
The Language/Action Perspective, 1998 1

Deontic Analysis Patterns

Paul Johannesson & Petia Wohed

Dept. of Computer and Systems Sciences
Stockholm Uniersity/KTH

Electrum 230, 164 40 Kista, Sweden
email: {pajo, petia}@dsv.su.se

url: http//www.dsv.su.se/

Abstract

In order to reduce the costs for systems development, methods for the reuse of
specification knowledge have been developed. One approach is to build libraries of
reusable analysis patterns, i.e. abstract models describing the generic features of a type of
situation that may occur in many different domains. In this paper, we propose a novel
analysis pattern based on a deontic perspective. The basic components of this pattern are
object types describing obligations, the parties involved in these obligations and their
respective roles, and the speech acts that create and manage the obligations. We argue
that this pattern captures specification knowledge at an appropriate level of abstraction,
has a wide applicability, and effectively supports designers in the construction of models.
Furthermore, we show how deontic objects at different levels are interrelated.

1.� Introduction

When constructing large information systems, the key to success lies in eliciting and
representing requirements. Experience has shown that these activities are difficult as well as
time consuming. Even with the use of CASE tools, capturing and representing requirements
remain one of the major costs in building information systems. One reason for this is that
requirements and domain knowledge are still often captured from scratch for each new system
to be built, even for systems within the same general area. This duplication of effort results in
high costs and hinders the construction of larger and more knowledge-intensive systems. To
overcome these problems, systems analysts and software engineers must find ways of sharing,
reusing, and extending systems.

There are many senses in which the knowledge contained in a system can be shared
and reused. One form of reuse is code reuse, which can be realised through modules invoking
each other as procedures from a function library. Code reuse can also be realised through the
inclusion of source specifications, i.e. the content of one module is copied into another module
at design time. Another form of reuse is through the exchange of techniques, meaning that the
content of a system module is not directly used; instead, the solution approach behind the
module is communicated in a way that facilitates its re-implementation.

Essential to all these forms of reuse is the build-up and maintenance of a library of
reusable modules. Such a library can be utilised in many different ways. It can be searched
through keywords that retrieve and select modules based on their functionality, as suggested in
[Burton87]. However, keywords describing the functionality of systems cannot effectively
support reuse across different applications. Faceted classification schemes, [Prieto-Diaz87],
overcome some of the problems of simple keyword retrieval by describing non-functional
features of modules and by providing a lexicon to support differences in terminology. The
contents of the modules in a library may vary widely, from source code to generic objects and
models. The latter are abstract models that describe the generic features of a type of situation
that may occur in many different contexts; these abstract models are commonly known as
patterns.

Patterns come in a large number of varieties. One of these is the design pattern,
[Gamma95], which has received much attention in the software engineering community. A
design pattern is a description of �FRPPXQLFDWLQJ�REMHFWV�DQG�FODVVHV�WKDW�DUH�FXVWRPL]HG�WR

The Language/Action Perspective, 1998 2

solve a general design problem in a particular context���>*DPPD��@��7KXV��D�GHVLJQ�SDWWHUQ
names, abstracts, and identifies the key aspects of a common design structure that make it
useful for creating a reusable object-oriented design. While a design pattern addresses the
design stage in systems development, an analysis pattern concerns the analysis and
specification stage. An analysis pattern consists of an application independent model of a
domain structure, e.g. a model of time or causality at a higher level of abstraction, or a model
of library systems at a lower level. An analysis pattern describes, at an arbitrary level of
abstraction, a set of real-world objects, their interrelationships, and the rules that govern their
behaviour and state. Some examples of analysis patterns are domain abstractions as discussed
in [Maiden92], the analysis patterns in [Fowler97], and data model patterns as introduced in
[Hay96]. The notion of analysis patterns is similar to that of ontologies in the knowledge
representation community, [Neches91]. An ontology is commonly defined as an explicit
specification of a conceptualisation, where a conceptualisation consists of �REMHFWV��FRQFHSWV
and other entities that are assumed to exist in some area of interest and the relationships that
hold among them���>*UXEHU��@�

An important quality requirement on an analysis pattern is that it be sufficiently
general, i.e. it should be sufficiently abstract to be applied to many different application
models. Another quality requirement is that analysis patterns should minimise the cognitive
distance, i.e. it should be easier to understand and apply the analysis pattern than to model a
part of the application from scratch. Clearly, these two quality requirements are in conflict as
highly abstract patterns may be quite difficult to apply. The difficulty to construct patterns
satisfying both these requirements is probably a major reason why analysis patterns are not yet
widely used. An important research task is, therefore, to identify analysis patterns at an
appropriate level of abstraction.

The purpose of this paper is to show how deontic concepts can be used for modelling
fundamental aspects of social reality in the context of information systems design. Deontic
concepts have been applied in different areas of computer science; for a survey, see
[Wieringa93]. We believe that deontic concepts have an important role to play also in
enterprise modelling, and that they can be used for extending existing ontologies in this area,
such as TOVE, [Gruninger97]. In order to show this, we introduce a novel analysis pattern.
The basic components of this pattern are object types describing obligations, the parties
involved in these obligations and their respective roles, the speech acts that create and delete
these obligations, the subject matters of and the reasons for the obligations. We claim that this
analysis pattern is both sufficiently general and has a low cognitive distance, which means that
it will be useful in a large number of areas as well as simple to apply. The paper is organized
as follows. Section 2 introduces the modelling formalism and notation used in the rest of the
paper. Section 3 presents a basic deontic pattern; the components of this pattern are described
as well as its typical variants. Section 4 extends this deontic pattern by introducing different
types of deontic objects and discussing the different kinds of roles parties can play with
respect to a deontic object. Finally, Section 5 summarises the paper and gives suggestions for
further research.

2.� Modelling Formalism

The basic concept in conceptual modelling approaches is the object. Objects that are similar
are grouped together into object types, such as Person and Department. Objects have different
properties, which are modelled by attributes or relationships. In our graphical notation, see
Figure 1, object types are represented by rectangles, attributes are represented by bulleted lists
inside the object types and relationships are represented by labelled lines. Both a relationship
and its inverse are represented with the same line. The name of a relationship is placed closest
to the object type that is its domain. The object type on the other side of the line representing
the relationship is called its range. The graphical notation can only represent cardinality
constraints and generalisation relationships. The generalisation relationships are shown by
drawing the subtypes of an object type inside the rectangle modelling this object type. The
cardinality constraints specify for each relationship if it is single-valued, injective, total and
surjective. A relationship is single-valued when each instance of its domain is connected with
at most one instances of its range. A relationship which is not single-valued is multi-valued

The Language/Action Perspective, 1998 3

and is depicted by a �IRUN��FRQQHFWLQJ�WKH�OLQH�UHSUHVHQWLQJ�WKH�UHODWLRQVKLS�ZLWK�LWV�UDQJH��$
relationship is total when each instance of its domain is connected to at least one instance in its
range. A relationship that is not total is partial, which is shown by a dotted line on the half of
the line that is closest to its domain. A relationship is injective (surjective) when its inverse is
single valued (total).

3.� A Basic Deontic Pattern

In this section, we introduce a basic deontic pattern that describes obligations among agents.
We start by classifying the object types occurring in different pattern in two categories:
concrete and abstract object types. Concrete object types have instances that are physical
objects. %8,/',1*, for instance, is a typical example of a concrete object type. Every object
that is not concrete is an abstract object. An example of an abstract object type is
25*$1,6$7,21. Note that Stockholm University could appear as an instance of both %8,/',1*
and 25*$1,6$7,21, but there still are two different objects, the building in the first case and the
institution in the second, both being denoted by the same term.

