
Copyright, 2000, © Net ObjectivesDRAFT -- 28 February, 2000 Page III-1

An excerpt from:

Pattern Oriented Design:
Using Design Patterns From Analysis to Implementation

by

Alan Shalloway &
James R. Trott

Copyright, 2000, © Net ObjectivesDRAFT -- 28 February, 2000 Page III-2

Section 3: Design Patterns
Section Overview
In this section This section introduces design patterns: what they are and how to use them.

Four patterns pertinent to the CAD/CAM problem (Chapter 6) are described.
They are learned individually and then related to our earlier problem. In
learning these patterns, we emphasize the object-oriented strategies espoused
by the Gang of Four in their seminal work: Design Patterns: Elements of
Reusable Object-oriented Software.

Chapter 8 is an introduction to design pattern is. I introduce the concept of
design patterns, discuss their origins in architecture and how they apply in the
discipline of software design. Then, I discuss the motivations for studying
design patterns.

Chapter 9 describes the Façade pattern. I explain what it is, where it is used
and how it is implemented. Then I relate it to the CAD/CAM problem.

Chapter 10 describes the Object Adapter pattern. I explain what it is, where it
is used and how it is implemented. I compare the Object Adapter pattern and
the Façade pattern. Then, I relate the Object Adapter pattern to the
CAD/CAM problem.

Chapter 11 describes the Bridge pattern. The Bridge pattern is quite a bit
more complex than the previous patterns; it is also much more useful. While
I could discuss these other patterns more conceptually, I go into great detail
with the Bridge pattern. Then, I relate the Bridge pattern to the CAD/CAM
problem.

Chapter 12 describes the Abstract Factory pattern The Abstract Factory
pattern focuses on creating families of objects. I describe this pattern and
how it is used and implemented. Then, I relate it to the CAD/CAM problem.

Objectives At the end of this section, the reader will understand what design patterns are,
why they are useful and will even know four specific patterns. They will also
see how these patterns relate to our earlier CAD/CAM problem. This
information, however, may not be enough to create a better design than the
over reliance on inheritance already seen. However, the stage is set for using
patterns in a way different than most design pattern practitioners use them.

Net Objectives Copyright © 2000, DRAFT -- 28 February, 2000 Page 8-1

Chapter 8: An Introduction to Design Patterns
Overview
In this chapter We introduce the concept of design patterns. I discuss their origins in

architecture and how they apply in the discipline of software design. Finally, I
discuss the motivations for studying design patterns.

Design patterns
and object-
oriented design
reinforce each
other

Design patterns are part of the cutting edge of object-oriented technology.
Object-oriented analysis tools, books, and seminars are incorporating design
patterns. Study groups on design patterns abound. Object-oriented analysts
are expected to learn design patterns to improve their abilities. I have found
that the opposite is also true: learning design patterns greatly helped to
improve my basic understanding of object-oriented analysis and design.

Throughout the rest of the book, I will discuss not only design patterns, but
how they reveal and reinforce good object-oriented principles. I hope to
improve both your understanding of these principles and illustrate why the
design patterns being discussed here represent good designs.

Give this a
chance

Perhaps some of this material may seem abstract or philosophical. But give it
a chance! This chapter lays the foundation for your understanding of design
patterns. Understanding the material here will speed up your ability to obtain
new patterns.

Some of this material is taken from Christopher Alexander’s Trilogy
(Alexander 1979, 1977, 1970)

Design Patterns Arose from Architecture and Anthropology
Is quality
objective?

Years ago, an architect named Christopher Alexander asked himself, “Is
quality objective?” Is beauty truly in the eye of the beholder or would people
agree that some things are beautiful and some are not? Now, the particular
form of beauty that Alexander was interested in was one of architectural
quality: what makes us know when an architectural design is good? For
example, if a person was going to design an entrance-way for a house, how
would he or she know that the design was good?

Can we know good design? Is there an objective basis for such a judgment?

If there was not some sort of objective basis, we would not be able to make
judgments. What is regarded as good for someone might be bad for someone
else.

