
CS-489 Software Engineering - Design Patterns October 9, 1998

© 1998, Jeffrey Blessing 1

1

GRASP Patterns (Ch. 18)

v Responsibility:
– “A contract or obligation of a type or class”

v Two type of responsibilities
– knowing

u about private encapsulated data

u things that can derive or calculate

– doing
u something itself

u initiating action in other objects
2

Responsibilities & Interactions

v Methods Implement Responsibilities

:Saleprint() 2: print() sli:SalesLineItem

implies Sale objects have a
responsibility to print
themselves

SalesLineItem
:SalesLineItem

1*: [for each] sli := next()

3

Patterns

v Named “problem/solution” pairs

v Primitive examples from OOP:
– Model - View - Controller (MVC)

– Object - Attribute - Value (OAV)

v GRASP (Larman)

v Gang of Four (GoF; Gamma, et. al.)

4

Basic GRASP Patterns

v Expert

v Creator

v Controller

v High Cohesion

v Low Coupling

v Learn the other patterns after these are
mastered

5

Expert Pattern

v The most commonly used pattern

v Assign a responsibility to the information
expert
– the class that has the information necessary to

fulfill the responsibility

v Example:
– In POST, who should know the grand total of a

sale?

6

Grand Total Expert?

v Who knows about SalesLineItems and their
totals?

Sale

date
time

Sales
LineItem

quantity

Product
Specification

description
price
UPC

Described-
by

*

Contain
s

1..*

Answer: Sale

CS-489 Software Engineering - Design Patterns October 9, 1998

© 1998, Jeffrey Blessing 2

7

What Else is Needed?

v What constitutes the line item subtotal?
– SalesLineItem.quantity

– ProductSpecification.price

v Who is the expert on both of these?
– Answer: SalesLineItem

v Sale needs to see subtotal msgs from
SalesLineItem

Sale

date
time

total()

:Salet := total()

New method

8

Resulting Collaboration Diagram

Sale

date
time

total()

:Salet := total()

SalesLineItem
sli:SalesLineItem

SalesLineItem

quantity

subtotal()

2: st := subtotal()

New method

:SalesLineItem

1*: [for each] sli := next()

v Sale needs to send subtotal msgs to each
SalesLineItem and sum the results

v In turn, SalesLineItem must send a price msg to
ProductSpecification

9

Resulting Design

Sale

date
time

total()

:Salet := total()

sli:SalesLineItem
SalesLineItem

quantity

subtotal()

2: st := subtotal()

:Product
Specification

2.1: p := price()

Product
Specification

description
price
UPC

price()New method

SalesLineItem
:SalesLineItem

1*: [for each] sli := next()

10

Expert - Conclusions

v In the real world, items don’t tell you their
price; line items don’t tell you their total
– But in O-O world, they do!

– This principle is called “Animation” or the “Do
it Myself” principle

v Also works in the workplace (real world)
– Who puts together the profit/loss statement?

– Ans: the person in accounting with all the data

11

Creator Pattern

v Assign class B the responsibility to create an
instance of class A if one of the following is true:
– B aggregates A-type objects (collects)

– B contains A-type objects (owns)

– B records instances of A-type objects

– B closely uses A-type objects

– B is an expert w/r/t creating A-type objects
u B has the initializing data that will be passed to A when it is

created

v In all cases, B is the creator of A-type objects!
12

Who Should Create SalesLineItem Instances?

v Answer: Sale - since it aggregates many
SalesLineItem instances

v Requires a makeLineItem method be defined in
Sale

Sale

date
time

Sales
LineItem

quantity

Product
Specification

description
price
UPC

Described-
by

*

Contain
s

1..*

CS-489 Software Engineering - Design Patterns October 9, 1998

© 1998, Jeffrey Blessing 3

13

Resulting Design

v Question: Who would best be able to create a
Payment object?
– Answer: Sale - since it aggregates necessary data (like

total sale) to generate the object.

