy> task to bring over all non-.java resources into the testing classpath, which
will allow our tests to access test data easily. Because of dependency checking, the
<copy> task does not impact incremental build times until those files change.

4.6 TEST FAILURES ARE BUILD FAILURES

By default, failing test cases run with <junit> do not fail the build process. The
authors believe that this behavior is somewhat backwards and the default should be to
fail the build: you can set the haltonfailure attribute to true to achieve this
result.3 Developers must treat test failures in the same urgent regard as compilation
errors, and give them the same show-stopping attention.

Adding both haltonfailure="true" and printsummary="true" to our
<junit> element attributes, we now get the following output:

 [junit] Running org.example.antbook.ant.lucene.HtmlDocumentTest
 [junit] Tests run: 1, Failures: 1, Errors: 0, Time elapsed: 0.01 sec
BUILD FAILED

Our build has failed because our test case failed, exactly as desired. The summary out-
put provides slightly more details: how many tests run, how many failed, and how
many had errors. We still are in the dark about what caused the failure, but not for long.

4.6.1 Capturing test results

The JUnit task provides several options for collecting test result data by using format-
ters. One or more <formatter> tags can be nested either directly under <junit>
or under the <test> (and <batchtest>, which we will explore shortly). Ant
includes three types of formatters shown in table 4.2.

3 The authors do not recommend haltonfailure to be enabled either. Read on for why.

98 CHAPTER 4 TESTING WITH JUNIT

By default, <formatter> output is directed to files, but can be directed to Ant’s
console output instead. Updating our single test case run to include both the build
failure upon test failure and detailed console output, we use this task declaration:

<junit printsummary="false" haltonfailure="true">
 <classpath refid="test.classpath"/>
 <formatter type="brief" usefile="false"/>
 <test name="org.example.antbook.ant.lucene.HtmlDocumentTest"/>
</junit>

This produces the following output:

 [junit] Testsuite: org.example.antbook.ant.lucene.HtmlDocumentTest
 [junit] Tests run: 1, Failures: 1, Errors: 0, Time elapsed: 0.01 sec
 [junit]
 [junit] Testcase: testDoc(org.example.antbook.ant.lucene

 .HtmlDocumentTest):FAILED
 [junit] Title expected:<Test Title> but was:<null>
 [junit] junit.framework.AssertionFailedError:
 Title expected:<Test Title> but was:<null>
 [junit] at org.example.antbook.ant.lucene
 .HtmlDocumentTest.testDoc(HtmlDocumentTest.java:20)
 [junit]
 [junit]

BUILD FAILED

Now we’re getting somewhere. Tests run as part of our regular build, test failures
cause our build to fail, and we get enough information to see what is going on. By
default, formatters write their output to files in the directory specified by the <test>
or <batchtest> elements, but usefile="false" causes the formatters to write
to the Ant console instead. It’s worth noting that the stack trace shown is abbreviated
by the formatter, showing only the most important pieces rather than line numbers
tracing back into JUnit’s classes. Also, we turned off the printsummary option as it
duplicates and interferes with the output from the brief formatter.

XML formatter

Using the brief formatter directed to Ant’s console is very useful, and definitely rec-
ommended to allow quick inspection of the results and details of any failures.
The <junit> task allows more than one formatter, so you can direct results toward

Table 4.2 Ant JUnit task result formatter types.

<formatter> type Description

brief Provides details of test failures in text format.

plain Provides details of test failures and statistics of each test run in text format.

xml Provides an extensive amount of detail in XML format including Ant’s properties
at the time of testing, system out, and system error output of each test case.

TEST FAILURES ARE BUILD FAILURES 99

several formatters at a time. Saving the results to XML files lets you process them in a
number of ways. Our testing task now evolves to this:

<junit printsummary="false" haltonfailure="true">
 <classpath refid="test.classpath"/>
 <formatter type="brief" usefile="false"/>
 <formatter type="xml"/>
 <test todir="${test.data.dir}"
 name="org.example.antbook.ant.lucene.HtmlDocumentTest"/>
</junit>

The effect of this is to create an XML file for each test case run in the
${test.data.dir} directory. In this example, the file name will be TEST-org.
example.antbook.ant.lucene.HtmlDocumentTest.xml.