Now, this book is not a treatise in cultural anthropology, but that body of
work suggests that within a culture, individuals will agree to a large extent on
what is considered to be a good design, what is beautiful. Cultures make

Net Objectives Copyright © 2000, DRAFT -- 28 February, 2000 Page 8-2

judgments on good design that transcend individual beliefs. I believe that
there are transcending patterns that serve as objective bases for judging
design. A major branch of cultural anthropology looks for such patterns to
describe the behaviors and values of a culture1.

How do we get
good quality
repeatedly?

If we accept that we can even say we have or do not have a good quality
design, how do we go about creating them? Alexander asked himself,

“What is present in a good quality design that is not present in a poor
design?”

and

“What is present in a poor quality design that is not present in a good
quality design?”

These questions spring from Alexander’s belief that if quality in design is
objective, then we should be able to quantify what makes designs good and
what makes designs bad.

Look for the
commonalties

Alexander studied this problem by making many observations of buildings,
towns, streets and virtually every other aspect of living spaces that human
beings have built for themselves. He discovered that, for a particular
architectural creation, good constructs had commonalties with each other.

…especially
commonality in
the features of
the problem to
be solved

Architectural structures differ from each other, even if they are of the same
type. Yet even though they are different, they can still be high quality.

For example, porches may appear different, may not have the same structure,
and still be considered high quality. They might be solving different
problems for different houses. One porch may be a transition from the
walkway to the front door. Another porch might be a place for shade on a hot
day. Or two porches might solve a common problem (transition) in different
ways.

Alexander understood this. He knew that structures couldn’t be separated
from the problem they are trying to solve. Therefore, in his quest to identify
and describe the consistency of quality in design, Alexander realized that he
had to look at structures that were trying to solve the same problem.

1 The anthropologist Ruth Benedict is a pioneer in pattern-based analysis of cultures.

Net Objectives Copyright © 2000, DRAFT -- 28 February, 2000 Page 8-3

Figure 8-1. Structures may look different but still solve a common problem

This led to the
concept of a
pattern

Alexander discovered that by narrowing his focus in this way—looking at
structures that solve similar problems—he could discern similarities between
designs that were high quality. He called these similarities, “patterns.”

He defined a pattern as “a solution to a problem in a context.”i

“Each pattern describes a problem which occurs over and over again in
our environment and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice.”ii

An example
pattern: the
Courtyard

Let’s read some of Alexander’s work to illustrate this. I will present an
excerpt from his The Timeless Way of Building, an excellent book which
presents the philosophy of patterns succinctly.

Alexander says… My comments…
In the same way, a courtyard which is properly
formed helps people come to life in it.

A pattern always, has a name and has a
purpose. Here, the pattern’s name is
“Courtyard” and its purpose is to help
people to come to life in it.

Consider the forces at work in a courtyard. Most
fundamental of all, people seek some kind of private
outdoor space, where they can sit under the sky, see
the stars, enjoy the sun, perhaps plant flowers. This
is obvious.

Although it might be obvious sometimes,
it is important to state explicitly the
problem being solved, which is the
reason for having the pattern in the first
place. This is what Alexander does here
for Courtyard..
He points out a difficulty with the
simplified solution which we may have
thought of

But there are more subtle forces too. For instance,
when a courtyard is too tightly enclosed, has no view
out, people feel uncomfortable, and tend to stay
away … they need to see out into some larger and
more distant space. …and then gives us a way to solve the

problem that he has just pointed out.

Net Objectives Copyright © 2000, DRAFT -- 28 February, 2000 Page 8-4

Or again, people are creatures of habit. If they pass
in and out of the courtyard, every day, in the course
of their normal lives, the courtyard becomes
familiar, a natural place to go … and it is used.

But a courtyard with only one way in, a place you
only go when you “want” to go there, is an
unfamiliar place, tends to stay unused… people go
more often to places which are familiar.

Or again, there is a certain abruptness about
suddenly stepping out, from the inside, directly to
the outside … it is subtle, but enough to inhibit you.

Familiarity sometimes keeps us from
seeing the obvious. The value of a
pattern is that those with less experience
can take advantage of what others have
learned before them:

• both what must be included to have
a good design.

