
123

CHAPTER 9

The Bridge Pattern

Overview

In this chapterI will continue our study of design patterns with the Bridge pattern.

The Bridge pattern is quite a bit more complex than the other pat-

terns you just learned; it is also much more useful.

In this chapter,

• I derive the Bridge pattern by working through an example. I

will go into great detail to help you learn this pattern.

• I present the key features of the pattern.

• I present some observations on the Bridge pattern from my

own practice.

Introducing the Bridge Pattern

Intent: decouple

abstraction from

implementation

According to the Gang of Four, the intent of the Bridge pattern is to

“De-couple an abstraction from its implementation so that the two

can vary independently.”1

This is hard to

understand

I remember exactly what my first thoughts were when I read this:

Huh?

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of
Reusable Object-Oriented Software, Reading, Mass.: Addison-Wesley, 1995, p. 151.

ch09.fm Page 123 Friday, June 8, 2001 12:01 PM

124 Part III • Design Patterns

And then,

How come I understand every word in this sentence but I have

no idea what it means?!

I knew that

• De-couple means to have things behave independently from each

other or at least explicitly state what the relationship is, and

• Abstraction is how different things are related to each other con-

ceptually.

And I thought that implementations were the way to build the

abstractions; but I was confused about how I was supposed to sepa-

rate abstractions from the specific ways that implemented them.

It turns out that much of my confusion was due to misunderstand-

ing what implementations meant. Implementations here means the

objects that the abstract class and its derivations use to implement

themselves with (not the derivations of the abstract class, which are

called concrete classes). But to be honest, even if I had understood

it properly, I am not sure how much it would have helped. The con-

cept expressed in this sentence is just hard to understand at first.

If you are also confused about the Bridge pattern at this point, that

is okay. If you understand the stated intent, then you are that much

ahead.

It is a challenging

pattern to learn

because it is so

powerful

The Bridge pattern is one of the toughest patterns to understand in

part because it is so powerful and applies to so many situations.

Also, it goes against a common tendency to handle special cases

with inheritance. However, it is also an excellent example of fol-

lowing two of the mandates of the design pattern community: “find

what varies and encapsulate it” and “favor object composition over

class inheritance” (as you will see).

ch09.fm Page 124 Friday, June 8, 2001 12:01 PM

Chapter 9 • The Bridge Pattern 125

Learning the Bridge Pattern: An Example

Learn why it exists,

then derive the

pattern

To learn the thinking behind the Bridge pattern and what it is try-

ing to do, I will work through an example from scratch. Starting

with requirements, I will derive the pattern and then see how to

apply it.

Perhaps this example will seem basic. But look at the concepts dis-

cussed in this example and then try to think of situations that you

have encountered that are similar, having

• Variations in abstractions of a concept, and

• Variations in how these concepts are implemented.

You will see that this example has many similarities to the CAD/

CAM problem discussed earlier. But rather than give you all the

requirements up front, I am going to give them a little at a time,

just as they were given to me. You can’t always see the variations at

the beginning of the problem.

Bottom line: During requirements definition, explore for varia-

tions early and often!

Start with a simple

problem: drawing

shapes

Suppose I have been given the task of writing a program that will

draw rectangles with either of two drawing programs. I have been

told that when I instantiate a rectangle, I will know whether I

should use drawing program 1 (DP1) or drawing program 2 (DP2).

The rectangles are defined as two pairs of points, as represented in

Figure 9-1. The differences between the drawing programs are

summarized in Table 9-1.

ch09.fm Page 125 Friday, June 8, 2001 12:01 PM

126 Part III • Design Patterns

Figure 9-1 Positioning the rectangle.

Proper use of

inheritance

My customer told me that the collection (the client of the rectan-

gles) does not want to worry about what type of drawing program

it should use. It occurs to me that since the rectangles are told what

drawing program to use when instantiated, I can have two different

kinds of rectangle objects: one that uses DP1 and one that uses DP2.

Each would have a draw method but would implement it differ-

ently. I show this in Figure 9-2.