Viewing System.out and System.err output

While it is typically unnecessary to have test cases write to standard output or stan-
dard error, it might be helpful in troubleshooting. With no formatters specified and
printsummary either on or off, the <junit> task swallows the output. A special
value of printsummary lets you pass this output through back to Ant’s output:
printsummary="withOutAndErr". The plain, brief, and xml formatters
capture both output streams, so in our example printsummary is disabled because
we use the brief formatter to output to the console instead.

With a System.out.println("Hi from inside System.out.println")
inside a testOutput method of SimpleTest, our output is

test:
 [junit] Testsuite: org.example.antbook.junit.SimpleTest
 [junit] Tests run: 2, Failures: 0, Errors: 0, Time elapsed: 0.09 sec
 [junit] ------------- Standard Output ---------------
 [junit] Hi from inside System.out.println
 [junit] ------------- ---------------- ---------------
 [junit]
 [junit] Testcase: testSomething took 0.01 sec
 [junit] Testcase: testOutput took 0 sec
[junitreport] Using Xalan version: 2.1.0
[junitreport] Transform time: 932ms

BUILD SUCCESSFUL
Total time: 2 seconds.

Note that it does not identify the test method, testOutput in this case, which gen-
erated the output.

4.6.2 Running multiple tests

So far, we’ve only run a single test case using the <test> tag. You can specify any
number of <test> elements but that is still time consuming. Developers should not
have to edit the build file when adding new test cases. Enter <batchtest>. You can
nest filesets within <batchtest> to include all your test cases.

100 CHAPTER 4 TESTING WITH JUNIT

TIP Standardize the naming scheme of your test cases classes for easy fileset in-
clusions, while excluding helper classes or base test case classes. The normal
convention-naming scheme calls for test cases, and only test cases, to end
with the word “Test.” For example, HtmlDocumentTest is our test case,
and DocumentTestCase is the abstract base class. We use “TestCase”
as the suffix for our abstract test cases.

The <junit> task has now morphed into

<junit printsummary="true" haltonfailure="true">
 <classpath refid="test.classpath"/>
 <formatter type="brief" usefile="false"/>
 <formatter type="xml"/>
 <batchtest todir="${test.data.dir}">
 <fileset dir="${test.dir}" includes="**/*Test.class"/>
 </batchtest>
</junit>

The includes clause ensures that only our concrete test cases are considered, and
not our abstract DocumentTestCase class. Handing non-JUnit, or abstract, classes
to <junit> results in an error.

4.6.3 Creating your own results formatter

The authors of the JUnit task framework wisely foresaw the need to provide extensi-
bility for handling unit test results. The <formatter> element has an optional
classname attribute, which you can specify instead of type. You must specify a
fully qualified name of a class that implements the org.apache.tools.ant.
taskdefs.optional.junit.JUnitResultFormatter interface. Given that
the XML format is already provided, there is probably little need to write a custom
formatter, but it is nice that the option is present. Examine the code of the existing
formatters to learn how to develop your own.

4.7 GENERATING TEST RESULT REPORTS

With test results written to XML files, it’s a straightforward exercise to generate
HTML reports using XSLT. The <junitreport> task does exactly this, and even
allows you to use your own XSL files if you need to. This task works by aggregating
all of the individual XML files generated from <test>/<batchtest> into a single
XML file and then running an XSL transformation on it. This aggregated file is
named, by default, TESTS-TestSuites.xml.

