
Design Pattern Matrix

© 8/8/03 Net Objectives DPE DP matrix v14k.doc 1

Design Patterns: From
Analysis to Implementation

by
etN

BJECTIVES

This is an excerpt from the manuals for
Design Patterns Explained: A New Perspective for Object-Oriented Design

Not all of the Gang of Four design patterns are included because not all of them are covered in
the course. Furthermore, Alan Shalloway uses a variation on the classification of the GoF
patterns. This is a work in progress. Updates will be announced through our e-zine. You can
subscribe to this by sending a message to info@netobjectives.com and putting subscribe in
the subject.

Contents:
Abstract Factory
Builder
Factory Method
Prototype
Singleton
Adapter
Bridge
Composite

Façade
Proxy – Virtual
Decorator
Proxy – adding function
State
Strategy
Template Method
Visitor

Chain of Responsibility
Iterator
Mediator
Memento
Observer
Proxy - accessibility
Model-View-Controller

Design Pattern Matrix

© 8/8/03 Net Objectives DPE DP matrix v14k.doc 2

CREATIONAL PATTERNS
Pattern Notes on the patterns

Abstract
factory

Indicators in analysis: Different cases exist that require different implementations of sets of rules.

Indicators in design: Many polymorphic structures exist that are used in pre-defined combinations. These
combinations are defined by there being particular cases to implement or different needs of client objects.

Indication pattern is not being used when it should be: A variable is used in several places to determine which object
to instantiate.

Relationships involved: The Abstract Factory object is responsible for coordinating the family of objects that the client
object needs. The client object has the responsibility for using the objects.

Builder Indicators in analysis: Several different kinds of complex objects can be built with the same overall build process, but
where there is variation in the individual construction steps.

Indicators in design: You want to hide the implementation of instantiating complex object, or you want to bring
together all of the rules for instantiating complex objects.

Factory
Method

Indicators in analysis: There are different commonalities whose implementations are coordinated with each other.

Indicators in design: A class needs to instantiate a derivation of another class, but doesn’t know which one. Factory
method allows a derived class to make this decision.

Field notes: The Factory method is often used with frameworks. It is also used when the different implementations of
one class hierarchy requires a specific implementation of another class hierarchy. Note that a factory method pattern is
not simply a method that serves as a factory. The pattern specifically involves the case where the factory is varied
polymorphically.

Prototype Indicators in analysis: There are prototypical instances of things.
Indicators in design: When objects being instantiated need to look like a copy of a particular object. Allows for
dynamically specifying what our instantiated objects look like.

Singleton Indicators in analysis: There exists only one entity of something in the problem domain that is used by several
different things.
Indicators in design: Several different client objects need to refer to the same thing and we want to make sure we don’t
have more than one of them. You only want to have one of an object but there is no higher object controlling the
instantiation of the object in questions.
Field notes: You can get much the same function as Singletons with static methods, however using static
methods eliminates the possibility of handing future change through polymorphism, and also prevents the
object from being passed by reference, serialized, remoted, etc… in general, static are to be avoided if
possible.

Design Pattern Matrix

© 8/8/03 Net Objectives DPE DP matrix v14k.doc 3

CREATIONAL PATTERNS
How it is implemented

Class Diagram/Implementation Pattern

Define an abstract class that specifies which
objects are to be made. Then implement one
concrete class for each family. Tables or files can
also be used to essentially accomplish the same
thing. Names of the desired classes can be kept in
a database and then switches or dynamic class
loading can be used to instantiate the correct
objects.

WidgetFactory

+ createWindow()
+ createScrollBar()

MotifFactory

+ createWindow()
+ createScrollBar()

PMFactory

+ createWindow()
+ createScrollBar()

Window

PMWindow MotifWindow

ScrollBar

PMScrollBar MotifScrollBar

Client

Abstract
factory

Create a factory object that contains several
methods. Each method is called separately and
performs a necessary step in the building process.
When the client object is through, it calls a method
to get the constructed object returned to it. Derive
classes from the builder object to specialize steps.