• and what must be avoided to keep
from a poor design..

If there is a transitional space—a porch or a veranda,
under cover, but open to the air—this is
psychologically half way between indoors and
outdoors, and makes it much easier, more simple, to
take each of the smaller steps that brings you out
into the courtyard…

A solution to a possibly overlooked
challenge to building a great courtyard

Alexander is telling us how to build a
great courtyard

When a courtyard has a view out to a larger space,
has crossing paths from different rooms, and has a
veranda or a porch, these forces can resolve
themselves. The view out makes it comfortable, the
crossing paths help generate a sense of habit there,
the porch makes it easier to go out more often …
and gradually the courtyard becomes a pleasant
customary place to be.

…and then tells us why it is great.

The four
components
required of
every pattern
description

To review, Alexander says that a description of a pattern involves four items:
• The name of the pattern.
• The purpose of the pattern, the problem it solves.

• How we could accomplish this.
• The constraints and forces we have to consider in order to accomplish it.

Patterns exist
for almost any
design problem
and may be
combined to
solve complex
problems

Alexander postulated that patterns exist which solve virtually every
architectural problem that one will encounter. He further postulated that
patterns could be used together to solve complex architectural problems.

How patterns work together will be discussed later in this book. For now, I
want to focus on his claim that patterns are useful to solve specialized
problems.

Net Objectives Copyright © 2000, DRAFT -- 28 February, 2000 Page 8-5

Moving from Architectural to Software Design Patterns
The Hillside
Group adapted
Alexander for
software

What does all of this architectural stuff have to do with us software
developers?

Well, in the early 90s some experienced developers happened upon
Alexander’s work in patterns. They wondered if what was true for
architectural patterns would also be true for software design. 2

• Were there problems in software that occur over and over again that could
be solved in somewhat the same manner?

• Was it possible to design software in terms of patterns, creating specific
solutions based on these patterns only after the patterns had been
identified?

The group felt the answer to both of these questions was “unequivocally yes”.
The next step was to identify several patterns and develop standards for
cataloging new ones.

The Gang of
Four did the
early work on
Design Patterns

Although many people were working on design patterns in the early 90s, the
book that had the greatest influence on this fledging community was Design
Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm,
Johnson, Vlissides [Gamma 1995]. In recognition of their important work,
these four authors are commonly and affectionately known as the “Gang of
Four.”

This book served several purposes.
• It defined what design patterns were within the area of software design.

• It described a structure within which to catalog and describe design
patterns.

• It cataloged 23 such patterns.
• It postulated object-oriented strategies and approaches based on these

design patterns.

It is important to realize that the patterns described in the book were not
created by the authors. Rather, the authors identified these patterns as already
existing within the software community, patterns that reflected what had been
learned about high quality designs for specific problems (note the similarity
to Alexander’s work).

Today, there are several different forms for describing design patterns. In
some circles, the Gang of Four’s structure is considered to be obsolete. Since

2 The ESPRIT consortium in Europe was doing similar work in the 1980’s. Project 1098 and Project 5248
developed a pattern-based design methodology called Knowledge Analysis and Design Support (KADS). See
Cognitive Patterns: Problem-Solving Frameworks for Object Technology, Karen Gardner, et.al. Cambridge
University Press. 1998.

Net Objectives Copyright © 2000, DRAFT -- 28 February, 2000 Page 8-6

this book is not a book about writing design patterns, I will not offer an
opinion on the best structure for describing patterns; however, the following
items need to be included in any description.

Item Description
Name All patterns have a unique name we use to identify them

with.
Intent The purpose of this pattern.
Problem The problem that the pattern is trying to solve.
Content The context in which this problem shows up.
Solution How the pattern provides a solution to this problem in

the context in which it shows up.
Consequences/
Forces

The consequences of using this pattern. Investigates the
forces at play in the pattern.

Implementation How this pattern can be implemented. Note:
Implementations are just concrete manifestations of the
pattern and should not be construed as the pattern itself.