An important characteristic of certain abstract objects is that they entail obligations. For
instance, Peter’s employment at Stockholm University entails that Peter is obliged to work a
number of hours for the university, which in turn is obliged to pay him salary. In contrast, the
existence of the institution Stockholm University does not by itself entail any obligations.
Abstract objects that entail obligations are called '(217,&�2%-(&7s. Examples of deontic object
are employments, work orders, bookings, and marriages. A general deontic pattern is shown in
Figure 1. In the right upper corner of each object type an abbreviation of the name is given.
The deontic analysis pattern contains the following components:

PARTY

ROLE

ROLE
DESCRIPTION

DEONTIC
OBJECT

CREATION

DELETION

SUBJECT

ABSTRACT

CONCRETE

GOAL

MATTER

A

C

S

G

Del

Cr

P

DO

R RD

Figure 1: A Basic Deontic Pattern

'(217,& 2%-(&7

Deontic objects are objects that group together obligations for different parties. Typical
properties for a deontic object are the period for which it exists and a number of parameters
representing important information about the created obligations. For instance, the attributes
start date, percent and salary for an object type (03/2<0(17 represent information connected
to the entailed obligations, namely the start date for the obligations, the working time an
employee is required to do, and the salary the employer has to pay.

52/(and 52/('(6&5,37,21

A deontic object usually concerns more than one party, as most obligations are directed from
one party to another, [Herrestad95]. As a consequence of this, '(217,& 2%-(&7 is always
associated to the object type 3$57< with at least two different relationships. In an employment,

The Language/Action Perspective, 1998 4

these relationships are the employee and the employer. In a lending, they are the lender and
the borrower. However, a deontic object may involve more than two parties as well. To build a
general model, which can represent a flexible number of parties involved in a deontic object,
we use the object types 52/(and 52/('(6&5,37,21. 52/('(6&5,37,21 brings general
information about each particular 52/(, while 52/(shows who is playing a role and for which
time.

68%-(&7 0$77(5

The subject matter of the obligations of a deontic object are represented by the object type
68%-(&7 0$77(5. Typically, the subject matter of a deontic object is an activity that is to be
carried out, for example to return a borrowed object.

&5($7,21 and '(/(7,21

The object types &5($7,21 and '(/(7,21 model the creation and deletion of deontic objects.
Consider for instance a Marriage pattern where a deontic object type 0$55,*(is connected to
a type :('',1* - the object type representing the creation of a marriage. Moreover a marriage
can be ended up by a divorce, which is represented by the corresponding object type. The
creation and deletion of a deontic object are performed by means of speech acts. In order to
model people performing such speech acts, additional relationships to 3$57< are required.

*2$/

The purpose of the object type *2$/ is to represent the reason for the existence of a deontic
object. The existence of a deontic object needs to be motivated when it is created under certain
conditions. For instance, when a head teacher books an assistant for her course, the reason for
doing so is to make it possible to carry out some activity. In such cases it is common to keep
information not only for a booking but also about the activity which is the reason for the
booking. Below, we give examples of modifications of the deontic pattern, which results in
more concrete analysis patterns.

Employment Pattern

In Figure 2, an analysis pattern for employment is given, where the object type (03/2<0(17 is
associated to an 25*$1,6$7,21 that is the employer, a 3(5621 who is an employee and one or
several 326,7,21 $66,*10(17V. A 326,7,21 $66,*10(17 shows the share of an (03/2<0(17 to
a 326,7,21. For instance, the model has the capacity to represent that a person is employed
full-time at a company from a specific date, and that the employment is shared in 40% as
project leader and 60% as consultant. An employment gives rise to a large number of
obligations, e.g. that the employee should work a specified amount of time and that the
employer should pay a salary.