Director
+ construct()

Builder
+ buildStep1()
+ buildStep2()
+ getObject()

ConcreteBuilder1
+ buildStep1()
+ buildStep2()
+ getObject()

ConcreteBuilder2
+ buildStep1()
+ buildStep2()
+ getObject()

builder->buildStep1()
builder->buildStep2()
getObject()

Builder

Have a method in the abstract class that is abstract
(pure virtual). The abstract class’s code will refer
to this method when it needs to instantiate a
contained object. Note, however, that it doesn’t
know which one it needs. That is why all classes
derived from this one must implement this method
with the appropriate new command to instantiate
the proper object.

Note: in this example createDocument is called a
factory method. Application is not a factory object.

Document Application
+ createDocument()

MyDoc MyAp
+ createDocument() return new MyDoc

must be
abstract

Factory
Method

Set up concrete classes of the class needing to be
cloned. Each concrete class will construct itself to
the appropriate value (optionally based on input
parameters). When a new object is needed, clone
an instantiation of this prototypical object.

Client

Prototype
+ clone()

ConcretePrototype1
+ clone()

ConcretePrototype2
+ clone()

return copy
of self

return copy
of self

use clone to instantiate

Prototype

Add a static member to the class that refers to the
first instantiation of this object (initially it is null).
Then, add a static method that instantiates this
class if this member is null (and sets this
member’s value) and then returns the value of this
member. Finally, set the constructor to protected
or private so no one can directly instantiate this
class and bypass this mechanism.

PSEUDO CODE
(if C++, _instance should be pointer)

class Singleton {
 public static Singleton Instance();
 protected Singleton();
 private static _instance= null;

 Singleton Instance () {
 if _instance== null)
 _instance= new Singleton;
 return _instance
 }
}

Singleton

Design Pattern Matrix

© 8/8/03 Net Objectives DPE DP matrix v14k.doc 4

STRUCTURAL PATTERNS
Pattern Notes on the patterns

Adapter Indicators in analysis: Normally don’t worry about interfaces here, so don’t usually think about it. However, if you

know some existing code is going to be incorporated into your system, it is likely that an adapter will be needed since
it is unlikely this pre-existing code will have the correct interface.
Indicator in design: Something has the right stuff but the wrong interface. Typically used when you have to make
something that’s a derivative of an abstract class we are defining or already have.
Field notes: The adapter pattern allows you to defer concern about what the interfaces of your pre-existing objects
look like since you can easily change them. Also, adapter can be implemented through delegation (run-time) or
through multiple inheritance (C++). We call these variations Object Adapter, and Class Adapter, respectively.

Bridge Indicators in analysis: There are a set of related objects using another set of objects. This second set represents an
implementation of the first set. The first set uses the second set in varying ways.
Indicators in design:
There is a set of derivations that use a common set of objects to get implemented.
Indication pattern is not being used when it should be: There is a class hierarchy that has redundancy in it. The
redundancy is in the way these objects use another set of object. Also, if a new case is added to this hierarchy or to the
classes being used, that will result in multiple classes being added.
Relationships involved: The using classes (the GoF’s “Abstraction”) use the used classes (the GoF’s
“Implementation”) in different ways but don’t want to know which implementor is present.
Field notes:
Although the implementer to use can vary from instance to instance, typically only one implementer is used for the life
of the using object. This means we usually select the implementer at construction time, either passing it into the
constructor or having the constructor decide which implementer should be used.

