
1

2/9/2001 Copyright © 2001 Net Objectives 1

Xtreme RUP

by

Lightening Up the
Rational Unified Process

e tN
BJECTIVES

2/9/2001 Copyright © 2001 Net Objectives 2

Agenda

• RUP Overview
• Typical RUP Challenges
• Xtreme Programming Paradigm
• Document driven or results driven?
• Integrating RUP with XP to avoid

“paralysis by analysis”

2

2/9/2001 Copyright © 2001 Net Objectives 3

RUP Summary
• Purpose of RUP

– A software engineering process
– Create a repeatable methodology for achieving

high quality results

• Design and delivery of RUP
– Can adapt and tailor to fit your needs
– Select artifacts desired
– Iterate to level needed
– Create a well-defined process for your

organization

• A process product
– Use it to develop a process of software

development

2/9/2001 Copyright © 2001 Net Objectives 4

Two Dimensions of the RUP

3

2/9/2001 Copyright © 2001 Net Objectives 5

RUP Approach

• Iterative - allows for changing
requirements

• Mitigate risks early
• Integration in stages
• Developers learn along the way
• Process can be improved along the way

2/9/2001 Copyright © 2001 Net Objectives 6

RUP Steps
• Inception

– determine scope of the project and create
business case for it

• Elaboration
– do requirements analysis

• Construction
– build through iterations of analysis, design,

implementation and testing

• Transition
– beta testing, documentation, training

4

2/9/2001 Copyright © 2001 Net Objectives 7

RUP Paradigm

• Stresses communication between teams
• Finding problems up front result in big

savings
• Document (artifact) driven
• Use-case driven
• Role driven
• Component-based architecture

2/9/2001 Copyright © 2001 Net Objectives 8

RUP’s Focus

• Assumes you can get useful, detailed
information in requirements

• Assumes costs rise dramatically the
later changes are introduced into the
system

• The focus is on getting as good
information as possible as soon as
possible

5

2/9/2001 Copyright © 2001 Net Objectives 9

Challenges That Show up in the Field
• Paralysis by Analysis

– getting more information than can be used
– losing site of the big picture
– gathering information that ends up not being

used (e.g., details for discarded features)
– no one’s heard of the 4th little pig because the

wolf ate him while he was planning his plan

• Detailed information gathering can delay
date of first iteration
– delays feedback
– results in greater investment than needed

2/9/2001 Copyright © 2001 Net Objectives 10

Do We Drive By Plan
or By Feedback?

• Some balance between detailed planning
and ‘driving by feedback’ must be
achieved
– too much planning is ineffective - you never

start
– not enough planning is ineffective - you

never finish (you’re always changing things)

• How much is enough?
• How much is too much?

6

2/9/2001 Copyright © 2001 Net Objectives 11

Insights From
eXtreme Programming (XP)

• We are not endorsing XP (although
many projects benefit greatly from it)

• We are not attacking RUP (although
many projects have mired while using it)

• We are suggesting that knowledge
about one methodology is a benefit
when you use another methodlogy

2/9/2001 Copyright © 2001 Net Objectives 12

Acknowledgements
• Most of these notes are a paraphrasing of the book:

Extreme Programming Explained: Embrace Change by
Kent Beck.

• If you are serious about learning XP, you should get a
copy of this book. At a minimum, read the following:
– Preface – Enough, pgs xviii – xix
– Chapter 4 – Four Variables, pgs 15-19
– Chapter 5 – Learning to Drive, pg 27
– Chapter 10 – A Quick Overview

• The Planning Game, pg 55
• Refactoring, pg 58
• 40 Hour Week, pg 60

– Chapter 12 – Management Strategy, pgs 71-76
– Chapter 14 – Splitting Business and Technical Responsibility, pgs 81-84
– Chapter 15 – Planning Strategy, pgs 85-96

7

2/9/2001 Copyright © 2001 Net Objectives 13

Insights from
eXtreme Programming (XP)

• XP is based on the following beliefs:
– programming can be fun
– can’t anticipate future
– need feedback
– must eliminate waste
– the right roles for the right people
– works only for small development teams

• Requires a lightweight methodology

2/9/2001 Copyright © 2001 Net Objectives 14

Programming Myths
• We can collect good (and complete) requirements.
• We spend a lot of time fixing bugs.
• We can anticipate change.
• We can control the important aspects of a software

development project.
• Cost of change is inherently higher as the project

moves forward.
• Working harder (longer) accomplishes more.

– Manager: “OK, so I know I can’t get 9 women to make a
baby in a month, but if I get 18 women, I can do it.”

8

2/9/2001 Copyright © 2001 Net Objectives 15

Normal Thoughts About
Cost of Change

Requirements analysis design implementation testing production

C
os

t o
f c

ha
ng

e

2/9/2001 Copyright © 2001 Net Objectives 16

Is This Possible?

Requirements analysis design implementation testing production

C
os

t o
f c

ha
ng

e

9

2/9/2001 Copyright © 2001 Net Objectives 17

What Would We Have to Do?

• Eliminate waste
• Enable change to happen quickly
• If fixing (coding) is fast, how can we

eliminate bugs?

2/9/2001 Copyright © 2001 Net Objectives 18

Does XP Work?

• XP may work.
• However, it does not scale.

– good for teams from 2-12

• Lessons learned from XP, however,
may be useful.