PARTY

PERSON

EMPLOYMENT of

with
in

the source of

POSITION

POSITION

ASSIGNMENT based on
the basis for

to

filled by

defined by

responsible for

• name

• pay grade
• job description

• percent
• start date

• percent

• name

• salary
ORGANI-
SATION

DODO

S

P

R

R

Figure 2: Employment pattern

The Language/Action Perspective, 1998 5

Work Order Pattern

An analysis pattern for work orders is given in Figure 3. An example of a WORK ORDER is
the order that a certain course shall be given by a department during a specified period of time.
The department is then responsible to see to it that the course is given during this time period.
Furthermore, a number of parties can be involved in a work order and they can play different
roles. Examples of different :25. 25'(5 52/(7<3(V are head teacher and assistant, where a
head teacher is also the examiner and an assistant helps with teaching and administration the
head teacher. The object type :25. 25'(5 52/(is introduced to show which role type a party
has in a work order.

Furthermore, a work order can give authorisation for a number of activities. An
$&7,9,7< is for instance a specific lecture. Finally, the object type $&7,9,7< $66,*10(17 is
introduced to show who is going to perform a particular activity.

PARTY

PERSON

responsible

the

prepared

WORK
ORDER

responsibility
of

for
by
the reference

of

ACTIVITY

ACTIVITY

WORK ORDER

WORK ORDER

ASSIGNMENT

ROLE

ROLE TYPE

ACTIVITY
STEP

COMPOUND
ACTIVITY

in

performed by

played by
given

given
of

defined by

to

done by

definition of

authorized
by

for
authorization

composed
part of of

ORGANI-
SATION

R

R

R

P

S

RD

DO

DO

Figure 3: Work order pattern

When constructing a concrete analysis pattern from the deontic pattern, it is common to omit
some components or collapse one component into another one. Some of the most common
omissions are the following:

- 52/(omitted. The object types 52/(and 52/('(6&5,37,21 are often omitted and
replaced by relationships between '(217,& 2%-(&7 and 3$57<. This omission is
common when there is only a small and fixed number of established roles, e.g. wife and
husband in a marriage, where these roles can be modelled by means of relationships
ZLIH and KXVEDQG. When the number of roles may vary or when information is needed
about the roles, the object types 52/(and 52/('(6&5,37,21 are required.

- 3$57< omitted. In some cases the role of some party is omitted. An example of this is
given in Figure 3, where only one role in $&7,9,7< $66,*10(17 is modelled - the
performer’s role. However, there exists also another role, that of the party who has
assigned the activity. The reason that this role is not modelled is that it can be derived
from the description for a :25.� 25'(5� 52/(� 7<3(who is responsible for the
performance of a work order and may thereby delegate activity assignments.

- 68%-(&7�0$77(5 omitted. The object type 68%-(&7 0$77(5 is omitted when the deontic
object does not primarily entail obligations for a particular action or object. For
example, a marriage entails a large number of obligations in many different
circumstances, and it is not possible to single out a specific obligation as more
important than all the others. A work order, on the other hand, entails primarily the
obligation to carry out a particular activity, while the other obligations in this context
are less important; so the object type $&7,9,7< is included in the :25. 25'(5 pattern.

The Language/Action Perspective, 1998 6

The analysis patterns in Figures 2 - 3 are very similar to those found in the pattern literature,
e.g. [Fowler96]. Most of the patterns in these references are presented as isolated models
without any relationships to each other. However, there obviously exist different types of
relationships between the patterns and an important task is to make these explicit. Roughly
speaking, there are at least two types of relationships between deontic objects. First, one
deontic object can be the motivation for another deontic object, e.g. a booking of a room can
be motivated by a work order to carry out some activity that requires a room. Secondly, a
deontic object can be established according to, or in the context of, another deontic object. In
the rest of the paper, we will discuss how the basic deontic pattern can be extended in order to
express relationships among deontic objects.