Composite Indicators in analysis: There are single things and groups of things that you want to treat the same way. The groups
of things are made up of other groups and of single things (i.e., they are hierarchically related).
Indicators in design: Some objects are comprised of collections of other objects, yet we want to handle all of these
objects in the same way.
Indication pattern is not being used when it should be: The code is distinguishing between whether a single object
is present or a collection of objects is present.
Variation encapsulated: Whether an item is a single entity or whether it is composed of several sub-components.
Field notes: Whether or not to expose an interface that would allow the client to navigate the composite is a decision
that must be considered. The ideal composite would hide its structure, and thus the navigation would not be supported,
but specifics in the problem domain often do not allow this. Often, using a Data Object can eliminate the need for
traversal by the client

Façade Indicators in analysis: A complex system will be used which will likely not be utilized to its full extent.
Indicators in design: Reference to an existing system is made in similar ways. That is, you see combinations of calls
to a system repeated over and over again.
Indication pattern is not being used when it should be: Many people on a team have to learn a new system although
each person is only using a small aspect of it.
Field notes: Not usually used for encapsulating variation, but different facades derived from the same abstract class
can encapsulate different sub-systems. This is called an encapsulating façade. The encapsulating facade can have
many positive side-effects, including support for demonstration/limited function versions of an application.

Proxy –
virtual

Indicators in analysis and design: Performance issues (speed or memory) can be foreseen because of the cost of
having objects around before they are actually used.
Indication pattern is not being used when it should be: Objects are being instantiated before they are actually used
and the extent of this is causing performance problems.
Variation encapsulated: Although each proxy contains only one new function or way of connecting to the proxy
object, this function can be changed (statically) in the future without affecting those objects that use the proxy.
Field notes: This pattern often comes up to solve scalability issues or performance issues that arise after a
system is working.

Design Pattern Matrix

© 8/8/03 Net Objectives DPE DP matrix v14k.doc 5

STRUCTURAL PATTERNS
How it is implemented

Class Diagram Pattern

Contain the existing class in another class.
Have the containing class match the required
interface and call the contained class’s
methods

Client TargetAbstraction
+ operation()

operation:
 existingclass->itsOperation

ExistingClass
+ itsOperation()

Adapter
+ operation()

Adapter

Encapsulate the implementations in an abstract
class and contain a handle to it in the base
class of the abstraction being implemented. In
Java can also use interfaces instead of an
abstract class for the implementation.

Concrete1
ImpA

+ opImp1()
+ opImp2()

ImpB
+ opImp1()
+ opImp2()

Abstraction
+ operation()

Implementation
+ opImp1()
+ opImp2()

operation() {
 imp.opImp1()
}

Concrete2

operation() {
 imp.opImp2()
}

Bridge

Set up an abstract class that represents all
elements in the hierarchy. Define at least one
derived class that represents the individual
components. Also, define at least one other
class that represents the composite elements
(i.e., those elements that contain multiple
components). In the abstract class, define
abstract methods that the client objects will
use. Finally, implement these for each of the
derived classes.

Client

Leaf
+ operation()

Composite
+ operation()

Component
+ operation()

Composite

Define a new class (or classes) that has the
required interface. Have this new class use the
existing system.

ComplexSysA

ComplexSysB

Facade

provides simpler
interface

Client

Façade

The Client refers to the proxy object instead of
an object from the original class. The proxy
object remembers the information required to
instantiate the original class but defers its
instantiation. When the object from the
original class is actually needed, the proxy
object instantiates it and then makes the
necessary request to it.

Client Abstract
+ operation()

to proxy

realsubject->operation()

RealSubject
+ operation()

VirtualSubject
+ operation()

Proxy -
virtual

Design Pattern Matrix

© 8/8/03 Net Objectives DPE DP matrix v14k.doc 6

BEHAVIORAL PATTERNS
Pattern Notes on the patterns

Decorator Indicators in analysis: There is some action that is always done, there are other actions that may need to be done.

Indicators in design: 1) There is a collection of actions; 2) These actions can be added in any combination to an
existing function; 3) You don’t want to change the code that is using the decorated function.
Indication pattern is not being used when it should be: There are switches that determine if some optional function
should be called before some existing function.
Variation Encapsulated: The functionality to be added before or after an existing function.
Field notes: This pattern is used extensively in the JDK and .NET for I/O. Note the decorators can be one-way (void
return) or bucket-brigade (pass down the chain, then "bubble" back up).

