
Creating a Software Engineering Culture1

Karl Wiegers

Process Impact
716-377-5110

www.processimpact.com

Rarely in history has a field of endeavor evolved as rapidly as software development is right now.
The struggle to stay abreast of new technology, deal with accumulated development backlogs,
and cope with people issues has become a treadmill race, as software groups work as hard as they
can just to stay in place. The Software Engineering Institute (SEI) and hordes of gurus exhort us
to improve our development process, but how can we afford the time? Not every member of an
organization feels the need to change. It is too easy to dismiss process improvement efforts as just
the latest management blathering. Therein lies the seeds of conflict, as some members of a team
embrace new ways of working, while others mutter "over my dead body."

The culture of an organization is a critical success factor in its process improvement ef-
forts. "Culture" includes a set of shared values and principles that guide the behaviors, activities,
priorities, and decisions of a group of people working in the same area. When coworkers align
along common beliefs, it is easier to induce changes that will increase the group's effectiveness
and its probability of survival. A shared culture is one difference between a "team" and a "bunch
of bozos on a bus" (to paraphrase Larry Constantine).

This article describes some of the shared philosophy – the culture – that evolved over sev-
eral years in a small software group in a very large corporation. Our group develops custom ap-
plications to support photographic research at Eastman Kodak Company. I will describe how each
belief or value influences us to act in certain ways as we continually try to improve the way we
build software systems. We feel this culture has improved our effectiveness as software engineers,
the relationship and reputation we have with our customers, our level of teamwork, and the en-
joyment we obtain from coming to work every day. Our general approach to implementing soft-
ware engineering in this small group was described previously in Computer Language.1

We are now in our fourth year of continual process improvement. During that time the
group has more than doubled in size, some roles have changed, and those few people who did not
endorse the common culture have moved on. Sharing our philosophy with candidates during in-
terviews made it easier to select those who would easily assimilate into the team and support the
values we've agreed upon. And it has to be easier to move into an organization that has thought
about what it believes than to leap blindly into the job fire and see how it works out.

Customer involvement is the most critical factor in software quality.

Any successful enterprise requires that you both do the right thing, and do the thing right. We ex-
pect that professional software developers know how to do the "thing" right. Doing the right
thing, though, requires an unambiguous understanding of what your customer expects. To this
end, we strive to maximize participation of our customers in our development activities.

1This paper was originally published in Software Development, July 1994. It is reprinted (with modifications) with
permission from Software Development magazine.

Creating a Software Engineering Culture Page 2

Involving customers in development is no doubt simpler in a situation like ours, where our
"customers" are fellow employees, usually in the same building we inhabit. The problem of cus-
tomer involvement is more challenging when you are writing for the commercial marketplace; the
involvement of marketing types may further confuse the issue. But for in-house development or
even contract work, there is no excuse for not having end users involved from day one.

We have formalized our expectations for customer involvement by requiring that each
project have one or more "project champions" from the user community. The project champion
acts as our primary interface to the customer groups who are prospective users of the system be-
ing built. We simply decline to work on a project if customer management is not willing to com-
mit appropriate project champions to the development team. Our software development guide-
lines include written project champion expectations, but the details are negotiable.

Besides the obvious value of having the voice of the customer directly available to the
project team, we have discovered a side benefit of the project champion model. The champions
gain insight into our structured software development approach and usually become strong advo-
cates of our process with their peers and managers. The champions understand that the process
we follow is aimed at building the right product as efficiently as possible. These influential mem-
bers of the user community help smooth over the sometimes adversarial nature of systems devel-
opment.

Our hardest problem is sharing the vision of the final product with the cus-
tomer.

The classic failure of software development is that the product delivered only vaguely matches the
expectations of the customer (assuming something is indeed delivered). Our first process im-
provement activity focused on improving our requirements specification process, in an effort to
reduce this expectation gap. Every project, even small ones developing internally reusable soft-
ware components, goes through a formal, written requirements specification process. We also
make extensive use of both vertical and horizontal user interface prototypes to help refine user
requirements and explore design alternatives.

"Formal" need not mean "cumbersome, voluminous, unwieldy, incomprehensible, all-
inclusive, unchangeable, and interminable." Our objective is to simply prepare an explicit, con-
sistent, unambiguous, structured document that clearly identifies the features that must be con-
tained in the delivered system to meet user needs. Of course, requirements frequently must be
modified as development progresses. This is fine, as long as everyone involved understands the
impact and agrees to the changes.