A note on the

implementation

By having an abstract class Rectangle, I take advantage of the fact

that the only difference between the different types of Rectangles

are how they implement the drawLine method. The V1Rectangle

is implemented by having a reference to a DP1 object and using that

object’s draw_a_line method. The V2Rectangle is implemented by

having a reference to a DP2 object and using that object’s drawline

method. However, by instantiating the right type of Rectangle, I no

longer have to worry about this difference.

(x1, y2) (x2, y2)

(x1, y1) (x2, y1)

Table 9-1 Different Drawing Programs

DP1 DP2

Used to draw a line draw_a_line(x1, y1, x2, y2) drawline(x1, x2, y1, y2)

Used to draw a circle draw_a_circle(x, y, r) drawcircle(x, y, r)

ch09.fm Page 126 Friday, June 8, 2001 12:01 PM

Chapter 9 • The Bridge Pattern 127

Figure 9-2 Design for rectangles and drawing programs

(DP1 and DP2).

Example 9-1 Java Code Fragments

class Rectangle {
 public void draw () {
 drawLine(_x1,_y1,_x2,_y1);
 drawLine(_x2,_y1,_x2,_y2);
 drawLine(_x2,_y2,_x1,_y2);
 drawLine(_x1,_y2,_x1,_y1);
 }
 abstract protected void
 drawLine (double x1, double y1,
 double x2, double y2);
}

class V1Rectangle extends Rectangle {
 drawLine(double x1, double y1,
 double x2, double y2) {
 DP1.draw_a_line(x1,y1,x2,y2);
 }
}
class V2Rectangle extends Rectangle {
 drawLine(double x1, double y1,
 double x2, double y2) {
 // arguments are different in DP2
 // and must be rearranged
 DP2.drawline(x1,x2,y1,y2);
 }
}

ch09.fm Page 127 Friday, June 8, 2001 12:01 PM

128 Part III • Design Patterns

But, though

requirements

always change

Now, suppose that after completing this code, one of the inevitable

three (death, taxes, and changing requirements) comes my way. I am

asked to support another kind of shape—this time, a circle. However,

I am also given the mandate that the collection object does not want

to know the difference between Rectangles and Circles.

. . . I can still

have a simple

implementation

It occurs to me that I can simply extend the approach I’ve already

started by adding another level to my class hierarchy. I only need to

add a new class, called Shape, from which I will derive the Rect-

angle and Circle classes. This way, the Client object can just

refer to Shape objects without worrying about what kind of Shape

it has been given.

Designing with

inheritance

As a beginning object-oriented analyst, it might seem natural to

implement these requirements using only inheritance. For exam-

ple, I could start out with something like Figure 9-2, and then, for

each kind of Shape, implement the shape with each drawing pro-

gram, deriving a version of DP1 and a version of DP2 for Rectangle

and deriving a version of DP1 and a version of DP2 one for Circle.

I would end up with Figure 9-3.

Figure 9-3 A straightforward approach: implementing two shapes and

two drawing programs.

ch09.fm Page 128 Friday, June 8, 2001 12:01 PM

Chapter 9 • The Bridge Pattern 129

I implement the Circle class the same way that I implemented the

Rectangle class. However, this time, I implement draw by using

drawCircle instead of drawLine.

Example 9-2 Java Code Fragments

abstract class Shape {
 abstract public void draw ();
}
abstract class Rectangle extends Shape {
 public void draw () {
 drawLine(_x1,_y1,_x2,_y1);
 drawLine(_x2,_y1,_x2,_y2);
 drawLine(_x2,_y2,_x1,_y2);
 drawLine(_x1,_y2,_x1,_y1);
 }
 abstract protected void
 drawLine(
 double x1, double y1,
 double x2, double y2);
}
class V1Rectangle extends Rectangle {
 protected void drawLine (
 double x1, double y1,
 double x2, double y2) {
 DP1.draw_a_line(x1,y1,x2,y2);
 }
}
class V2Rectangle extends Rectangle {
 protected void drawLine (
 double x1, double x2,
 double y1, double y2) {
 DP2.drawline(x1,x2,y1,y2);
 }
}
abstract class Circle {
 public void draw () {
 drawCircle(x,y,r);
 }
 abstract protected void
 drawCircle (
 double x, double y, double r);
}

(continued)

ch09.fm Page 129 Friday, June 8, 2001 12:01 PM

130 Part III • Design Patterns

Understanding the

design

To understand this design, let’s walk through an example. Consider

what the draw method of a V1Rectangle does.