Consequences / Forces. The term “consequences” is used in design patterns
and is often misunderstood. In everyday usage, “consequences” usually
carries a negative connotation. (you never hear someone say, “I won the
lottery! As a consequence, I now do not have to go to work.!”) Within the
design pattern community, on the other hand, “consequences” simply means
“cause and effect.” That is, if you implement this pattern in such-and-such a
way, this is how it affects the forces present.

Why Study Design Patterns
Design patterns
help with reuse
and
communication

Now that you have an idea about what design patterns are, you may still be
wondering “why study them?” There are several reasons that are obvious and
then some that are not so obvious.

The most commonly stated reasons for studying patterns are to:
• Reuse solutions. By reusing already established designs, we get a head

start on our problems and avoid gotchas. I get the benefit of learning from
the experience of others. I do not have to reinvent solutions for commonly
recurring problems.

• Establish common terminology. Communication and teamwork require a
common base of vocabulary and a common viewpoint of the problem.
Design patterns provide a common point of reference during the analysis
and design phase of a project.

Design patterns
give a higher
perspective on
analysis and
objects

However, there is a third reason to study design patterns:

To give you a higher level perspective on the problem and on the process
of design and object-orientation. To free you from the tyranny of dealing

Net Objectives Copyright © 2000, DRAFT -- 28 February, 2000 Page 8-7

with the details too early.

By the end of this book, I hope you see that this is the greatest reason to study
design patterns. It will shift your mindset and make you a more powerful
analyst.

To illustrate this advantage, I want to relate a conversation between two
carpenters about how to build the drawers for some cabinets.iii

Example of the
tyranny of
details:
Carpenters
making a joint

To illustrate this advantage, consider a conversation between two carpenters
about how to build the drawers for some cabinets.iv

Carpenter 1: How do you think we should build these drawers?
Carpenter 2: Well, I think we should make the joint by cutting straight
down into the wood, and then cutting back up 45 degrees, and then going
straight back down, and then backup the other way 45 degrees, and then
going straight back down and then…

Now, figure out what they are talking about doing.

Net Objectives Copyright © 2000, DRAFT -- 28 February, 2000 Page 8-8

…The details
can confuse the
solution

Isn’t that a confusing description? What is Carpenter 2 prescribing? The
details certainly get in the way! Let’s try to draw out his description.

Carpenter Two says… which looks like…
“Well, I think we should make the joint by
cutting straight down into the wood, then
cutting back up 45 degrees …”
“… then straight back down, then backup the
other way 45 degrees, then straight back down
and then ….”

“until you end up with…a dove tail joint. That
is what I was describing!”

…(this sounds
like so many
code reviews:
details, details,
details)

Doesn’t this sound like code reviews you have heard? The one where the
programmer describes the code as

 “… And then, I use a WHILE LOOP here to do … followed by a series
of IF statements to do … and here I use a SWITCH to handle …”

You get a description of the details of the code, but you have no idea what the
program is doing and why it is doing it.!

…but carpenters
do not really
talk at that level
of detail

Of course, no self-respecting carpenters would talk like this. What would
really happen is something like:

Carpenter 1: Should we use a miter joint or a dovetail joint?

Net Objectives Copyright © 2000, DRAFT -- 28 February, 2000 Page 8-9

Already we see a qualitative difference. The carpenters are discussing
differences in the quality of solutions to a problem; their discussion is at a
higher level, a more abstract level. They avoid getting bogged down in the
mere details of a particular solution.

When the carpenter speaks of a miter joint, he or she has the following
characteristics of the solution in mind.

• It is a simpler solution. A miter joint is a simple joint to make. You cut
the edges of the joining pieces at 45 degrees, abut them, and then nail or
glue them together (see Figure 8-2).

• However, it is also a weaker joint.

When the carpenter speaks of a dovetail joint (which we saw above), he or
she has other characteristics of the solution in mind. These characteristics
may not be obvious to a layman, but would clearly be understood by any
carpenter.
• It is a more evolved solution. It is more involved to make a dovetail joint.

Thus, it is more expensive.
• It is impervious to temperature and humidity. As these change, the wood

expands or contracts. However, the dovetail joint will remain solid.
• It does not depend on glue or other fastening systems. In fact, dovetail

joints do not depend even depend upon glue to work.
• It is a more aesthetically pleasing joint. Beautiful to look at when made

well.