Proxy –
adding
function

Indicators in design: We need some particular action to occur before some object we already have is called.
Indication pattern is not being used when it should be: We precede a function with the same code every time it is
used. Or, we add a switch to an object so it sometimes does some pre-processing and sometimes doesn’t.
Variation encapsulated: Although each proxy contains only one new function or way of connecting to the proxy
object, this function can be changed (statically) in the future without affecting those objects that use the proxy.
Field notes: Proxies are useful to encapsulate a special function that is sometimes used prior to calling an existing
object.

State Indicators in analysis and design: We have behaviors that change, depending upon the state we are in.
Indication pattern is not being used when it should be: The code keeps track of the mode the system is in. Each
time an event is handled, a switch determines which code to execute (based on the mode the system is in). The rules
for transitioning between the patterns may also be complex.
Field notes:
We define our classes by looking at the following questions:

1. What are our states?
2. What are the events we must handle?
3. How do we handle the transitions between states?

Strategy Indicators in analysis: There are different implementations of a business rule.
Indicators in design: You have a place where a business rule (or algorithm) changes.
Indication pattern is not being used when it should be: A switch is present that determines which business-rule to
use. A class hierarchy is present where the main difference between the derivations is an overridden method.
Relationships involved: An object that uses different business rules that do conceptually the same thing (Context-
Algorithm relationship). A client object that gives another object the rule to use (Client-Context relationship).
Variation encapsulated: The different implementations of the business rules.
Field notes: The essence of this pattern is that the Context does not know which rule it is using. Either the Client
object gives the Context the Strategy object to use, the Context asks a factory (or configuration) object for the correct
Strategy object to use, or the Context is built by a factory with the right Strategy object to use…or a combination of
these approaches.

Template Indicators in analysis: There are different procedures that are followed that are essentially the same, except that each
step does things differently.
Indicators in design: You have a consistent set of steps to follow but individual steps may have different
implementations.
Indication pattern is not being used when it should be: Different classes implement essentially the same process
flow.
Variation encapsulated: Different steps in a similar procedure.
Field notes: The template pattern is most useful when it is used to abstract out a common flow between two similar
processes.

Visitor

Indicators in analysis and design: You have a reasonably stable set of classes for which you need to add new
functions. You can add tasks to be performed on this set without having to change it.
Variation encapsulated: A set of tasks to run against a set of derivations.
Field notes: This is a useful pattern for writing sets of tests that you can run when needed. The potential for change in
the class structure being visited must be considered – Visitor has maintenance issues when the visited classes change.
Adding Visitors in the future, on the other hand, tends to be quite easy.

NOTE: The Decorator and Proxy patterns are classified as Structural patterns by the GoF. Since they both add functionality, however, instead of simply
combining existing pieces, I believe they are more behavioral in nature. I have also reclassified several Behavioral patterns as Decoupling patterns (a new
classification of mine, seen later in this section). That is because those patterns moved are more about decoupling than about managing new behavior.

Design Pattern Matrix

© 8/8/03 Net Objectives DPE DP matrix v14k.doc 7

BEHAVIORAL PATTERNS
How it is implemented

Class Diagram Pattern

Set up an abstract class that represents both the original
class and the new functions to be added. Have each
contain a handle to an object of this type (in reality, of a
derived type). In our decorators, perform the additional
function and then call the contained object’s operation
method. Optionally, call the contained object’s
operation method first, then do your own special
function.

ConcreteComponent
+ operation()

ConcreteDec1
+ operation()

ConcreteDec2
+ operation()

Decorator
+ operation()

Component
+ operation()

0..1

1

0..1

1

component.operation()

addedBehavior()
Decorator: :operation()

Client Decorator

The Client refers to the proxy object instead of an object
from the original class. The proxy object creates the
RealSubject when it is created. Requests come to the
Proxy, which does its initial function (possibly), passes
the request (possibly) to the RealSubject and then does
(possibly) some post processing. Proxy

+ operation()

Client Abstract

+ operat ion ()

RealSubject

+ operation()

realsubject->operation()

to proxy

Proxy –
adding
function

Define an abstract class that represents the state of an
application. Derive a class for each possible state. Each
of these classes can now operate independently of each
other. State transitions can be handled either in the
contextual class or in the states themselves. Information
that is persistent across states should be stored in the
context. States likely will need to have access to this
(through get routines, of course).