• Rectangle’s draw method is the same as before (calling draw-

Line four times as needed).

• drawLine is implemented by calling DP1’s draw_a_line.

In action, this looks like Figure 9-4.

Figure 9-4 Sequence Diagram when have a V1Rectangle.

class V1Circle extends Circle {
 protected void drawCircle() {
 DP1.draw_a_circle(x,y,r);
 }
}
class V2Circle extends Circle {
 protected void drawCircle() {
 DP2.drawcircle(x,y,r);
 }
}

Example 9-2 Java Code Fragments (continued)

ch09.fm Page 130 Friday, June 8, 2001 12:01 PM

Chapter 9 • The Bridge Pattern 131

Even though the Class Diagram makes it look like there are many

objects, in reality, I am only dealing with three objects (see Figure

9-5):

• The client using the rectangle

• The V1Rectangle object

• The DP1 drawing program

Reading a Sequence Diagram.

As I discussed in Chapter 2, “The UML—The Unified Modeling

Language,” the diagram in Figure 9-4 is a special kind of interac-

tion diagram called a Sequence Diagram. It is a common diagram in

the UML. Its purpose is to show the interaction of objects in the

system.

• Each box at the top represents an object. It may be named or

not.

• If an object has a name, it is given to the left of the colon.

• The class to which the object belongs is shown to the right of

the colon. Thus, the middle object is named myRectangle

and is an instance of V1Rectangle.

You read the diagram from the top down. Each numbered state-

ment is a message sent from one object to either itself or to

another object.

• The sequence starts out with the unnamed Client object

calling the draw method of myRectangle.

• This method calls its own drawLine method four times

(shown in steps 2, 4, 6, and 8). Note the arrow pointing back

to the myRectangle in the timeline.

• drawLine calls DP1’s draw_a_line. This is shown in steps 3,

5, 7 and 9.

ch09.fm Page 131 Friday, June 8, 2001 12:01 PM

132 Part III • Design Patterns

When the client object sends a message to the V1Rectangle object

(called myRectangle) to perform draw, it calls Rectangle’s draw

method resulting in steps 2 through 9.

Figure 9-5 The objects present.

This solution suffers

from combinatorial

explosion

Unfortunately, this approach introduces new problems. Look at Fig-

ure 9-3 and pay attention to the third row of classes. Consider the

following:

• The classes in this row represent the four specific types of

Shapes that I have.

• What happens if I get another drawing program, that is,

another variation in implementation? I will have six different

kinds of Shapes (two Shape concepts times three drawing pro-

grams).

• Imagine what happens if I then get another type of Shape,

another variation in concept. I will have nine different types of

Shapes (three Shape concepts times three drawing programs).

. . . because of tight

coupling

The class explosion problem arises because in this solution, the

abstraction (the kinds of Shapes) and the implementation (the

drawing programs) are tightly coupled. Each type of shape must

know what type of drawing program it is using. I need a way to

separate the variations in abstraction from the variations in imple-

mentation so that the number of classes only grows linearly (see

Figure 9-6).

Client V1Rectangle DP1

ch09.fm Page 132 Friday, June 8, 2001 12:01 PM

Chapter 9 • The Bridge Pattern 133

This is exactly the intent of the Bridge pattern: [to] de-couple an

abstraction from its implementation so that the two can vary inde-

pendently.2

Figure 9-6 The Bridge pattern separates variations in abstraction and

implementation.

There are several

other problems. Our

poor approach to

design gave us this

mess!

Before showing a solution and deriving the Bridge pattern, I want to

mention a few other problems (beyond the combinatorial explosion).