We recently adopted the IEEE standard for Software Requirements Specifications
(SRS),2 which suits our needs nicely. An IEEE SRS contains sections to capture many of the
pieces of information that are ultimately needed to build the system: constraints, external inter-
faces, and quality attributes, in addition to the actual functional requirements.

The project champions are key participants in creating the SRS. Typically, one of our team
members does most of the actual writing, but it is truly a collaborative effort. The champions are
responsible for resolving ambiguities and conflicts with the end users they represent, so that the
SRS contains a single set of unified requirements. We refuse to get caught in the trap in which it is
left to the programmer to resolve conflicting requirements and negotiate agreements with the dif-
ferent customers involved. We are rarely qualified to make those business-oriented decisions, so
we leave them to the champions. The champions help determine which functionality adds the most
value to the system while controlling the chrome. The project champion model is a cornerstone of
our engineering culture.

Creating a Software Engineering Culture Page 3

We recently began including more specific quality attribute requirements in the SRS, such
as maintainability, extensibility, portability, reliability, reusability, and performance. The project
champions are playing an increasing role in agreeing on these less tangible requirements. Quanti-
fying these attributes in the SRS forces the customer to think about them ahead of time, rather
than waiting until the system is delivered and being disappointed because an important need was
never explicitly discussed.

The quality of the requirements document must still be verified. Every SRS undergoes a
thorough inspection by a group comprising the developers involved, the project champions, a
software quality assurance representative from our team, and at least one outside person who has
no specific involvement in the project. The outsider can be another of our team members, some-
one from a different software group, or anyone else who can critically evaluate the SRS from an
unbiased perspective. Defects identified during the inspection are classified and recorded for ap-
propriate action.

There are those who feel that this much structure around requirements specification is un-
necessary or even counterproductive. On the contrary, we find it to be the foundation of quality in
the successful systems we deliver. Our group has been measuring work effort distributions over
different development and maintenance phases of all projects since 1990. Our data indicates that
we spend an average of 21% of our total development effort on requirements specifications. I
think this is a reasonable investment in "doing the right thing." To those customers, managers, or
developers who claim we can't spend this much time on specifications, I quote the old sign from
the chemistry lab : "If you don't have time to do it right, when will you have time to do it over?"

Quality is the top priority; long-term productivity is a natural consequence of
high quality.

This principle seems self-evident, as quality is all the rage in every enterprise these days. But too
many quality efforts are sacrificed on the altar of productivity, as managers and workers alike
claim that they could produce more if only they didn't have to do all this quality-related stuff.

In software, the quality/productivity trade-off comes down to work versus rework, also
known as "maintenance." Our group's philosophy is that the time we invest in building a quality
product in the first place is amply repaid over the lifetime of the product through lower mainte-
nance costs. The less tangible benefit is the goodwill of the customer. We believe that most cus-
tomers are willing to wait a bit longer to get a better product that will help them do their work
correctly without wasting their time through failures and poor usability. Our recent project expe-
riences support this contention.

Our work effort metrics reinforce the concept of quality first. We classify maintenance into
four categories: corrective (fixing bugs), perfective (adding enhancements), adaptive (modifica-
tions in response to a changing environment), and user support. Since we began our process im-
provement program, the fraction of our total work time that is devoted to corrective maintenance
has declined to a steady state of about 2%, a source of considerable pride to us. Having this data
available helps us pinpoint where our maintenance effort goes so that we can better focus im-
provement activities for the greatest leverage. Every hour we do not spend fixing an existing pro-
gram is an hour we can spend writing something new to help our customers do their jobs better.

Of course, this isn't an infinitely deep well of opportunity. Once maintenance is reduced to
an acceptably low level, we must seek additional productivity improvements elsewhere.

Creating a Software Engineering Culture Page 4

Another way to think about quality is to consider that each step in the software develop-
ment process is the "customer" of the previous step. For example, the products created during
requirements specification become the raw materials for design. This is true for any software de-
velopment life cycle, as all (waterfall, spiral, evolutionary, object-oriented, etc.) involve the tasks
of specification, design, implementation, and testing. Figure 1 shows one way to depict the cus-
tomer/supplier relationships of the software development process. The product quality that can be
attained at any step is limited by the quality of the raw materials supplied to it. This perspective
encourages you to adopt practices that will assure the quality of the deliverables produced at each
step in the cycle.

Continual improvement of your software development process is both possible
and essential.

The Software Engineering Institute defines a scale of software process maturity, running from
level 1 (initial) to level 5 (optimizing).3 Virtually no organizations are performing at levels 4 or
5, although some individual projects have been measured at those levels. The premise behind
SEI's scale is that a software organization that continually improves the way in which it does its
work will get better results than an organization in which each member does things in his own
random way.