4.� An Extended Deontic Pattern

In order to express relationships between deontic objects, it is necessary to provide a more
detailed analysis of the different types of deontic objects that exist. In Figure 4, an extension
of the basic deontic pattern from Figure 1 is shown. To manage the complexity, which such an
extension brings to the model, we similarly to [Fowler97] distinguish between two levels,
namely a knowledge level and an operational level. The knowledge level models the kinds of
objects that exist, the relations between these, and the general rules in a domain, whereas the
operational level captures the every day events and the objects involved in these. For example,
objects like Peter, Stockholm University, Peter’s employment at Stockholm University are
instances of the object types 3$57< and '(217,& 2%-(&7 at the operational level, whereas the
corresponding objects person, university and employment are instances at the knowledge level
of the object types 3$57< 7<3(and '(217,& 2%-(&7 7<3(. One more difference between these
two levels is that much of the information at the operational level is time sensitive, i.e. it is
important to keep information about when certain events occur or the time interval for validity
periods. Summarising, the knowledge level captures the rules established by the culture or the
law system that a universe of discourse has to obey, while the operational level keeps
information about occurrences following these rules. It is then not surprising that the
operational level is almost symmetrical to the knowledge level, which means that most of the
object types/relationships at the former level have a corresponding object type/relationship at

knowledge level

operational level

PARTY TYPE

ROLE TYPE

OBLIGATION
TYPE

DEONTIC OBJECT
TYPE

SPEECH ACT
TYPE

responsible for
responsible to

AUTHORITY
TYPE

 to utter

 for

 in

 authorizes

concerns

AGREEMENT
TYPE

the content of

motivates

PARTY

ROLE

OBLIGATION

DEONTIC OBJECT

responsible for
responsible to

AUTHORITY
PRACTISE

 for

 in

 by

concerns

AGREEMENT

the content of

motivates

- time

- period - deadline

Figure 4: An Extended Deontic Pattern

The Language/Action Perspective, 1998 7

the latter level. In the rest of this section, we are describing the object types from the
operational level and when necessary clarifying them with the help of their corresponding
object types from the knowledge level.

Turning now to the pattern in Figure 4, one of its extensions is the distinction between
two classes of deontic objects: obligations and agreements. An object is an instance of
2%/,*$7,21 if it is a deontic object entailing a single obligation, or a small number of
obligations. In contrast, an object is an instance of $*5((0(17 if it is a deontic object where it
is not possible to specify a small number of obligations that constitute the object. Instead, an
agreement provides a context for other deontic objects by regulating how they can be created,
destroyed, and modified, and by specifying rules telling how violations of obligations should
be handled. An example of an instance of an 2%/,*$7,21 is an $&7,9,7<� $66,*10(17 from
Figure 3, which entails the obligation to perform a certain activity step that cannot be divided
into smaller steps, which means that it obliges to a single action. An example of an $*5((0(17
is an (03/2<0(17 (Figure 2), which regulates the rights and duties of the employee and the
employer. Furthermore, an employment provides a context for a :25.�25'(5�(Figure 3) from
the employer to the employee, where the work order entailing the obligation to produce
something or provide a service is a deontic object itself. This is modelled by the relationship
FRQWH[W IRU. There is also another relationship between deontic objects that has to do with the
reason, or PRWLYDWLRQ, for creating a deontic object. For example, a room can be booked (one
deontic object) in order to fulfil the obligation of giving a lecture (another deontic object).
This relation covers the object type *2$/ from Figure 1.

One more difference between an 2%/,*$7,21 and an $*5((0(17 is the way they are
related to the object type 3$57<. For an obligation there is always one party who is responsible
for fulfilling the obligation, and there is another party for whom the obligation is to be
fulfilled, which is represented by the attributes UHVSRQVLEOH� IRU and UHVSRQVLEOH� WR respectively.
Normally, the party who requested the deontic object is the same as the one for whom the
associated obligation is to be fulfilled, and the party who approved of the creation of the object
has the responsibility to fulfil the associated obligation. In contrast, for an agreement a number
of roles for different parties are created and the responsibilities are not connected to only one
of those roles but are distributed among the different roles. For example, in an employment
agreement there is an employee and an employer role and both roles imply responsibilities.
The object type 52/(7<3(at the knowledge level and 52/(at the operational level represents
this, where head of the department is an instance of the first one and Peter as the head of a
specific philosophy department is an instance of the second one. Note that 52/(� 7<3(
corresponds to the 52/(�'(6&5,37,21 in Figure 1.