Looking at Figure 9-3, ask yourself what else is poor about this

design.

• Does there appear to be redundancy?

• Would you say things have high cohesion or low cohesion?

• Are things tightly or loosely coupled?

• Would you want to have to maintain this code?

2. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of
Reusable Object-Oriented Software, Reading, Mass.: Addison-Wesley, 1995, p. 151.

Abstraction 1

Abstraction 2

Abstraction 3
. . .

Implementation A
Implementation B

Implementation C

. . .

The overuse of inheritance.

As a beginning object-oriented analyst, I had a tendency to solve

the kind of problem I have seen here by using special cases, tak-

ing advantage of inheritance. I loved the idea of inheritance

because it seemed new and powerful. I used it whenever I could.

This seems to be normal for many beginning analysts, but it is

naive: given this new “hammer,” everything seems like a nail.

ch09.fm Page 133 Friday, June 8, 2001 12:01 PM

134 Part III • Design Patterns

An alternative

approach

When I first looked at these problems, I thought that part of the dif-

ficulty might have been that I simply was using the wrong kind of

inheritance hierarchy. Therefore, I tried the alternate hierarchy

shown in Figure 9-7.

Not really a lot

better, just bad

in a different way

I still have the same four classes representing all of my possible

combinations. However, by first deriving versions for the different

drawing programs, I eliminated the redundancy between the DP1

and DP2 packages.

Unfortunately, I am unable to eliminate the redundancy between

the two types of Rectangles and the two types of Circles, each

pair of which has the same draw method.

In any event, the class explosion that was present before is still

present here.

Unfortunately, many approaches to teaching object-oriented

design focus on data abstraction—making designs overly based on

the “is-ness” of the objects. As I became an experienced object-

oriented designer, I was still stuck in the paradigm of designing

based on inheritance—that is, looking at the characteristics of my

classes based on their “is-ness.” Characteristics of objects should

be based on their responsibilities, not on what they might contain

or be. Objects, of course, may be responsible for giving informa-

tion about themselves; for example, a customer object may need

to be able to tell you its name. Think about objects in terms of

their responsibilities, not in terms of their structure.

Experienced object-oriented analysts have learned to use inherit-

ance selectively to realize its power. Using design patterns will

help you move along this learning curve more quickly. It

involves a transition from using a different specialization for each

variation (inheritance) to moving these variations into used or

owned objects (composition).

ch09.fm Page 134 Friday, June 8, 2001 12:01 PM

Chapter 9 • The Bridge Pattern 135

Figure 9-7 An alternative implementation.

The sequence diagram for this solution is shown in Figure 9-8.

Figure 9-8 Sequence Diagram for new approach.

ch09.fm Page 135 Friday, June 8, 2001 12:01 PM

136 Part III • Design Patterns

It still has scaling

problems

While this may be an improvement over the original solution, it still

has a problem with scaling. It also still has some of the original

cohesion and coupling problems.

Bottom line: I do not want to have to maintain this version either!

There must be a better way.

An Observation About
Using Design Patterns

A new way to look at

design patterns

When people begin to look at design patterns, they often focus on

the solutions the patterns offer. This seems reasonable because they

are advertised as providing good solutions to the problems at hand.

However, this is starting at the wrong end. When you learn patterns

by focusing on the solutions they present, it makes it hard to deter-

mine the situations in which a pattern applies. This only tells us

what to do but not when to use it or why to do it.

Look for alternatives in initial design.

Although my alternative design here was not significantly better

than my original design, it is worth pointing out that finding

alternatives to an original design is a good practice. Too many

developers take what they first come up with and go with that. I

am not endorsing an in-depth study of all possible alternatives

(another way of getting “paralysis by analysis”). However, step-

ping back and looking at how we can overcome the design defi-

ciencies in our original design is a great practice. In fact, it was

just this stepping back, a refusal to move forward with a known,

poor design, that led me to understanding the powerful methods

of using design patterns that this entire book is about.

ch09.fm Page 136 Friday, June 8, 2001 12:01 PM

Chapter 9 • The Bridge Pattern 137

I find it much more useful to focus on the context of the pattern—

the problem it is trying to solve. This lets me know the when and

the why. It is more consistent with the philosophy of Alexander’s

patterns: “Each pattern describes a problem which occurs over and

over again in the environment, and then describes the core of the

solution to that problem . . .”3

What I have done here is a case in point. What is the problem being

solved by the Bridge pattern?