In other words, the dovetail joint is a strong, dependable, beautiful joint that is
hard (expensive) to make.

Figure 8-2. A miter joint

…there is a
meta-level
conversation
going on.

So, when Carpenter 1 asked,

“Should we use a miter joint or a dovetail joint?”

the real question that was being asked was,

“Should we use a joint that is expensive to make but is both beautiful and

Net Objectives Copyright © 2000, DRAFT -- 28 February, 2000 Page 8-10

lasts a long time or should we just make a quick and dirty joint that will
last at least as long until the check clears?”

We might say the carpenters’ discussion really occurs at several levels: the
surface level of their words and the real conversation that is at a higher level
(a “meta-level”) that is hidden but much richer. This higher level is the level
of “carpenter patterns” and reflects the real design issues for the carpenters.

• Carpenter 1 wants to decide on which joint to use based on costs and
quality of the joint.

• Carpenter 2 simply obscures the real issues by discussing the details of
the implementations of the joints.

Who is more efficient? Who would you rather work with?

Patterns help us
see the forest
for the trees

This is one way I mean when I say that patterns can help raise our level of
thinking. We will learn later in the book that when we raise our level of
thinking like this, new design methods become available. This is where the
real power of patterns lies.

Other Advantages to Studying Design Patterns
Improve team
communications
and individual
learning

My experience with development groups working with design patterns is that
design patterns helped both individual learning and team development. This
occurred because the more junior team members saw that the senior
developers who knew design patterns had something of value and they
wanted it. This provided motivation for them to learn some of these powerful
concepts.

Improved
modifiability of
code

Design patterns also provide for built in modifiability of software. The
reason for this is that they are time tested solutions. They therefore have
evolved into structures that can handle change more readily than what often
first comes to mind as a solution.

Design patterns
illustrate basic
object-oriented
principles

Design patterns, when they are taught properly, can be used to greatly
increase the understanding of basic object-oriented design principles. I have
seen this countless times in the introductory object-oriented courses I teach
where we start using design patterns on the first day. By the end of the three
day course, although we’ve been mostly talking about patterns, the concepts
of encapsulation, polymorphism and inheritance – which were just introduced
to many of the participants – feel like they are old friends.

Adoption of
improved
strategies – even
when patterns
aren’t present

In Design Patterns: Elements of Reusable Object-Oriented Software, the
Gang of Four suggest a few strategies for creating good object-oriented
designs. In particular, they suggest the following:
• find what varies and encapsulate it

• favor composition over inheritance

Net Objectives Copyright © 2000, DRAFT -- 28 February, 2000 Page 8-11

These strategies occur in most of the design patterns described. Even if you
do not learn a lot of design patterns, studying a few should enable you to learn
why these strategies are useful. With that understanding comes the ability to
apply them to your own design problems even if you do not use design
patterns directly.

Learn
alternatives to
large
inheritance
hierarchies

Another advantage is that design patterns allow you or your team to create
designs for complex problems that do not require large inheritance
hierarchies. Again, even if design patterns are not used directly, avoiding
large inheritance hierarchies will result in improved designs.

Summary
We have looked at what design patterns are. Christopher Alexander says
“patterns are solutions to a problem in a context.” They are more than a kind
of template to solve one’s problems. They are a way of describing our
motivations by including both what we want to have happen along with the
problems that are plaguing us.

We looked at why we should study design patterns. Studying design patterns
helps to:

• Reuse existing, high quality solutions to commonly recurring problems.
• Establish common terminology to improve communications within teams.

• Shift our level of thinking to a higher perspective.
• Improve individual learning and team learning.
• Improve the modifiability of code.

• Facilitate adoption of improved design alternatives, even when patterns
are not used explicitly.

• Discover alternatives to large inheritance hierarchies.

i A Pattern Language, Christopher Alexander
ii ibid.
iii This section is inspired by a talk given by Ralph Johnson and adapted by the authors.
iv This section is inspired by a talk given by Ralph Johnson and adapted by the authors.