Adding the reporting to our routine is simply a matter of placing the <junit-
report> task immediately following the <junit> task:

<junitreport todir="${test.data.dir}">
 <fileset dir="${test.data.dir}">
 <include name="TEST-*.xml"/>
 </fileset>
 <report format="frames" todir="${test.reports.dir}"/>
</junitreport>

GENERATING TEST RESULT REPORTS 101

The <fileset> is necessary, and typically will be specified using an include pattern
of "TEST-*.xml" since that is the default naming convention used by the XML
formatter of <junit>. The <report> element instructs the transformation to use
either frames or noframes Javadoc-like formatting, with the results written to the
todir directory. Figure 4.5 shows the frames report of this example.

Navigating to a specific test case displays results like figure 4.6.

Clicking the Properties » hyperlink pops up a window displaying all of Ant’s proper-
ties at the time the tests were run, which can be handy for troubleshooting failures
caused by environmental or configuration issues.

NOTE There are a couple of issues with <junit> and <junitreport>. First,
<junit> does not have any dependency checking logic; it always runs all tests.
Second, <junitreport> simply aggregates XML files without any knowledge
of whether the files it is using have any relation to the tests just run. A technique
using <uptodate> takes care of ensuring tests only run if things have changed.
Cleaning up the old test results before running tests gives you better reports.

Requirements of <junitreport>

The <junitreport> task requires an XSLT processor to do its thing. We recom-
mend Xalan 2.x. You can obtain Xalan from http://xml.apache.org/xalan-j/. As with
other dependencies, place xalan.jar into ANT_HOME/lib.

Figure 4.5

The main page, index.html, of

the default frames <junitreport>.

It summarizes the test

statistics and hyperlinks

to test case details.

Figure 4.6

Test case results. The

specific assertion that

failed is clearly shown.

102 CHAPTER 4 TESTING WITH JUNIT

4.7.1 Generate reports and allow test failures to fail the build

We run into a dilemma with <junitreport> though. We’ve instructed <junit>
to halt the build when a test fails. If the build fails, Ant won’t create the reports. The
last thing we want to do is have our build succeed when tests fail, but we must turn
off haltonfailure in order for the reports to generate. As a solution, we make the
<junit> task set specified properties upon a test failure or error, using the failure-
Property and errorProperty attributes respectively.

Using the properties set by <junit>, we can generate the reports before we fail
the build. Here is how this works:

<target name="test" depends="test-compile">
 <junit printsummary="false"
 errorProperty="test.failed"
 failureProperty="test.failed">
 <classpath refid="test.classpath"/>
 <formatter type="brief" usefile="false"/>
 <formatter type="xml"/>
 <batchtest todir="${test.data.dir}">
 <fileset dir="${test.dir}" includes="**/*Test.class"/>
 </batchtest>
 </junit>

 <junitreport todir="${test.data.dir}">
 <fileset dir="${test.data.dir}">
 <include name="TEST-*.xml"/>
 </fileset>
 <report format="frames"
 todir="${test.reports.dir}"/>
 </junitreport>

 <fail message="Tests failed. Check log and/or reports."
 if="test.failed"/>
</target>

 NOTE Remember that properties are immutable. Use a unique previously undefined
property name for failureProperty and errorProperty. (Both
may be the same property name.) As for immutability, here is one of the
holes in its rules. The value of these properties will be overwritten if an error
or failure occurs with the value true. See chapter 3 for more information
on properties.

Customizing the JUnit reports

If the default HTML generated by <junitreport> does not suit your needs, the
output can be customized easily using different XSL files. The XSL files used by the
task are embedded in Ant’s optional.jar, and ship in the etc directory of the
installation for customization use. To customize, either copy the existing junit-
frames.xsl and junit-noframes.xsl files to another directory or create new

haltonfailure has been removed

Conditional <fail> task-based

GENERATING TEST RESULT REPORTS 103

ones—you do need to use these exact file names. To use your custom XSL files, sim-
ply point the styledir attribute of the <report> element at them. Here we have
a property junit.style.dir that is set to the directory where the XSL files exist:

<junitreport todir="${test.data.dir}">
 <fileset dir="${test.data.dir}">
 <include name="TEST-*.xml"/>
 </fileset>
 <report format="frames"
 styledir="${junit.style.dir}"
 todir="${test.reports.dir}"/>
</junitreport>

4.7.2 Run a single test case from the command-line

Once your project has a sufficiently large number of test cases, you may need to iso-
late a single test case to run when ironing out a particular issue. This feat can be
accomplished using the if/unless clauses on <test> and <batchtest>. Our
<junit> task evolves again:

<junit printsummary="false"

 errorProperty="test.failed"
 failureProperty="test.failed">
 <classpath refid="test.classpath"/>
 <formatter type="brief" usefile="false"/>
 <formatter type="xml"/>
 <test name="${testcase}" todir="${test.data.dir}" if="testcase"/>
 <batchtest todir="${test.data.dir}" unless="testcase">
 <fileset dir="${test.dir}" includes="**/*Test.class"/>
 </batchtest>
</junit>

By default, testcase will not be defined, the <test> will be ignored, and
<batchtest> will execute all of the test cases. In order to run a single test case, run
Ant using a command line like

ant test -Dtestcase=<fully qualified classname>

4.7.3 Initializing the test environment

There are a few steps typically required before running <junit>:

• Create the directories where the test cases will compile to, results data will be
gathered, and reports will be generated.

• Place any external resources used by tests into the classpath.

• Clear out previously generated data files and reports.

Because of the nature of the <junit> task, old data files should be removed prior to
running the tests. If a test case is renamed or removed, its results may still be present.
The <junit> task simply generates results from the tests being run and does not
concern itself with previously generated data files.

104 CHAPTER 4 TESTING WITH JUNIT

Our test-init target is defined as:

<target name="test-init">
 <mkdir dir="${test.dir}"/>

 <delete dir="${test.data.dir}"/>
 <delete dir="${test.reports.dir}"/>
 <mkdir dir="${test.data.dir}"/>
 <mkdir dir="${test.reports.dir}"/>
</target>

4.7.4 Other test issues

Forking

The <junit> task, by default, runs within Ant’s JVM. There could be VM conflicts,
such as static variables remaining defined, so the attribute fork="true" can be
added to run in a separate JVM. The fork attribute applies to the <junit> level
affecting all test cases, and it also applies to <test> and <batchtest>, overriding
the fork setting of <junit>. Forking unit tests can enable the following (among others):

• Use a different JVM than the one used to run Ant (jvm attribute)

• Set timeout limitations to prevent tests from running too long (timeout
attribute)

• Resolve conflicts with different versions of classes loaded by Ant than needed by
test cases

• Test different instantiations of a singleton or other situations where an object
may remain in memory and adversely affect clean testing

Forking tests into a separate JVM presents some issues as well, because the classes
needed by the formatters and the test cases themselves must be in the classpath. The
nested classpath will likely need to be adjusted to account for this:

<classpath>
 <path refid="test.classpath"/>
 <pathelement path="${java.class.path}"/>
</classpath>

The JVM provided property java.class.path is handy to make sure the
spawned process includes the same classpath used by the original Ant JVM.

Configuring test cases dynamically

Test cases ideally are stateless and can work without any external information, but
this is not always realistic. Tests may require the creation of temporary files or some
external information in order to configure themselves properly. For example, the test
case for our custom Ant task, IndexTask, requires a directory of documents to
index and a location to place the generated index. The details of this task and its test
case are not covered here, but how those parameters are passed to our test case is relevant.