StateMode1
+ event()

StateMode2
+ event()

state->event ()

Context
+ request(Strategy)

State
+ event()

Client State

Have the class that uses the algorithm contain an abstract
class that has an abstract method specifying how to call
the algorithm. Each derived class implements the
algorithm as needed.

StrategyA
+ algorithm()

StrategyB
+ algorithm()

Context
+ request(Strategy)

Strategy
+ algorithm()

Client

Strategy

Create an abstract class that implements a procedure
using abstract methods. These abstract methods must be
implemented in derived classes to actually perform each
step of the procedure. If the steps vary independently,
each step may be implemented with a strategy pattern.

templateMethod:
 ...
 operation1()
 ...
 operation2()
 ...

Client
AbstractTemplate

+ templateMethod()
+ operation1()
+ operation2()

ComcreteClass
+ operation1()
+ operation2()

Template
Method

Make an abstract class that represents the tasks to be
performed. Add a method to this class for each concrete
class you started with (your original entities). Add a
method to the classes that you are working on to call the
appropriate method in this task class, giving a reference
to itself to this method.

ClientAbstractTask
+ visitElTypeA()
+ visitElTypeB()

TaskA
+ visitElTypeA(typeA)
+ visitElTypeB(typeB)

TaskB
+ visitElTypeA(typeA)
+ visitElTypeB(typeB)

ElementTypeA
+ accept(task)

ElementTypeB
+ accept(task)

Structure

Element
+ accept(task)

accept:
 task->visitTypeA(this)

accept:
 task->visitTypeB(this)

Visitor

Design Pattern Matrix

© 8/8/03 Net Objectives DPE DP matrix v14k.doc 8

DECOUPLING PATTERNS
Pattern Notes on the patterns

Chain of
responsi-
bility

Indicators in analysis: We have the several actions that may be done by different things.
Indicators in design: We have several potential candidates to do a function. However, we don’t want the client object
to know which of these objects will actually do it.
Field notes: This pattern can be used to chain potential candidates to perform an action together. A variation of Chain
of Responsibility is to not stop when one object performs its function but to allow each object to do its action.
Factories are useful when chains have dependencies and business rules that specific a particular order for the objects in
the chain.

Iterator Indicators in analysis and design: We have a collection of things but aren’t clear what the right type of collection to
use is.
You want to hide the structure of a collection. Alternatively, you need to have variations in the way a collection is
traversed.
Indication pattern is not being used when it should be: Changing the underlying structure of a collection (say from
a vector to a composite) will affect the way the collection is iterated over.
Variations encapsulated: Type of collection used.
Field notes: The Iterator pattern enables us to defer a decision on which type of collection structure to use.

Mediator Indicators in analysis and design: Many objects need to communicate with many other objects yet this
communication cannot be handled with the observer pattern.
Indication pattern is not being used when it should be: The system is tightly coupled due to inter-object
communication requirements.
Field notes: When several objects are highly coupled in the way they interact, yet this set of rules can be encapsulated
in one place.

Memento Indicators in analysis and design: The state of an object needs to be remembered so we can go back to it (e.g., undo
an action).
Indication pattern is not being used when it should be: The internal state of an object is exposed to another object.
Or, copies of an object are being made to remember the object’s state, yet this object contains much information that is
not state dependent. This means the object is larger than it needs to be or contains an open connection that doesn’t
need to be remembered.
Field notes: This pattern is useful only when making copies of the object whose state is being remembered would be
inefficient.

