CS-489 Software Engineering - Design Patterns

\GRASP Patterns (Ch. 18)

< Responsihility:
—“A contract or obligation of atype or class’
< Two type of responsibilities
— knowing
« about private encapsulated data
« things that can derive or calculate
—doing
« something itself
« initiating action in other objects

October 9, 1998

\R&eponsi bilities & Interactions

< Methods | mplement Responsibilities

implies Sale objects havel
responsibility to print
themselves

:Sde 2 print() —» si:Sdaineit%

1+ [for each] sli = nextf

o
print(—

\Patter ns

< Named “problem/solution” pairs

< Primitive examples from OOP:
— Model - View - Controller (MVC)
— Object - Attribute - Value (OAV)

<+ GRASP (Larman)
< Gang of Four (GoF; Gamma, et. a.)

\Basic GRASP Patterns

< Expert

< Creator

< Controller

< High Cohesion

< Low Coupling

< Learn the other patterns after these are
mastered

\Expert Pattern

< The most commonly used pattern
< Assign aresponsibility to the information
expert
— the class that has the information necessary to
fulfill the responsibility
< Example:
— In POST, who should know the grand total of a
sale?

© 1998, Jeffrey Blessing

\Grand Total Expert?

sde

date
ime

Product

Sles. ‘Spedification

Lineitem Described-
by

description
quartity price

uPc

< Who knows about SaleslLineltems and their

ol

CS-489 Software Engineering - Design Patterns

\\Nhat Else is Needed?
st

date
time

‘Nm method ‘1 —o [to=0

< What constitutes the line item subtotal ?
— Sal esLineltem quantity
— Product Specification.price

< Who is the expert on both of these?
— Answer: SalesLineltem

< Sale needs to see subtotal msgs from
SalesLineltem

October 9, 1998

\Reﬁulti ng Collaboration Diagram

L= toa(™ o 1*: [for each] Sl 1= next P
| date

2 st:= subtotal(] time

total)

Si:Sdles inelter Selest ineltem]
T SalesLineltem|

quantity
‘Nezv method T o subtotal

< Sale needs to send subtotal msgsto each
SalesLineltem and sum the results

< Inturn, SalesLineltem must send a price msg to
ProductSpecification

\Reﬂjlti ng Design

t=totd) ™" o 1+ [for each] i = next()
| ———

> ¢ =aboa) b

di:Sded ineltem
T P

} dete

Quentity
2.1: p = price)) L b0
Product Product
Spedification Specification
description
price
UPC
‘stvmihad ‘r 0| price()

\Expert - Conclusions

< Inthereal world, items don’t tell you their
price; lineitems don't tell you their total
— But in O-O world, they do!
—Thisprincipleiscaled “Animation” or the “Do

it Myself” principle

< Also works in the workplace (real world)
— Who puts together the profit/loss statement?
— Ans: the person in accounting with all the data

10

\Cr eator Pattern

< Assign class B the responsibility to create an
instance of class A if one of the following is true:
— B aggregates A-type objects (collects)
— B contains A-type objects (owns)
— B recordsinstances of A-type objects
— B closely uses A-type objects

— B isan expert w/r/t creating A-type objects

« B hastheinitializing data that will be passed to A whenitis
created

< Inall cases, B isthe creator of A-type objects!

1

© 1998, Jeffrey Blessing

\Who Should Create SalesLineltem Instances?

sde

date
time

Contain
s
1

Product

sdes | Specification
Lineitem Described-

description
quanity price
Urc

< Answer: Sale - since it aggregates many
SalesLineltem instances

< Requires a makeLineltem method be defined in
Sale

CS-489 Software Engineering - Design Patterns

October 9, 1998

\Reﬁulti ng Design

makel ineltem(quantit})) <o

Seles ineltem)

time
1 crei(e(quermty; New method i p—
makeL ineltem(

date

w0l

< Question: Who would best be able to create a
Payment object?
— Answer: Sale - since it aggregates necessary data (like
total sale) to generate the object.

13

\Low Coupling Pattern

< Formalized by Constantine & Y ourdon
— Structured Design, 1974

< Coupling is the degree to which modules
(separate functions or methods) are inter-
related.