SHORT-CIRCUITING TESTS 105

The nested <sysproperty> element of <junit> provides a system property to
the executing test cases, the equivalent of a -D argument to a Java command-line program:

<junit printsummary="false"
 errorProperty="test.failed"
 failureProperty="test.failed">
 <classpath refid="test.classpath"/>
 <sysproperty key="docs.dir" value="${test.dir}/org"/>
 <sysproperty key="index.dir" value="${test.dir}/index"/>
 <formatter type="xml"/>
 <formatter type="brief" usefile="false"/>
 <test name="${testcase}" if="testcase"/>
 <batchtest todir="${test.data.dir}" unless="testcase">
 <fileset dir="${test.dir}" includes="**/*Test.class"/>
 </batchtest>
</junit>

The docs.dir property refers to the org subdirectory so that only the non-.java
files copied from our source tree to our build tree during test-init are seen by
IndexTask. Remember that our test reports are also generated under test.dir,
and having those in the mix during testing adds unknowns to our test case. Our
IndexTaskTest obtains these values using System.getProperty:

private String docsDir = System.getProperty("docs.dir");
private String indexDir = System.getProperty("index.dir");

Testing database-related code and other dynamic information

When crafting test cases, it is important to design tests that verify expected results
against actual results. Code that pulls information from a database or other dynamic
sources can be troublesome because the expected results vary depending on the state
of things outside our test cases’ control. Using mock objects is one way to test data-
base-dependent code. Refactoring is useful to isolate external dependencies to their
own layer so that you can test business logic independently of database access, for
example.

Ant’s <sql> task can preconfigure a database with known test data prior to run-
ning unit tests. The DBUnit framework (http://dbunit.sourceforge.net/) is also a
handy way to ensure known database state for test cases.

4.8 SHORT-CIRCUITING TESTS

The ultimate build goal is to have unit tests run as often as possible. Yet running tests
takes time—time that developers need to spend developing. The <junit> task per-
forms no dependency checking; it runs all specified tests each time the task is encoun-
tered. A common practice is to have a distribution target that does not depend on the
testing target. This enables quick distribution builds and maintains a separate target
that performs tests. There is certainly merit to this approach, but here is an alternative.

106 CHAPTER 4 TESTING WITH JUNIT

In order for us to have run our tests and have build speed too, we need to perform our
own dependency checking. First, we must determine the situations where we can skip
tests. If all of the following conditions are true, then we can consider skipping the tests:

• Production code is up-to-date.

• Test code is up-to-date.

• Data files used during testing are up-to-date.

• Test results are up-to-date with the test case classes.

Unfortunately, these checks are not enough. If tests failed in one build, the next build
would skip the tests since all the code, results, and data files would be up-to-date; a
flag will be set if a previous build’s tests fail, allowing that to be taken into consider-
ation for the next build. In addition, since we employ the single-test case technique
shown in section 4.7.2, we will force this test to run if specifically requested.

Using <uptodate>, clever use of mappers, and conditional targets, we will
achieve the desired results. Listing 4.1 shows the extensive <condition> we use to
accomplish these up-to-date checks.

 <condition property="tests.uptodate">
 <and>
 <uptodate>
 <srcfiles dir="${src.dir}" includes="**/*.java"/>
 <mapper type="glob"
 from="*.java"
 to="${build.classes.dir}/*.class" />
 </uptodate>

 <uptodate>
 <srcfiles dir="${test.src.dir}" includes="**/*.java"/>
 <mapper type="glob"
 from="*.java"
 to="${test.classes.dir}/*.class" />
 </uptodate>

 <uptodate>
 <srcfiles dir="${test.src.dir}" excludes="**/*.java"/>
 <mapper type="glob"
 from="*"
 to="${test.classes.dir}/*" />
 </uptodate>

 <not>
 <available file="${test.last.failed.file}"/>
 </not>

 <not>
 <isset property="testcase"/>
 </not>

Listing 4.1 Conditions to ensure unit tests are only run when needed

b

c

d

e

f

SHORT-CIRCUITING TESTS 107

 <uptodate>
 <srcfiles dir="${test.src.dir}" includes="**/*.java"/>
 <mapper type="package"4
 from="*Test.java"
 to="${test.data.dir}/TEST-*Test.xml"/>
 </uptodate>
 </and>
 </condition>

Let’s step back and explain what is going on in this <condition> in detail.