A role can be viewed as a bunch of authorities for performing certain actions.
Authorities are modelled by means of $87+25,7< 7<3(, which given a role type and a deontic
object type specifies one speech act type meaning that someone who has the role is authorised
to perform that type of speech act for that deontic object type. To clarify this, we give a few
examples concerning one deontic object type - position�establishment� A project manager at a
laboratory at a department has the authority to request a new position to his project. Each
request for a new position is then approved by the head of the laboratory and finally accepted
by the head of the department. Afterwards the secretary registers it. Request, approval,
acceptance and registration are all instances of 63((&+ $&7 7<3(� When the approval speech act
is uttered by a role holder with the right authority a new deontic object is created – a position.
Since the role allocations are results from agreements, agreements can be viewed as regulating
the creation, modification, and deletion of different deontic objects. Finally, an example of
$87+25,7< 35$&7,6(is the fact that Ann in the role of project leader at Stockholm University
requests the 1 June 98 one more research assistant position to her project. Note that on the
knowledge level, $87+25,7< 7<3(s specify the authorities associated with certain roles, while
at the operational level, $87+25,7< 35$&7,6(V describe actions that are carried out using certain
authorities.

The Language/Action Perspective, 1998 8

5.� Summary and Further Research

The deontic pattern introduced in this paper can serve as a very abstract analysis pattern in a
library of reusable modules. The other modules will contain specialisations of the deontic
pattern, such as lending, booking, and sale. The deontic pattern will serve as an entry point to
the library and as a template for structuring the other patterns. The deontic pattern may be
used in schema specification in many different ways. First, one of its specialisations can be
integrated directly into a schema without any modifications. Secondly, a fragment of a schema
can be compared to the deontic pattern in order to check the correctness and completeness of
the schema. Utilising the deontic pattern in these manners can improve the quality of schema
specification in several respects. In particular, the completeness of a schema can be improved,
as comparing a schema fragment to a pattern will assist a designer in identifying aspects of the
application that have been left out in the specification. Furthermore, the stability of a schema
can be increased by adding components from the deontic pattern, which are not strictly
necessary for the current application, but can make later requirements easier to accommodate.
Finally, the deontic pattern can facilitate the documentation of a schema by providing
templates for the different types of obligations that may occur. Instantiating these templates
for a particular application can be a most effective way of constructing a comprehensive
documentation.

The analysis pattern introduced in this paper is described solely in terms of objects and
relationships, and it therefore provides only a superficial representation of deontic structures.
In order to provide a deeper representation, the deontic structures must be described by means
of complementary formalisms. Adequate formalisms for this purpose may range from DEMO
models, [Dietz92], to illocutionary and deontic logics, [Assenova96], [Johannesson98b],
[Dignum95]. Utilising these formalisms, some of the vague notions in the deontic pattern, in
particular subject matter and goal, can be made more precise. Furthermore, it will become
possible to analyse in greater detail the different variants of the deontic pattern, and thereby
construct a systematic structure of these variants, which will help to build a library of reusable
specifications. Another line of research is to empirically investigate the usefulness of the
deontic pattern. Such an investigation would focus on two distinct issues. First, the
applicability of the deontic pattern should be measured by studying how frequently it occurs in
applications from different domains. Secondly, one should investigate how well the deontic
pattern supports a systems designer in the specification task - this can be done by comparing
designers that are familiar with the deontic pattern with those that are not with respect to
results and ways of working.

References

[Assenova96] P. Assenova and P. Johannesson, �)LUVW�2UGHU�Action Logic - An approach
for Modelling the Communication Process between Agents��� in First International
Workshop on Communications Modelling - The Language/Action Perspective, Ed. J. D.
F. Dignum, E. Verharen and H. Weigand, London, Springer Verlag, 1996.

[Burton87] B. Burton, R. Aragon, S. Bailey, K. Koehler and L. Mayes, �7KH�5HXVDEOH
Software Library���IEEE Software, pp. 25 - 33, 1987.