While few of us are likely to reach the stratospheric level 5 any time soon, every software
group has opportunities for improvement. We should be looking constantly to acquire and share
best practices in the many subdisciplines that constitute the complete software development cycle.
A culture in which sharing of ideas and practices is encouraged, in which ongoing education is
supported and rewarded, will climb the process maturity ladder faster.

We believe that process improvement must be evolutionary, not revolutionary, but your
culture may be bolder. You might begin with a group brainstorming session to identify the most
pressing improvement opportunities. Then devise a simple plan for implementing these improve-
ments, with explicit target dates, clear deliverables, and specific responsibilities accepted by dif-
ferent team members. Participation by all team members builds a stronger sense of ownership of
the process and the results. Imposing changes by management fiat should be the last resort. Your
process should be reexamined periodically to judge its effectiveness (perhaps with the help of met-
rics data) and uncover new improvement opportunities or critical needs.

We have also found it valuable to set annual team quality improvement goals. Each year
the team collectively identifies six to ten specific goals in four or five key result areas. Quantita-
tive objectives are agreed upon, and we track progress throughout the year. We have succeeded
in making these goals be drivers for changing the way we do our work, rather than just being tar-
gets we hope to magically hit at the end of the year. The selection and achievement of measurable
and meaningful improvement goals also sends a message to our management that we are serious
about improving how we do our work.

Culture is a vital success factor in introducing software metrics programs, a characteristic
of more mature organizations. Team members must feel confident that the data will not be used
against them and that it will be used for some tangible benefit. Our successful collection and use
of work effort metrics is predicated on the notion that the data belongs to the team members, not
the team leader. The leader shares the data summaries so that the entire team can reach conclu-
sions and agree on process changes based on the data, as well as share in successes indicated by
the metrics collected. I fear that software metrics programs are likely to fail in organizations that
lack this mutual trust and commitment to quality improvements.

Creating a Software Engineering Culture Page 5

Ongoing education is every team member's responsibility.

While filling some new positions in our team recently, I asked each candidate how he or she kept
up with the software literature. The answers were discouraging. Some didn't understand the ques-
tion. Few had read any software books lately. Very few were in advanced degree programs. Most
of the magazines read were the free trade publications, not technical periodicals. Almost none
belonged to professional computing organizations such as the IEEE Computer Society or the As-
sociation for Computing Machinery.

Our group subscribes to over 15 technical computing publications, covering a wide range
of topics: databases, C programming, PC technology, UNIX, mainframe, software engineering,
software quality, and so on. We purchase (and read) many books. We attend (and present) at
conferences. Several team members have acquired undergraduate or advanced degrees in com-
puter science or software engineering through night studies. Each team member can obtain formal
training in skills directly relevant to work activities at company expense.

Some of these improvement activities are expensive, but many are not. In a rapidly
changing technical area like software development, every professional should spend time studying
the published literature and looking for ways to improve what he does. Our culture also encour-
ages sharing of ideas, brainstorming, and consulting with peers for advice. Everyone feels com-
fortable approaching others for technical input and informal critiquing of work products. A com-
petitive environment in which people are reluctant to share their knowledge is not conducive to
improving the team's performance.

The software manager is not exempt from the continual learning challenge. Much has been
published about software project management, but writings on software people management are
harder to find. An excellent place to start is with DeMarco and Lister's Peopleware.4 This small
book is an easy read with a wealth of information about the importance of human issues in soft-
ware quality, productivity, and job satisfaction. I also highly recommend The Decline and Fall of
the American Programmer, by Ed Yourdon.5 Don't lose interest or panic after reading the highly
hyped first chapter on the title topic. The rest of the book is an excellent treatise on contemporary
high-quality software development practices we should all implement.

We prefer to have a peer, rather than a customer, find a defect.

We've all received calls from irate customers, complaining that bugs in our programs wasted their
time, gave the wrong results, or otherwise aggravated them. Our group's philosophy is that we'd
rather suffer the slight embarrassment of having another team member find a flaw in a design or
program than to have to face a user with homicide on his mind.

This value translates into a willingness to have our development products formally in-
spected by peers in an effort to identify faults (defects) before they cause failures. All types of de-
liverables undergo inspections: requirements specifications, design models, code, test plans, sys-
tem documentation, user manuals. Although not every deliverable produced is inspected, most of
us now feel a little nervous if we haven't had someone else look over our work before we con-
tinue. Specification inspections have the greatest leverage, since an error corrected at that stage
need not be corrected, at much higher cost, when it is eventually found farther down the road.