Observer Indicators in analysis and design: Different things (objects) that need to know when an event has occurred. This list
of objects may vary from time to time or from case to case.
Indication pattern is not being used when it should be: When a new object needs to be notified of an event
occurring the programmer has to change the object that detects the event.
Variation encapsulated: The list of objects that need to know about an event occurring.
Field notes: This pattern is used extensively in the JFC for event handling and is supported with the Observable class
and Observer interface. Also note that C# multicast delegates are essentially implementations of the Observer pattern.
Essence of pattern: 1) there is a changing list of observers, 2) all observers have the same interface, 3) it is the
observers responsibility to register it the event they are ‘observing’

Proxy –
access-
ability

Indicators in analysis and design: Are any of the things we work with remote (i.e., on other machines)? An existing
object needs to use an object on another machine and doesn’t want to have to worry about making the connection (or
even know about the remote connection).
Indication pattern is not being used when it should be: The use of an object and the set-up of the connection to the
object are found together in more than one place.
Variation encapsulated: Although each proxy contains only one new function or way of connecting to the proxy
object, this function can be changed (statically) in the future without affecting those objects that use the proxy.
Field notes: The Proxy is a useful pattern to use when it is possible a remote connection will be needed in
the future. In this case, only the Proxy object need be changed - not the object actually being used.

Design Pattern Matrix

© 8/8/03 Net Objectives DPE DP matrix v14k.doc 9

DECOUPLING PATTERNS
How it is implemented

Class Diagram Pattern

Define an abstract class that represents possible handlers of a
function. This class contains a reference to at most one other
object derived from this type. Define an abstract method that
the client will call. Each derived class must implement this
method by either performing the requested operation (in its
own particular way) or by handing it off to the Handler it refers
to. Note: it may be that the job is never handled. You can
implement a default method in the abstract class that is called
when you reach the end of the chain.

Client

Handler_A

+ handleRequest()

Handler_B

+ handleRequest()

Handler

+ handleRequest()

Chain of
responsi-
bility

Define abstract classes for both collections and iterators. Have
each derived collection include a method which instantiates the
appropriate iterator. The iterator must be able to request the
required information from the collection in order to traverse it
appropriately.

Client
Collection

+ createIterator()
+ append()
+ remove()

Iterator
+ first()
+ next()
+ currentItem()

List

Vector

IteratorList

IteratorVector

Iterator

Define a central class that acts as a message routing service to
all other classes.

aMediator

aColleague

aColleague

aColleague

aColleague

Mediator

Define a new class that can remember the internal state of
another object. The Caretaker controls when to create these,
but the Originator will actually use them when it restores its
state.

Caretaker

Originator

+ setMemento(m : Memento)
+ createMemento()

Memento

+ getState()

Originator creates memento and can later
ask it for information about an earlier state.

Memento

Have objects (Observers) that want to know when an event
happens, attach themselves to another object (Subject) that is
actually looking for it to occur. When the event occurs, the
subject tells the observers that it occurred. The Adapter
pattern is sometimes needed to be able to implement the
Observer interface for all the Observer type objects.

notify:
 for all observers:
 call update()

ObserverA
+ update()

ObserverB
+ update()

Subject
+ attach()
+ detach()
+ notify()

Observer
+ update()

attach/detach

Use adapters if observers
have different interfaces

Observer

The Proxy pattern has a new object (the Proxy) stand in place
of another, already existing object (the Real Subject). The
proxy encapsulates any rules required for access to the real
subject. The proxy object and the real subject object must
have the same interface so that the Client does not need to
know a proxy is being used. Requests made by the Client to
the proxy are passed through to the Real Subject with the
proxy doing any necessary processing to make the remote
connection.