< Low coupling is desired
< Levels of coupling areidentified

14

\Level s of Coupling / Cohesion

< Data- Low < Informational - High
< Stamp < Functional
< Control < Sequential
< Common < Communication
< Content - High < Temporal
< Logical

< Coincidental - Low

15

\Data Coupling

< The lowest level of coupling (the best form)
< Also, the most common form of coupling

< Passing parameters between modules as
data

< The fewer parameters passed, the lower the
coupling

< Return values are used as data in the caller

16

\Stamp Coupling

< Selected global variables are shared by
multiple modules or routines
< If unexpected values arise in these globals,
who is responsible?!
— Requires a“watch” feature of asymbolic
debugger to get a handle on who' s responsible

< Use of global variablesis discouraged when
parameter passing would suffice

17

\Control Coupling

< Involves passing of control flags (either
through parameters or global variables) as
data between modules.

< The return value of the function determines
the flow of control in the calling module
—if (func()) then ...else ..

< What if there' san error inf unc() ?!

18

© 1998, Jeffrey Blessing

CS-489 Software Engineering - Design Patterns

October 9, 1998

\Common Coupling

< Modules are dependent on one anther
(bound together) by global data blocks

< Fortran common blocks are the reason for
thislevel of coupling
— Common blocks are blocks of shared memory,
with every holder of the common stmt having
read/write access to anything in the block
— Large amounts of data are typically shared,

often to usurp parameter passing of arrays.
19

\Content Coupling

< The highest form of coupling (worst form)

< Occurs when one module modifies code
and/or data in another module

< Some re-enterant code from assembly lang.
exhibit this form of coupling

< Can be nearly impossible to detect and
debug (because it disappears!)

20

\Consi der Two Designs

mek m} FosT } xmﬁv} n: Prayment

< Which has lower coupling?
— Answer: The 2nd design

21

\High Cohesion Pattern

< Formalized by Constantine & Y ourdon
— Structured Design, 1974

< Cohesion is the degree to which statements
within amodule (functions or methods) are
inter-related

< The higher the cohesion, the better
< Levels of cohesion are identified

\Level s of Coupling / Cohesion

< Data- Low < Informational - High
< Stamp < Functional
< Control < Sequential
< Common < Communication
< Content - High < Temporal
< Logical

< Coincidental - Low

23

\Informational Cohesion

< A concreterealization of Data Abstraction
— classesin C++/Java/other OO langs.

< The module contains data structure(s) and
agorithm(s) which are implemented to provide
one concept

— Also known as Abstract Data Types, Packages (Ada),
Envelopes (Pascal Plus), Clusters (CLU)

< Everything works together to provide the

abstraction

2

© 1998, Jeffrey Blessing

CS-489 Software Engineering - Design Patterns

\FunctionaJ Cohesion

< Elements within amodule arerelated in
performing some mathematical-type
function

—sin(x), sqrt(x), pow x, y), €tc.
< Functional dependence withinamoduleisa
common, sought-after feature

25

October 9, 1998

\Sequentiaj Cohesion

< Elements are grouped together (in the
design of the system) based on data flow
— Dataflow is considered a stronger design issue
than control flow!
< Occurs when the output from one element is
input to the next element
— Examples:
« Read next transaction, update master file
« “pipes’ in Unix, network “sockets’

26

\Communicati on Cohesion

< Elements refer to the same set of input or
output data at the same time in processing
< Stack operations exhibit this form of
cohesion
—push(), pop(), top(), new(), enpty()
< Data accessis aso coordinated in time

27

\T emporal Cohesion

< Group elements together that can all be
performed at the sametime

< Initializing variables, initializing the state of
an object

< Temporally cohesive elements tend to also
be logically cohesive

28

\Logical Cohesion

< Elements are grouped together because they
perform the same logical type of operation

< Intializing all variables
— also temporally cohesive
< Perform all 1/0O operations
< Process all records from afile

< Display error messages

29

© 1998, Jeffrey Blessing

\Coi ncidental Cohesion

< Thelowest form of cohesion (worst)

< Elements within a modul e have no apparent
relationship!