There is considerable evidence in the software literature that inspections are the single
most effective quality activity you can perform. If you don't know how to get started, try the
buddy system. Pair up with one of your associates and offer to review his products if he'll look
over yours. Several books that describe techniques for reviews, inspections, and walkthroughs
have been published.

Creating a Software Engineering Culture Page 6

An organization's culture is very important in determining whether inspections will be suc-
cessful. Again, you need an atmosphere of trust and mutual respect. Participants must be careful
to critique the product and not the producer. Conversely, the producer should not view improve-
ment suggestions as a criticism of his abilities or skill. There should be a willingness to learn from
each other. I've learned something from every inspection in which I've participated, as either a re-
viewer or a developer.

It's not easy to put your work on the table for your peers to see and chew up. But if you
can learn to check your egos at the door, every inspection you conduct will help you deliver a
better product to your customers and help the participants improve their software skills.

My philosophy is to "inspect early and often." Programmers often are reluctant to let a
peer see an incomplete product, preferring to finish it before exposing it to constructive criticism.
I think this is a mistake. Remember, the leverage comes from finding problems as early as possi-
ble.

There are two reasons to encourage developers to submit materials for peer review early
in the game. First, if an inspection of a preliminary or partial version of a document or program
finds some systematic improvement opportunity (as with programming or writing style), the nec-
essary changes can be put in place early. However, if the same problems are found only after
5,000 lines of code are written, the amount of rework may be so dauntingly large that the changes
never get made.

Second, a lot more of our ego is tied up with a finished product than with a preliminary
version. Hence, we are more resistant to making changes if the item being inspected is supposed
to be the final deliverable. So try to force yourself to let others examine work products that are
still at a stage where suggestions are welcome. Just let the reviewers know that the product being
inspected is not in final form, so they know how to evaluate it.

Written software development procedures can help improve quality.

A strong indication of the process maturity of a software organization is whether it uses a repro-
ducible, documented process for each new project. One of our earliest process improvement ac-
tivities was to write a set of concise software development procedures. These are guidelines, not
laws: if there is a VERY GOOD reason for doing something other than what the guidelines indi-
cate, fine. But it should be a VERY GOOD reason, not a personal whim. Our procedures total
less than 50 pages, but they address most of the important aspects of our work. Most importantly,
people actually use them. You can encourage this in subtle ways: when someone asks how he
should do something, ask him what your procedures say about it.

Don't fall into the "not invented here" trap when it comes to writing procedures (or any-
thing else, for that matter). If you are in a good-sized company, there are probably already many
sets of departmental procedures you can borrow from or simply adopt. The IEEE publishes many
comprehensive software development standards.2 We have recently begun to follow the IEEE
standards for several aspects of development, including software requirements specifications, test
documentation, quality assurance plans, and anomaly (defect, enhancement, and incident report)
tracking.

The existence of software development guidelines helps build the shared culture of prac-
tices and expectations that improves a team's performance. This is particularly true if the team
members are involved in writing, critiquing, and selecting the guidelines. Plan to review and up-
date your guidelines periodically as part of your continual improvement activities.

Creating a Software Engineering Culture Page 7

The key to software success is to iterate as many times as possible on all devel-
opment steps except coding: do this once.

There is ample evidence in the software literature that it is vastly more expensive to correct a de-
fect in a delivered product than if the defect is found at an early development stage. Based on that
data and my own experience, I have become convinced that we should try to write the code only
once, doing whatever we need to before implementation to make sure we are writing the correct
code, correctly.

To this end, we put a lot of work into perfecting our specifications and designs, without
falling into the "analysis paralysis" trap. I figure that an extra 10 hours put into improving the
specs now can easily save 100 hours later if it keeps me from delivering the wrong code. This is
also why I believe in the value of building models of our systems before we write the code. We
make extensive use of CASE tools for front-end modeling, particularly data flow diagrams, entity-
relationship diagrams, and state-transition diagrams for user interface models (dialog maps).

The real power of CASE tools is the ease with which you can modify a diagram when you
spot an opportunity for improving it. We can't possibly get it right the first time. Instead, we try to
get it close the first time, and iterate, with input from others, until the model is as good as we can
make it. How do you know when to stop? When you don't keep finding another change to make
under every rock, and when the partitioning and the process or object interfaces "feel right" (this
takes some experience).

I think of the use of structured software development methods as a way to avoid surprises.
No one wants the kind of surprise that begins when a user says, "But I thought it was supposed to
...." Iterating on the requirements (statement of the problem) and the design (proposed solution
to the problem) helps mightily to control the surprise factor.

Never let your boss or your customer talk you into doing a bad job.