Client Abstract
+ operation()

RealSubject
+ operation()

realsubject->operation()

to proxy

Proxy_Remote
+ operation()

Proxy –
access-
ability

Design Pattern Matrix

© 8/8/03 Net Objectives DPE DP matrix v14k.doc 10

MODEL VIEW CONTROLLER and ANALYSIS MATRIX
Model-
View-
Controller

View
- myModel
- myCont roller

+ initialize(Model)
+ makeController()
+ activate()
+ display()
+ update ()

Mo del
- CoreData
- SetOfObservers

+ attach(Observer)
+ detach(Observer)
+ notify()
+ getData()

Observer

+ update()

Controller
- myModel
- myView

+ initialize(Model, View)
+ handleEvent()
+ update()

attachget data

subject

Observer

ConcreteObservers

there is no concrete subject in
this exam ple

attach

service

display

The Model-View-Controller (MVC) is primarily used when building GUIs. However, it can be used
anytime you have an interactive type system. It is used to de-couple your data, your presentation of the
data and the logic for handling the events from each other.

Use the Analysis matrix to collect variation between the different cases you have to deal with. Do not try
to make designs from it while you are collecting it. However, the consistencies and inconsistencies
between the cases will give you clues. Remember, we will implement the rows as Strategies, Proxies,
Decorators, Bridges, etc. We will implement the columns with the Abstract Factory.

 Case 1 Case 2 Case 3 Case 4
one thing that
is varying

another thing
that varies

still another
thing that
varies

… …

These are the concrete implementations for the ways to whatever is
varying that is listed on the left.

These are the concrete implementations for the ways to whatever is
varying that is listed on the left.

These are the concrete implementations for the ways to whatever is
varying that is listed on the left.

The
Analysis
Matrix

 Case 1 Case 2 Case 3 Case 4

one thing that is
varying

another thing that
varies

still another thing
that varies

…

Th
es

e
im

pl
e-

m
en

ta
tio

ns
 a

re
 u

se
d

w
he

n
ha

ve
 c

as
e

2

Th
es

e
im

pl
e-

m
en

ta
tio

ns
 a

re
 u

se
d

w
he

n
ha

ve
 c

as
e

3

Th
es

e
im

pl
e-

m
en

ta
tio

ns
 a

re
 u

se
d

w
he

n
ha

ve
 c

as
e

4

Th
es

e
im

pl
e-

m
en

ta
tio

ns
 a

re
 u

se
d

w
he

n
ha

ve
 c

as
e

1

Design Pattern Matrix

© 8/8/03 Net Objectives DPE DP matrix v14k.doc 11

THINGS TO LOOK FOR

Guide to finding patterns in the problem domain

Is there variation of a business rule or an implementation?
Do we need to add some function?

 Strategy – do we have a varying rule?
 Bridge – do we have one variation using another variation in a varying way?
 Proxy – do we need to optionally add some new functionality to something that already exists?
 Decorator – do we have multiple additional functions we may need to apply, but which and how many we add

varies? Do we need to capture an order dependency for multiple additional functions?
 Visitor – do we have new tasks that we will need to apply to our existing classes?

Are you concerned with interfaces, changing, simplifying or handling disparate type objects in the same way?

 Adapter – do we have the right stuff but the wrong interface? (Used to fit classes into patterns as well)
 Composite – do we have units and groups and want to treat them the same way?
 Façade – do we want to simplify, beautify, or OO-ify an existing class or syb-system?

Are we trying to decouple things?

 Observer – do various entities need to know about events that have occurred?
 Chain of Responsibility – do we have different objects that can do the job but we don’t want the client object know
 which is actually going to do it?
 Iterator – do we want to separate the collection from the client that is using it so we don’t have to worry
 about having the right collection implementation?
 Mediator – do we have a lot of coupling in who must talk to who?
 State – do we have a system with lots of states where keeping track of code for the different states is difficult?

Are we trying to make things?

 Abstract Factory – do we need to create families (or sets) of objects?
 Builder - do we need to create our objects with several steps?
 Factory Method – do we need to have derived classes figure out what to instantiate?

Remember the relationship between commonality/variability analysis, the conceptual, specification, implementation
perspectives and how these are implemented in object-oriented languages.