< Sometimes results when oneisforced to
upgrade a program to a new language
—“Modularize” an assembly program Into C

— Convert afunctional program to an O-O
language (like Java, which only allows member

function, no global functions)
30

CS-489 Software Engineering - Design Patterns October 9, 1998

\Coupling & Cohesion \Controller Expert

< Areinversely related + Assign responsibility of handling system events to
aclass representing:

— the overall system (Facade controller)

— the overall business or organization (Facade controller)

— as one increases, the other decreases
— Low coupling, high cohesion is good

— High coupling, low cohesion is bad — something in the real world that is actively involved in
+ Low cohesion means the module should the task (like a person playing arole) (Role controller)
delegate its work to subclasses — an artificial handler of all system events of ause case,
. . usually named “ <UseCaseName>Handler” (Use Case
— Just like the person who takes on too much in controller)
!I)Er:’; C\llggljls become complicated & nothing is « System events are generated by external actors
' 31 32
\Control ler Objects \Wno Should be the Controller?
Fetponatia o hopiing e 5y
< A controller isanon-user interface object t 15 contoler
responsible for handling a system event. erterttemupe, cus
< A controller defines the method for the
System object + POST & Cashier
) . — represents the overall — represents actor that playsa
< POST system events & their operations: “system” rolein the task
< Store < BuyltemsHandler
System System operations do not have to be fulfilled — represents the business — represents the handler of the
endsale() in the System class. During design, controller organization system operation in the use
enterltem() classes are often delegated the responsibility case
makePayment() for system operations
33 34

\Control ler Choices \AnSNer: It Depends!

—) < The same controller should be used for the system
enterltem(upc, quantity) .
- i events of one use case
enteritem(une, queni — For instance, makePaymer.]t() comes after endSale()
- < Facade controllers are suitable when there are only
afew system events.
< Only therole controller should be avoided
— Bloated controllers; poor Design
< Presentation layer does not handle system events

© 1998, Jeffrey Blessing 6

CS-489 Software Engineering - Design Patterns

\D&i rable Coupling of Lavers

upc Quantiy

Total

Tendered Balance
/9(presses button,
,,,,,,,,,,,,,,,,,, >~ Entertem| EndSale | Make Paymen)

Cashier

onEnteritem)
T
(Java applet)

1: enterltem(upc, qw) o

Domain Layer
37

October 9, 1998

we | Quantty

\Undesi rable Counlina of | ayers

Total

presses button

YN L e

onEnteriteno

It is undesirable for a presertMy
: layer objects such as a Java appls
Presmistion LoV [eostamid | giimclvat im g how 10

(Java applet) domain processes.

Business logic is embedded in tHc
presentation layer, which is not

Doman Laye et e |
o
POSTApplet should Mg 38
send this message.

\Command Pattern

< Useful when msgs are received, not through a Ul,
but from amsg handling system
— Telecommunications switching systems
— CORBA (object DB) architectures
— other protocol handlers (mail, ftp, etc.)
» Each command (msg) has its own class
— each with an execute() msg

— polymorphism allows different subclasses to implement
the execution

B3

39

\Command Controller Pattern

Command is an abstra
superclass of all concret

[] |Smmmts

‘ Command—# ‘ Command—# ‘ Command—f% Polymorphiexectte
method
‘ execute() ‘ ‘ execute() ‘ ‘ execute()o T
the Controller

-
o
ia 2 1 j
¢ :Command:
\;"_1 N
1b [msgRectype= 2] : create(msgRec)
Lz execute()|

pe=—_

\Rel ated Patterns

< Command - In amsg handling system, each msg may be
represented and handled by a separate Command object

+» Facade - Choosing an object representing the entire system
or business organization

< Forwarder-Receiver - A Siemens pattern useful for
message handling systems

< Layers- Another Siemens pattern. No domain logic in the
presentation layer is part of this

< Pure Fabrication - A GRASP pattern. A use case
controller isakind of Pure Fabrication

41

© 1998, Jeffrey Blessing

\CRC Cards (Beck & Cunningham, 1989)

< Class, Responsibility, Collaboration Cards

< Each card has a Class name & list of
responsibilities

< Each person holds onto cards and “plays the
role” of that classin collaborating to
perform atask or implement a use case.

< Collaboration and Class diagrams capture
the dynamics that occur in the role playing

42