Has production code changed? This expression evaluates to true if production class
files in ${build.classes.dir} have later dates than the corresponding .java files
in ${src.dir}.

Has test code changed? This expression is equivalent to the first, except that it’s com-
paring that our test classes are newer than the test .java files.

Has test data changed? Our tests rely on HTML files to parse and index. We main-
tain these files alongside our testing code and copy them to the test classpath. This
expression ensures that the data files in our classpath are current with respect to the
corresponding files in our test source tree.

Did last build fail? We use a temporary marker file to flag if tests ran but failed. If the
tests succeed, the marker file is removed. This technique is shown next.

Single test case run? If the user is running the build with the testcase property set
we want to always run the test target even if everything is up to date. The conditions
on <test> and <batchtest> in our “test” target ensure that we only run the one
test case requested.

Test results current? The final check compares the test cases to their corresponding
XML data files generated by the “xml” <formatter>.

Our test target, incorporating the last build test failure flag, is now

<property name="test.last.failed.file"
 location="${build.dir}/.lasttestsfailed"/>

<target name="test" depends="test-compile"
 unless="tests.uptodate">

 <junit printsummary="false"
 errorProperty="test.failed"
 failureProperty="test.failed"
 fork="${junit.fork}">
 <!-- . . . -->
 </junit>

4 The package mapper was conceived and implemented by Erik while writing this chapter.

g

b

c

d

e

f

g

108 CHAPTER 4 TESTING WITH JUNIT

 <junitreport todir="${test.data.dir}">
 <!-- . . . -->
 </junitreport>

 <echo message="last build failed tests"
 file="${test.last.failed.file}"/>
 <fail if="test.failed">
 Unit tests failed. Check log or reports for details
 </fail>

 <!-- Remove test failed file, as these tests succeeded -->
 <delete file="${test.last.failed.file}"/>
</target>

The marker file ${build.dir}/.lasttestsfailed is created using <echo>’s
file creation capability and then removed if it makes it past the <fail>, indicating
that all tests succeeded.

While the use of this long <condition> may seem extreme, it accomplishes an
important goal: tests integrated directly in the dependency graph won’t run if every-
thing is up-to-date.

Even with such an elaborate up-to-date check to avoid running unit tests, some
conditions are still not considered. What if the build file itself is modified, perhaps
adjusting the unit test parameters? What if an external resource, such as a database,
changes? As you can see, it’s a complex problem and one that is best solved by deciding
which factors are important to your builds. Such complexity also reinforces the impor-
tance of doing regular clean builds to ensure that you’re always building and testing
fully against the most current source code.

This type of up-to-date checking technique is useful in multiple component/build-
file environments. In a single build-file environment, if the build is being run then
chances are that something in that environment has changed and unit tests should be
run. Our build files should be crafted so that they play nicely as subcomponent builds
in a larger system though, and this is where the savings become apparent. A master
build file delegates builds of subcomponents to subcomponent-specific build files.
If every subcomponent build runs unit tests even when everything is up-to-date, then
our build time increases dramatically. The <condition> example shown here is an
example of the likely dependencies and solutions available, but we concede that it is
not simple, foolproof, or necessary. Your mileage is likely to vary.

4.8.1 Dealing with large number of tests

This technique goes a long way in improving build efficiency and making it even
more pleasant to keep tests running as part of every build. In larger systems, the number
of unit tests is substantial, and even the slightest change to a single unit test will still
cause the entire batch to be run. While it is a great feeling to know there are a large
number of unit tests keeping the system running cleanly, it can also be a build burden.
Tests must run quickly if developers are to run them every build. There is no single
solution for this situation, but here are some techniques that can be utilized:

BEST PRACTICES 109

• You can use conditional patternset includes and excludes. Ant properties can be
used to turn off tests that are not directly relevant to a developer’s work.

• Developers could construct their own JUnit TestSuite (perhaps exercising
each particular subsystem), compiling just the test cases of interest and use the
single test case method.