The Bridge pattern is useful when you have an abstraction that

has different implementations. It allows the abstraction and the

implementation to vary independently of each other.

The characteristics of the problem fit this nicely. I can know that I

ought to be using the Bridge pattern even though I do not know yet

how to implement it. Allowing for the abstraction to vary indepen-

dently from the implementation would mean I could add new

abstractions without changing my implementations and vice versa.

The current solution does not allow for this independent variation.

I can see that it would be better if I could create an implementation

that would allow for this.

The bottom lineIt is very important to realize that, without even knowing how to

implement the Bridge pattern, you can determine that it would be

useful in this situation. You will find that this is generally true of

design patterns. That is, you can identify when to apply them to

your problem domain before knowing exactly how to implement

them.

3. Alexander, C., Ishikawa, S., Silverstein, M., A Pattern Language: Towns/Buildings/
Construction, New York: Oxford University Press, 1977, p. x.

ch09.fm Page 137 Friday, June 8, 2001 12:01 PM

138 Part III • Design Patterns

Learning the Bridge Pattern: Deriving It

Deriving a solution Now that you have been through the problem, we are in a position

to derive the Bridge pattern together. Doing the work to derive the

pattern will help you to understand more deeply what this complex

and powerful pattern does.

Let’s apply some of the basic strategies for good object-oriented

design and see how they help to develop a solution that is very

much like the Bridge pattern. To do this, I will be using the work of

Jim Coplien4 on commonality and variability analysis.

First, use

commonality/

variability analysis

Coplien’s work on commonality/variability analysis tells us how to

find variations in the problem domain and identify what is common

across the domain. Identify where things vary (commonality analy-

sis) and then identify how they vary (variability analysis).

Design patterns are solutions

that occur again and again.

Design patterns are solutions that have recurred in several problems

and have therefore proven themselves over time to be good solu-

tions. The approach I am taking in this book is to derive the pattern

in order to teach it so that you can understand its characteristics.

In this case, I know the pattern I want to derive—the Bridge pat-

tern—because I was shown it by the Gang of Four and have seen

how it works in my own problem domains. It is important to

note that patterns are not really derived. By definition, they must

be recurring—having been demonstrated in at least three inde-

pendent cases—to be considered patterns. What I mean by

“derive” is that we will go through a design process where you

create the pattern as if you did not know it. This is to illustrate

some key principles and useful strategies.

4. Coplein, J., Multi-Paradigm Design for C++. Reading, Mass.: Addison-Wesley, 1998.

ch09.fm Page 138 Friday, June 8, 2001 12:01 PM

Chapter 9 • The Bridge Pattern 139

CommonalityAccording to Coplien, “Commonality analysis is the search for com-

mon elements that helps us understand how family members are

the same.”5 Thus, the process of finding out how things are com-

mon defines the family in which these elements belong (and hence,

where things vary).

VariabilityVariability analysis reveals how family members vary. Variability

only makes sense within a given commonality.

Commonality analysis seeks structure that is unlikely to

change over time, while variability analysis captures

structure that is likely to change. Variability analysis

makes sense only in terms of the context defined by the

associated commonality analysis . . . From an architectural

perspective, commonality analysis gives the architecture

its longevity; variability analysis drives its fitness for use.6

In other words, if variations are the specific concrete cases in the

domain, commonality defines the concepts in the domain that tie

them together. The common concepts will be represented by

abstract classes. The variations found by variability analysis will be

implemented by the concrete classes (that is, classes derived from

the abstract class with specific implementations).