Once in awhile you may be asked to cut corners on the quality of the work you do. Sometimes the
requester is a supervisor who doesn't appreciate the value of the quality activities you practice or
who feels budget or market pressures you may not. Sometimes it is a customer who wants you to
concentrate on his specific needs when you've identified an opportunity to generalize beyond his
requirements to provide enhanced value to a broader user community. I'd like to think we are be-
yond the stage of "don't bother with those specs, start writing code," but I fear this call of the
software dinosaur still echoes throughout the land.

It is not easy to resist these pressures from the people who pay the bill or your salary.
Sometimes you have no choice. But in a quality software culture, standard practices will be fol-
lowed in times of crisis as well as in normal times. We have tried to adopt personal standards that
motivate us to stick to our software process guns in the heat of the battle. Consider educating
your boss so he better appreciates the value of your disciplined approach. Of course, you might
need to temper this idealism with the reality of keeping your job, but we prefer to start from the
position of quality uber alles.

People need to feel that the work they do is noticed.

When I was the supervisor of our software team, I initiated a simple recognition program. When
someone reached a minor milestone on his project or made a contribution such as helping out a
fellow team member with a problem, I gave him a small package of M&Ms, with a tag attached
expressing congratulations or thanks as appropriate. Bigger achievements generated bigger bags
of M&Ms or more substantial recognition awards.

Creating a Software Engineering Culture Page 8

As I expected, the candy disappeared immediately, but I was pleasantly surprised to see
that people kept the tags visible around their desks. The important part was not the 50-cent bag of
candy, but the words indicating that I noticed and valued the progress my team members were
making. I also gave this sort of microrecognition award to people outside the team who helped us
in some way. It brought smiles to their faces and goodwill to our relationships.

M&Ms already were something of an in-joke in our group; some other social recognition
technique might work better for you. Interestingly, the group members themselves indicated that
they preferred to have the M&M presentations made publicly at our weekly staff meetings, indi-
cating the desire for peer recognition of even small achievements. We also spend a few moments
at weekly staff meetings to give all team members a chance to pass along some "positive rein-
forcement" to others.

However you choose to do it, some kind of public praising and commendation seems to
help build the spirit of striving for excellence that we all want in our teams.

Do what makes sense: no dogma.

Books and articles on software development methodologies abound. A common mistake made by
organizations attempting process improvements is to adopt some published methodology lock,
stock, and barrel. This is a recipe for wasted time, wasted money, resentment, and a feeling that
process change is not possible in your team.

Every methodology has good ideas and silly ideas, in varying proportions. My advice is to
select what seem to be the best ideas you can find and try to implement them in a nonthreatening
but meaningful way. As new techniques and tools become adopted as part of your culture, move
on to the next set of good ideas. If you find that a method you tried (really tried!) doesn't add
value, don't do it again.

Process improvement efforts will more readily succeed when the culture permits experi-
mentation and backing out of failed experiments. People who perceive that a risk of failure is ac-
ceptable are more willing to explore new ways to do things. If, however, the methods are imposed
from on high, without regard to how well they work on your problems in your environment, you
can expect rough sailing ahead. Our group has agreed to not adopt any one methodological
dogma, but to routinely carry out those analysis and design activities we have learned by experi-
ence help us produce better systems for our customers.

Summary

This article describes how one small software group has gradually adopted a culture that provides
a framework of values in which to make decisions, set priorities, and choose a path to higher
performance. You can't buy a culture in shrink-wrap; you must roll your own. Every software
team works in a different context of expectations, pressures, application domains, and technolo-
gies. The process of agreeing upon principles and values provides many opportunities for im-
proving both the work environment and the work results. A shared culture is essential to progress
through the software process maturity sequence to the discipline of repeatable and measurable
software development processes.

Acknowledgement

The greatest determinant of software development effectiveness is the team members themselves.
I was fortunate to start with a team of people who worked together well, cared about quality, and

Creating a Software Engineering Culture Page 9

were willing to try some new things. As we added new members, the team kept getting better. My
thanks to all of those who cooperated with me in trying to improve the work we do.

References

1. Wiegers, Karl E. Computer Language, June 1993, p. 55.
2. IEEE Software Engineering Standards Collection, 1993 edition, IEEE, Inc., 1993.
3. Humphrey, Watts S. Managing the Software Process, Reading, MA: Addison-Wesley, 1989.
4. DeMarco, Tom and Lister, Timothy. Peopleware, New York, NY: Dorset House, 1987.
5. Yourdon, Edward. The Decline and Fall of the American Programmer, Englewood Cliffs,

NJ: Yourdon Press, 1992.