Sale

date
time

makeLineItem()
total()

:SalemakeLineItem(quantity)

:SalesLineItem

1: create(quantity) New method

14

Low Coupling Pattern

v Formalized by Constantine & Yourdon
– Structured Design, 1974

v Coupling is the degree to which modules
(separate functions or methods) are inter-
related.

v Low coupling is desired

v Levels of coupling are identified

15

Levels of Coupling / Cohesion

v Data - Low

v Stamp

v Control

v Common

v Content - High

v Informational - High

v Functional

v Sequential

v Communication

v Temporal

v Logical

v Coincidental - Low

Best

Worst

16

Data Coupling

v The lowest level of coupling (the best form)

v Also, the most common form of coupling

v Passing parameters between modules as
data

v The fewer parameters passed, the lower the
coupling

v Return values are used as data in the caller

17

Stamp Coupling

v Selected global variables are shared by
multiple modules or routines

v If unexpected values arise in these globals,
who is responsible?!
– Requires a “watch” feature of a symbolic

debugger to get a handle on who’s responsible

v Use of global variables is discouraged when
parameter passing would suffice

18

Control Coupling

v Involves passing of control flags (either
through parameters or global variables) as
data between modules.

v The return value of the function determines
the flow of control in the calling module
– if (func()) then … else …

v What if there’s an error in func()?!

CS-489 Software Engineering - Design Patterns October 9, 1998

© 1998, Jeffrey Blessing 4

19

Common Coupling

v Modules are dependent on one anther
(bound together) by global data blocks

v Fortran common blocks are the reason for
this level of coupling
– Common blocks are blocks of shared memory,

with every holder of the common stmt having
read/write access to anything in the block

– Large amounts of data are typically shared,
often to usurp parameter passing of arrays.

20

Content Coupling

v The highest form of coupling (worst form)

v Occurs when one module modifies code
and/or data in another module

v Some re-enterant code from assembly lang.
exhibit this form of coupling

v Can be nearly impossible to detect and
debug (because it disappears!)

21

Consider Two Designs

v Which has lower coupling?
– Answer: The 2nd design

:POST p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

:POST :Sale

:Payment

makePayment() 1: makePayment()

1.1. create()

22

High Cohesion Pattern

v Formalized by Constantine & Yourdon
– Structured Design, 1974

v Cohesion is the degree to which statements
within a module (functions or methods) are
inter-related

v The higher the cohesion, the better

v Levels of cohesion are identified

23

Levels of Coupling / Cohesion

v Data - Low

v Stamp

v Control

v Common

v Content - High

v Informational - High

v Functional

v Sequential

v Communication

v Temporal

v Logical

v Coincidental - Low

Best

Worst

24

Informational Cohesion

v A concrete realization of Data Abstraction
– classes in C++/Java/other OO langs.

v The module contains data structure(s) and
algorithm(s) which are implemented to provide
one concept
– Also known as Abstract Data Types, Packages (Ada),

Envelopes (Pascal Plus), Clusters (CLU)

v Everything works together to provide the
abstraction

CS-489 Software Engineering - Design Patterns October 9, 1998

© 1998, Jeffrey Blessing 5

25

Functional Cohesion

v Elements within a module are related in
performing some mathematical-type
function
– sin(x), sqrt(x), pow(x, y), etc.

v Functional dependence within a module is a
common, sought-after feature

26

Sequential Cohesion

v Elements are grouped together (in the
design of the system) based on data flow
– Data flow is considered a stronger design issue

than control flow!

v Occurs when the output from one element is
input to the next element
– Examples:

u Read next transaction, update master file

u “pipes” in Unix, network “sockets”

27

Communication Cohesion

v Elements refer to the same set of input or
output data at the same time in processing

v Stack operations exhibit this form of
cohesion
– push(), pop(), top(), new(), empty()

v Data access is also coordinated in time

28

Temporal Cohesion

v Group elements together that can all be
performed at the same time

v Initializing variables, initializing the state of
an object

v Temporally cohesive elements tend to also
be logically cohesive

29

Logical Cohesion

v Elements are grouped together because they
perform the same logical type of operation

v Intializing all variables
– also temporally cohesive

v Perform all I/O operations

v Process all records from a file

v Display error messages

30

Coincidental Cohesion

v The lowest form of cohesion (worst)

v Elements within a module have no apparent
relationship!

v Sometimes results when one is forced to
upgrade a program to a new language
– “Modularize” an assembly program Into C

– Convert a functional program to an O-O
language (like Java, which only allows member
function, no global functions)

CS-489 Software Engineering - Design Patterns October 9, 1998

© 1998, Jeffrey Blessing 6

31

Coupling & Cohesion

v Are inversely related
– as one increases, the other decreases

– Low coupling, high cohesion is good

– High coupling, low cohesion is bad

v Low cohesion means the module should
delegate its work to subclasses
– Just like the person who takes on too much in

life, things become complicated & nothing is
done well!