A new paradigm for

finding objects

It is almost axiomatic with object-oriented design methods that the

designer is supposed to look in the problem domain, identify the

nouns present, and create objects representing them. Then, the

designer finds the verbs relating to those nouns (that is, their

actions) and implement them by adding methods to the objects.

This process of focusing on nouns and verbs typically leads to larger

class hierarchies than we might want. I suggest that using common-

ality/variability analysis as a primary tool in creating objects is a

better approach than looking at just nouns and verbs (actually, I

believe this is a restatement of Jim Coplien’s work).

5. ibid, p. 63.
6. ibid, pp. 60, 64.

ch09.fm Page 139 Friday, June 8, 2001 12:01 PM

140 Part III • Design Patterns

Strategies to handle

variations

There are two basic strategies to follow in creating designs to deal

with the variations:

• Find what varies and encapsulate it.

• Favor composition over inheritance.

In the past, developers often relied on extensive inheritance trees to

coordinate these variations. However, the second strategy says to

try composition when possible. The intent of this is to be able to

contain the variations in independent classes, thereby allowing for

future variations without affecting the code. One way to do this is

to have each variation contained in its own abstract class and then

see how the abstract classes relate to each other.

Try it: identify what

is varying

Follow this process for the rectangle drawing problem.

Reviewing encapsulation.

Most object-oriented developers learned that “encapsulation” is

data-hiding. Unfortunately, this is a very limiting definition.

True, encapsulation does hide data, but it can be used in many

other ways. If you look back at Figure 7-2, you will see encapsu-

lation operates at many levels. Of course, it works at hiding data

for each of the particular Shapes. However, notice that the Client

object is not aware of the particular kinds of shapes. That is, the

Client object has no idea that the Shapes it is dealing with are

Rectangles and Circles. Thus, the concrete classes that Client

deals with are hidden (or encapsulated) from Client. This is the

kind of encapsulation that the Gang of Four is talking about

when they say, “find what varies and encapsulate it”. They are

finding what varies, and encapsulating it “behind” an abstract

class (see Chapter 8, “Expanding Our Horizons”).

ch09.fm Page 140 Friday, June 8, 2001 12:01 PM

Chapter 9 • The Bridge Pattern 141

First, identify what it is that is varying. In this case, it is different

types of Shapes and different types of drawing programs. The com-

mon concepts are therefore shapes and drawing programs. I repre-

sent this in Figure 9-9 (note that the class names are shown in

italics because the classes are abstract).

Figure 9-9 What is varying.

At this point, I mean for Shape to encapsulate the concept of the

types of shapes that I have. Shapes are responsible for knowing

how to draw themselves. Drawing objects, on the other hand, are

responsible for drawing lines and circles. I represent these responsi-

bilities by defining methods in the classes.

Try it: represent the

variations

The next step is to represent the specific variations that are present.

For Shape, I have rectangles and circles. For drawing programs, I

will have a program that is based on DP1 (V1Drawing) and one

based on DP2 (V2Drawing), respectively. I show this in Figure 9-10.

Figure 9-10 Represent the variations.

ch09.fm Page 141 Friday, June 8, 2001 12:01 PM

142 Part III • Design Patterns

At this point, the diagram is simply notional. I know that

V1Drawing will use DP1 and V2Drawing will use DP2 but I have

not said how. I have simply captured the concepts of the problem

domain (shapes and drawing programs) and have shown the varia-

tions that are present.

Tying the classes

together: who uses

whom?

Given these two sets of classes, I need to ask how they will relate to

one another. I do not want to come up with a new set of classes

based on an inheritance tree because I know what happens if I do

that (look at Figures 9-3 and 9-7 to refresh your memory). Instead,

I want to see if I can relate these classes by having one use the other

(that is, follow the mandate to favor composition over inheritance).

The question is, which class uses the other?

Consider these two possibilities: either Shape uses the Drawing

programs or the Drawing programs use Shape.

Consider the latter case first. If drawing programs could draw

shapes directly, then they would have to know some things about

shapes in general: what they are, what they look like. But this vio-

lates a fundamental principle of objects: an object should only be

responsible for itself.