4.9 BEST PRACTICES

This chapter has shown that writing test cases is important. Ant makes unit testing
simple by running them, capturing the results, and failing a build if a test fails. Ant’s
datatypes and properties allow the classpath to be tightly controlled, directory map-
pings to be overridden, and test cases to be easily isolated and run individually. This
leaves one hard problem: designing realistic tests.

We recommend the following practices:

• Test everything that could possibly break. This is an XP maxim and it holds.

• A well-written test is hard to pass. If all your tests pass the first time, you are
probably not testing vigorously enough.

• Add a new test case for every bug you find.

• When a test case fails, track down the problem by writing more tests, before
going to the debugger. The more tests you have, the better.

• Test invalid parameters to every method, rather than just valid data. Robust
software needs to recognize and handle invalid data, and the tests that pass
using incorrect data are often the most informative.

• Clear previous test results before running new tests; delete and recreate the test
results and reports directories.

• Set haltonfailure="false" on <junit> to allow reporting or other
steps to occur before the build fails. Capture the failure/error status in a single
Ant property using errorProperty and failureProperty.

• Pick a unique naming convention for test cases: *Test.java. Then you can use
<batchtest> with Ant’s pattern matching facility to run only the files that
match the naming convention. This helps you avoid attempting to run helper
or base classes.

• Separate test code from production code. Give them each their own unique direc-
tory tree with the same package naming structure. This lets tests live in the same
package as the objects they test, while still keeping them separate during a build.

• Capture results using the XML formatter: <formatter type="xml"/>.

• Use <junitreport>, which generates fantastic color enhanced reports to
quickly access detailed failure information.

• Fail the build if an error or failure occurred: <fail if="test.failed"/>.

110 CHAPTER 4 TESTING WITH JUNIT

• Use informative names for tests. It is better to know that testDocumentLoad
failed, rather than test17 failed, especially when the test suddenly breaks four
months after someone in the team wrote it.

• Try to test only one thing per test method. If testDocumentLoad fails and
this test method contains only one possible point of failure, it is easier to track
down the bug than to try and find out which one line out of twenty the failure
occurred on.

• Utilize the testing up-to-date technique shown in section 4.8. Design builds to
work as subcomponents, and be sensitive to build inefficiencies doing unneces-
sary work.

Writing test cases changes how we implement the code we’re trying to test, perhaps
by refactoring our methods to be more easily isolated. This often leads to developing
software that plays well with other modules because it is designed to work with the
test case. This is effective particularly with database and container dependencies
because it forces us to decouple core business logic from that of a database, a web
container, or other frameworks. Writing test cases may actually improve the design of
our production code. In particular, if you cannot write a test case for a class, you have
a serious problem, as it means you have written untestable code.

Hope is not lost if you are attempting to add testing to a large system that was built
without unit tests in place. Do not attempt to retrofit test cases for the existing code
in one big go. Before adding new code, write tests to validate the current behavior and
verify that the new code does not break this behavior. When a bug is found, write a
test case to identify it clearly, then fix the bug and watch the test pass. While some test-
ing is better than no testing, a critical mass of tests needs to be in place to truly realize
such XP benefits as fearless and confident refactoring. Keep at it and the tests will accu-
mulate allowing the project to realize these and other benefits.

4.10 SUMMARY

Unit testing makes the world a better place because it gives us the knowledge of a
change’s impact and the confidence to refactor without fear of breaking code
unknowingly. Here are some key points to keep in mind:

• JUnit is Java’s de facto testing framework; it integrates tightly with Ant.

• <junit> runs tests cases, captures results, and can set a property if tests fail.

• Information can be passed from Ant to test cases via <sysproperty>.

• <junitreport> generates HTML test results reports, and allows for custom-
ization of the reports generated via XSLT.

Now that you’ve gotten Ant fundamentals down for compiling, using datatypes and
properties, and testing, we move to executing Java and native programs from within Ant.