Commonality
analysis

Variability
analysis

Conceptual
perspective

Specification
perspective

Implementation
perspective

Abstract
class

Operations

by looking at what
these objects must do
(conceptual perspective)
we determine how to
call them (specification
perspective)

When implementing these classes, ensure that
the API provides sufficient information to

enable proper implementation and decoupling

Concrete
class

Operations

Concrete
class

Operations

Design Pattern Matrix

© 8/8/03 Net Objectives DPE DP matrix v14k.doc 12

etN
BJECTIVES

A Better Way to Do Staff Supplementation

All of our trainers are available for part-time consulting. Because they can provide mentoring to other team members as well as perform
development duties, their part-time contribution can impact a team as much as most full-time contractors. On long-term contracts, they can
also teach any of Net Objectives’ courses informally over the term of the contract at contracting rates. This both lowers your overall cost and
increases knowledge transfer.

Quality Training

Object-Oriented Analysis and Design Use Cases
 Design Patterns for Beginners and Experts
 C#, Java, C++ and VB.NET Object-Oriented Programming
 Refactoring, Unit Testing, Test-Driven Development
 Extreme Programming, Agile Development, RUP

On-Site Courses!

Instructor Led / Web-
Based Training for

Languages

"If I were tasked with bringing in an
outside design course, Net

Objectives’ would be on the top of my
list" - John Terrell, Microsoft

 “Two things in life are certain: death and taxes” – Ben Franklin

“In the information age, three things in life are certain – death,
taxes, and requirements will change” – Alan Shalloway

Writing Effective Use Cases – Instructor Certified by Alistair Cockburn

Capturing functional requirements with Use Cases is a software development best practice. This two-day course provides theory and practice
in writing use cases, an understanding of how use cases fit into software development, and a variety of optional topics. The course is largely
based on Alistair Cockburn's book "Writing Effective Use Cases" - winner of the Jolt Productivity Award for 2001. As a certified member of
Cockburn and Associates, we are one of the few companies authorized to teach it.

Agile Development Best Practices

In simple terms, an Agile Project is one that is predicated on making sure it is always doing the right thing, not merely following a plan that
has since gone out of date. The cornerstone of this approach is getting and adapting to feedback as the project progresses. Most projects can't
do this, so they fall further behind and either fail or provide inferior products. Changes are of many types, but the most common (and
important) changes are to the system's requirements. This course analyzes what it means to be an agile project, and provides a number of best
practices that provide and/or enhance agility. Different agile practices (including RUP, XP and Scrum) are discussed.

Design Patterns Explained: A New Perspective on Object-Oriented Design

This course goes beyond merely teaching several design patterns. It also teaches the principles and strategies that make design patterns good
designs. This enables students to use these advanced design techniques in their problems whether design patterns are even present. After
teaching several patterns and the principles underneath them, the course goes further by showing how patterns can work together to create
robust, flexible, maintainable designs.

Refactoring, Unit Testing and Test-Driven Development

The practice of Agile Software Development requires, among other things, a high degree of flexibility in the coding process. As we get
feedback from clients, stakeholders, and end users, we want to be able to evolve our design and functionality to meet their needs and
expectations. This implies an incremental process, with frequent (almost constant) change to the code we're working on. Refactoring, the
discipline of changing code without harming it, is an essential technique to enable this process. Unit testing, which ensures that a given change
has not caused an unforeseen ripple effect in the system, is another.

C# for Java and C++ Developers

C# is the flagship language for .NET, and despite what many have suggested, it is neither Java with enhanced syntax. nor is it C++ with better
manners. C# is a new language, with many new syntactic elements. Also, programming in .NET requires an understanding of the framework
and the development process it is designed to support. This 1-day course is intended to elucidate the C# language in terms of syntax, process,
and some early-adopter best practices, making the transition for Java and C++ developers as smooth as possible.

Object-Oriented Programming: Editions for Java, C++, C# and VB.NET

These courses take programmers who understand the syntax of the language but who aren’t taking advantage of object-oriented development
methods into the object-oriented world.

Get more info! Call Mike
Shalloway at 404-593-8375

25952 SE 37th Way
Issaquah, WA 98029

Mike.shallowayl@netobjectives.com
www.netobjectives.com