It also violates encapsulation. Drawing objects would have to know

specific information about the Shapes (that is, the kind of Shape)

in order to draw them. The objects are not really responsible for

their own behaviors.

Now, consider the first case. What if I have Shapes use Drawing

objects to draw themselves? Shapes wouldn’t need to know what

type of Drawing object it used since I could have Shapes refer to

the Drawing class. Shapes also would be responsible for controlling

the drawing.

ch09.fm Page 142 Friday, June 8, 2001 12:01 PM

Chapter 9 • The Bridge Pattern 143

This looks better to me. Figure 9-11 shows this solution.

Figure 9-11 Tie the classes together.

Expanding the

design

In this design, Shape uses Drawing to manifest its behavior. I left

out the details of V1Drawing using the DP1 program and

V2Drawing using the DP2 program. In Figure 9-12, I add this as

well as the protected methods drawLine and drawCircle (in

Shape), which calls Drawing’s drawLine, and drawCircle,

respectively.

Figure 9-12 Expanding the design.

ch09.fm Page 143 Friday, June 8, 2001 12:01 PM

144 Part III • Design Patterns

One rule, one place.

A very important implementation strategy to follow is to have

only one place where you implement a rule. In other words, if

you have a rule how to do things, only implement that once. This

typically results in code with a greater number of smaller meth-

ods. The extra cost is minimal, but it eliminates duplication and

often prevents many future problems. Duplication is bad not

only because of the extra work in typing things multiple times,

but because of the likelihood of something changing in the future

and then forgetting to change it in all of the required places.

While the draw method or Rectangle could directly call the

drawLine method of whatever Drawing object the Shape has, I

can improve the code by continuing to follow the one rule, one

place strategy and have a drawLine method in Shape that calls

the drawLine method of its Drawing object.

I am not a purist (at least not in most things), but if there is one

place where I think it is important to always follow a rule, it is

here. In the example below, I have a drawLine method in Shape

because that describes my rule of drawing a line with Drawing. I

do the same with drawCircle for circles. By following this strat-

egy, I prepare myself for other derived objects that might need to

draw lines and circles.

Where did the one rule, one place strategy come from? While

many have documented it, it has been in the folklore of object-

oriented designers for a long time. It represents a best practice of

designers. Most recently, Kent Beck called this the “once and

only once rule.”*

* Beck, K., Extreme Programming Explained: Embrace Change, Reading, Mass.:
Addison Wesley, 2000, pp. 108–109.

ch09.fm Page 144 Friday, June 8, 2001 12:01 PM

Chapter 9 • The Bridge Pattern 145

The pattern

llustrated

Figure 9-13 illustrates the separation of the Shape abstraction from

the Drawing implementation.

Figure 9-13 Class diagram illustrating separation of abstraction and

implementation.

Relating this to the

inheritance-based

design

From a method point of view, this looks fairly similar to the inherit-

ance-based implementation (such as shown in Figure 9-3). The big-

gest difference is that the methods are now located in different

objects.

He defines it as part of his constraints:

• The system (code and tests together) must communicate

everything you want to communicate.

• The system must contain no duplicate code. (1 and 2

together constitute the Once and Only Once rule).

ch09.fm Page 145 Friday, June 8, 2001 12:01 PM

146 Part III • Design Patterns

I said at the beginning of this chapter that my confusion over the

Bridge pattern was due to my misunderstanding of the term

“implementation.” I thought that implementation referred to how I

implemented a particular abstraction.

The Bridge pattern let me see that viewing the implementation as

something outside of my objects, something that is used by the

objects, gives me much greater freedom by hiding the variations in

implementation from my calling program. By designing my objects

this way, I also noticed how I was containing variations in separate

class hierarchies. The hierarchy on the left side of Figure 9-13 con-

tains the variations in my abstractions. The hierarchy on the right

side of Figure 9-13 contains the variations in how I will implement

those abstractions. This is consistent with the new paradigm for cre-

ating objects (using commonality/variability analysis) that I men-

tioned earlier.