32

Controller Expert

v Assign responsibility of handling system events to
a class representing:
– the overall system (Facade controller)

– the overall business or organization (Facade controller)

– something in the real world that is actively involved in
the task (like a person playing a role) (Role controller)

– an artificial handler of all system events of a use case,
usually named “<UseCaseName>Handler” (Use Case
controller)

v System events are generated by external actors

33

Controller Objects

v A controller is a non-user interface object
responsible for handling a system event.

v A controller defines the method for the
System object

v POST system events & their operations:

System

endSale()
enterItem()
makePayment()

System operations do not have to be fulfilled
in the System class. During design, controller
classes are often delegated the responsibility
for system operations

34

Who Should be the Controller?

v POST
– represents the overall

“system”

v Store
– represents the business

organization

:???enterItem(upc, quantity)

Which class of object should be
responsible for handling this system
event message?

It is a controller.

v Cashier
– represents actor that plays a

role in the task

v BuyItemsHandler
– represents the handler of the

system operation in the use
case

35

Controller Choices

:POSTenterItem(upc, quantity)

:StoreenterItem(upc, quantity)

:CashierenterItem(upc, quantity)

:BuyItemsHandlerenterItem(upc, quantity)

36

Answer: It Depends!

v The same controller should be used for the system
events of one use case
– For instance, makePayment() comes after endSale()

v Facade controllers are suitable when there are only
a few system events.

v Only the role controller should be avoided
– Bloated controllers; poor Design

v Presentation layer does not handle system events

CS-489 Software Engineering - Design Patterns October 9, 1998

© 1998, Jeffrey Blessing 7

37

Desirable Coupling of Layers
Object Store

Enter Item End Sale

UPC

Make Payment

Total

Quantity

Tendered Balance

:POST

Cashier

:POSTApplet

presses button

onEnterItem()

1: enterItem(upc, qty)

:Sale1.1: makeLineItem(upc, qty)

Presentation Layer
(Java applet)

Domain Layer

system event message

controller

38

Undesirable Coupling of LayersObject Store

Enter Item End Sale

UPC

Make Payment

Total

Quantity

Tendered Balance

Cashier

:POSTApplet

presses button

onEnterItem()

:Sale
1: makeLineItem(upc, qty)

Presentation Layer
(Java applet)

Domain Layer

It is undesirable for a presentation
layer objects such as a Java applet to
get involved in deciding how to handle
domain processes.

Business logic is embedded in the
presentation layer, which is not useful.

POSTApplet should not
send this message.

39

Command Pattern

v Useful when msgs are received, not through a UI,
but from a msg handling system
– Telecommunications switching systems

– CORBA (object DB) architectures

– other protocol handlers (mail, ftp, etc.)

v Each command (msg) has its own class
– each with an execute() msg

– polymorphism allows different subclasses to implement
the execution

40

Command Controller Pattern

:MessageHandlerhandleMessage(msgRec)

Command

execute()

Command-1

execute()

Command-3

execute()

Command-2

execute()

Command is an abstract
superclass of all concrete
Command classes.

Polymorphic execute
method

c :Command-11a [msgRec.type = 1] : create(msgRec)

c :Command-2
1b [msgRec.type = 2] : create(msgRec)

c : Command

2: execute()

the Controller

41

Related Patterns

v Command - In a msg handling system, each msg may be
represented and handled by a separate Command object

v Facade - Choosing an object representing the entire system
or business organization

v Forwarder-Receiver - A Siemens pattern useful for
message handling systems

v Layers - Another Siemens pattern. No domain logic in the
presentation layer is part of this

v Pure Fabrication - A GRASP pattern. A use case
controller is a kind of Pure Fabrication

42

CRC Cards (Beck & Cunningham, 1989)

v Class, Responsibility, Collaboration Cards

v Each card has a Class name & list of
responsibilities

v Each person holds onto cards and “plays the
role” of that class in collaborating to
perform a task or implement a use case.

v Collaboration and Class diagrams capture
the dynamics that occur in the role playing