[Dietz92] J. Dietz, �0RGHOOLQJ� &RPPXQLFDWLRQ� LQ� 2UJDQL]DWLRQV��� LQ� Linguistic
Instruments in Knowledge Engineering, Ed. R. v. d. Riet, pp. 131 - 142, Elsevier
Science Publishers, 1992.

[Dignum95] F. Dignum and H. Weigand, �0RGHOOLQJ� &RPPXQLFDWLRQ� EHWZHHQ
Cooperative Systems���LQ�CAiSE, pp. 1995.

[Fowler97] M. Fowler, Analysis Patterns - Reusable Object Models, Addison-Wesley,
1997.

[Gamma95] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns,
Addison-Wesley, 1995.

The Language/Action Perspective, 1998 9

[Gruber95] T. Gruber, �7RZDUG� SULQFLSOHV� IRU� WKH� GHVLJQ� RI� RQWRORJLHV� XVHG� IRU
knowledge sharing��� International Journal of Human Computer Studies, No 43, pp.
907 Ð 928, 1995

[Gruninger97] M. Gruninger, �,QWHJUDWHG� 2QWRORJLHV� IRU� (QWHUSULVH� 0RGHOOLQJ��� XUO�
http://www.ie.utoronto.ca/EIL/tove/onto-sum.fm.html

[Hay96] D. C. Hay, Data Model Patterns, Dorset House Publishing, New York, 1996.

[Herrestad95] H. Herrestad and C. Krogh, �'HRQWLF� /RJLF� 5HODWLYLVHG� WR� %HDUHUV� DQG
Counterparties���LQ�Anniversary Anthology in Computers and Law, Ed. J. Bing. and O.
Torrund, pp. 453 - 522, 1995.

[Johannesson95] P. Johannesson, �5HSUHVHQWDWLRQ� DQG� &RPPXQLFDWLRQ� - A Speech Act
Based Approach to Information Systems Design���Information Systems, vol. 20, no. 4,
pp. 291 - 303, 1995.

[Johannesson98a]P. Johannesson and P. Wohed, �'HRQWLF� 6SHFLILFDWLRQ� 3DWWHUQV� �
Generalisation and Classification���International Conference on Formal Ontologies in
Information Systems, ed. N. Guarino, Trento, Italy, 1998.

[Johannesson98b] P. Johannesson and P. Wohed, �0RGHOOLQJ�$JHQW�&RPPXQLFDWLRQ
in a First order Logic��� �WR� DSSHDU� LQ�� Accounting, Management and Information
Technologies, 1998.

[Maiden91] N. A. Maiden and A. G. Sutcliffe, �$QDORJLFDO�0DWFKLQJ�IRU�6SHFLILFDWLRQ
Reuse���LQ�6th Annual Knowledge-Based Software Engineering Conference, pp. 108-
116, Syracuse, New York, IEEE Computer Society Press, 1991.

[Maiden92] N. A. Maiden and A. G. Sutcliffe, �([SORLWLQJ� 5HXVDEOH� 6SHFLILFDWLRQV
through Analogy���Communications of the ACM, vol. 35, no. 4, pp. 55-64, 1992.

[Neches91] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator and W.
Swartout, �(QDEOLQJ�7HFKQRORJ\�IRU�.QRZOHGJH�6KDULQJ���AI Magazine, vol. 12, no.
3, 1991.

[Prieto-Diaz87] R. Prieto-Diaz and P. Freeman, �&ODVVLI\LQJ� 6RIWZDUH� IRU� 5HXVDELOLW\��
IEEE Software, vol. no. 1, pp. 6 - 16, 1987.

[Wieringa93] R. Wieringa and J. Meyer, �$SSOLFDWLRQV� RI� 'HRQWLF� /RJLF� Ln Computer
Science: A Concise Overview��� LQ� Deontic Logic in Computer Science, eds. R.
Wieringa and J. Meyer, Wiley, 1993.