10

2/9/2001 Copyright © 2001 Net Objectives 19

XP’s Four Values

• Communication
• Simplicity
• Feedback
• Courage

2/9/2001 Copyright © 2001 Net Objectives 20

Four Values:
Communication

• Fraught with errors
• Need good communication - this is not

the norm
• Improved with frequent contact
• Developer - developer
• Developer - customer
• Developer - business owner

11

2/9/2001 Copyright © 2001 Net Objectives 21

Four Values:
Simplicity

• “What is the simplest that could possibly
work?”

• May not need more than that.
• Wait until you need it.
• May find a better way.
• Easier to learn.
• Try it, see if it works, then correct.

2/9/2001 Copyright © 2001 Net Objectives 22

Four Values:
Feedback

• We’re trying to steer our project.
• Not point it properly from the front.
• Can’t communicate as well as we’d like,

so need feedback.
• Helps us correct.
• Allows us to try things and then see

what we really need.
• Best way to get proper requirements.

12

2/9/2001 Copyright © 2001 Net Objectives 23

Four Values:
Courage

• Seeing what you need to do sometimes
takes courage.

• If something’s wrong - you’ve got to fix
it.

• You may not like what reality is telling
you - but ignoring it isn’t going to work.

• XP - see reality, have the courage to act
on it.

2/9/2001 Copyright © 2001 Net Objectives 24

Basic Principles

• Rapid feedback
• Assume simplicity
• Incremental change
• Embracing change
• Quality work

13

2/9/2001 Copyright © 2001 Net Objectives 25

XP Practices
• The Planning Game
• Small releases
• Metaphor
• Simple design
• Testing
• Refactoring
• Pair Programming
• Collective Ownership
• Continuous Integration
• 40 hour week
• on-site customer
• Coding Standards

2/9/2001 Copyright © 2001 Net Objectives 26

XP Practices
Planning Game

• Responsibilities
– business people
– technical people

• Stories
• The process

14

2/9/2001 Copyright © 2001 Net Objectives 27

XP Practices
The Planning Game - Responsibilities

• Business people decide:
– scope
– priority
– composition of releases
– dates of releases

• Technical people decide:
– estimates
– consequences
– process
– detailed scheduling

2/9/2001 Copyright © 2001 Net Objectives 28

XP Practices
Small Releases

• gives feedback
• allows for quick corrections
• can measure progress accurately
• causes other problems (that can be

solved)

15

2/9/2001 Copyright © 2001 Net Objectives 29

XP Practices - Metaphor

• Used to guide the design.
• A potential problem -- not enough

guidance

• CHALLENGE:
– this often just isn’t enough

• REFINEMENT:
– conceptual design using UML

2/9/2001 Copyright © 2001 Net Objectives 30

XP Practices - Simple Design

• Simplest is best
• May not need it in the future
• May have a better way in the future

• CHALLENGE:
– too simple can be slower
– should take advantage of past knowledge.

• REFINEMENT:
– Design patterns may show us a better way now.
– May not recover from simplistic approach.

16

2/9/2001 Copyright © 2001 Net Objectives 31

XP Practices - Testing
• Up front testing
• You don’t know if it works until it’s tested

(corollary - it doesn’t work until it’s tested)
• JUNIT works well for unit testing

• CHALLENGE:
– doesn’t work well with GUIs

• REFINEMENT:
– may need automated testing procedure
– design patterns can help encapsulate change
– MVC et. al. can help designs.

2/9/2001 Copyright © 2001 Net Objectives 32

XP Practices - Refactoring

• Refactoring is the process of changing a
software system in such a way that it does
not alter the external behavior of the code yet
improves its internal structure. It is a
disciplined way to clean up code that
minimizes the changes of introducing bugs.
In essence when you refactor you are
improving the design of the code after it has
been written.1

• 1 Refactoring: Improving the Design of Existing Code, Martin Fowler. Page xvi.

17

2/9/2001 Copyright © 2001 Net Objectives 33

Lessons Learned From XP
• Create Use-Cases to high level needs
• Detail only those “stories” used early
• Use “planning game” for project management
• Do not introduce more detail in use-cases or

design unless it is useful early on
• Have more, shorter, iterations
• Require up-front, automated testing by

developers
• Include users at all phases of development
• You cannot stop variation, you cannot anticipate

it, but you can manage it

2/9/2001 Copyright © 2001 Net Objectives 34

Bibliography
• Design Patterns: Elements of Reusable Object-

Oriented Software, Gamma, Helms, Johnson, Vlissides
• Extreme Programming Explained, Beck
• Java Design, Coad
• Multiparadigm Design for C++, Coplien (excellent

description of commonality/variability analysis -- I even
recommend the first part for Java programmers)

• Refactoring: Improving the Design of Existing Code,
Fowler

• UML Distilled, Fowler
• Use Case Driven Object Modeling With Uml : A

Practical Approach, Rosenberg, Scott

• Resources:
– www.xprefined.com -- Net Objectives XP site

18

2/9/2001 Copyright © 2001 Net Objectives 35

Net Objectives - Who We Are
• We provide training, mentoring and consulting for

all phases of object-oriented software development.
• We assist companies transitioning to object-

oriented development by providing mentoring
throughout the entire development process.

• This enables our clients a cost-effective way to gain
experience.

• Subscribe to e-zine by sending e-mail to
info@netobjectives.com

• Contact Alan Shalloway at 425-260-8754 or at
alshall@netobjectives.com

2/9/2001 Copyright © 2001 Net Objectives 36

Upcoming Net Objectives Courses

• Introduction to XML (March 19, full day)

• Java and XML lab (March 20, full day)

• Introduction to OOD (April 2, half day)

• Pattern Oriented Design: Design Patterns
From Analysis To Implementation (April 3-4, full
day)

• Get details at:
– http://www.netobjectives.com/pc_dps.htm