From an object

perspective

It is easiest to visualize this when you remember that there are only

three objects to deal with at any one time, even though there are

several classes (see Figure 9-14).

Figure 9-14 There are only three objects at a time.

ch09.fm Page 146 Friday, June 8, 2001 12:01 PM

Chapter 9 • The Bridge Pattern 147

Code examplesA reasonably complete code example is shown in Example 9-3 for

Java and in the Examples beginning on page 157 for C++.

Example 9-3 Java Code Fragments

class Client {
 public static void main
 (String argv[]) {
 Shape r1, r2;
 Drawing dp;

 dp= new V1Drawing();
 r1= new Rectangle(dp,1,1,2,2);

 dp= new V2Drawing ();
 r2= new Circle(dp,2,2,3);

 r1.draw();
 r2.draw();
 }
}

abstract class Shape {
 abstract public draw() ;
 private Drawing _dp;

 Shape (Drawing dp) {
 _dp= dp;
 }
 public void drawLine (
 double x1,double y1,
 double x2,double y2) {
 _dp.drawLine(x1,y1,x2,y2);
 }

 public void drawCircle (
 double x,double y,double r) {
 _dp.drawCircle(x,y,r);
 }
}

abstract class Drawing {
 abstract public void drawLine (
 double x1, double y1,
 double x2, double y2);

(continued)

ch09.fm Page 147 Friday, June 8, 2001 12:01 PM

148 Part III • Design Patterns

 abstract public void drawCircle (
 double x,double y,double r);
}

class V1Drawing extends Drawing {
 public void drawLine (
 double x1,double y1,
 double x2,double y2) {
 DP1.draw_a_line(x1,y1,x2,y2);
 }
 public void drawCircle (
 double x,double y,double r) {
 DP1.draw_a_circle(x,y,r);
 }
}

class V2Drawing extends Drawing {
 public void drawLine (
 double x1,double y1,
 double x2,double y2) {
 // arguments are different in DP2
 // and must be rearranged
 DP2.drawline(x1,x2,y1,y2);
 }
 public void drawCircle (
 double x, double y,double r) {
 DP2.drawcircle(x,y,r);
 }
}

class Rectangle extends Shape {
 public Rectangle (
 Drawing dp,
 double x1,double y1,
 double x2,double y2) {
 super(dp) ;
 _x1= x1; _x2= x2 ;
 _y1= y1; _y2= y2;
 }

 public void draw () {
 drawLine(_x1,_y1,_x2,_y1);
 drawLine(_x2,_y1,_x2,_y2);

(continued)

Example 9-3 Java Code Fragments (continued)

ch09.fm Page 148 Friday, June 8, 2001 12:01 PM

Chapter 9 • The Bridge Pattern 149

 drawLine(_x2,_y2,_x1,_y2);
 drawLine(_x1,_y2,_x1,_y1);
 }
}

class Circle extends Shape {
 public Circle (
 Drawing dp,
 double x,double y,double r) {
 super(dp) ;
 _x= x; _y= y; _r= r ;
 }

 public void draw () {
 drawCircle(_x,_y,_r);
 }
}

// We’ve been given the implementations for DP1 and DP2

class DP1 {
 static public void draw_a_line (
 double x1,double y1,
 double x2,double y2) {
 // implementation
 }
 static public void draw_a_circle(
 double x,double y,double r) {
 // implementation
 }
}

class DP2 {
 static public void drawline (
 double x1,double x2,
 double y1,double y2) {
 // implementation
 }
 static public void drawcircle (
 double x,double y,double r) {
 // implementation
 }
}

Example 9-3 Java Code Fragments (continued)

ch09.fm Page 149 Friday, June 8, 2001 12:01 PM

150 Part III • Design Patterns

The Bridge Pattern in Retrospect

The essence of the

pattern

Now that you’ve seen how the Bridge pattern works, it is worth

looking at it from a more conceptual point of view. As shown in

Figure 9-13, the pattern has an abstraction part (with its deriva-

tions) and an implementation part. When designing with the

Bridge pattern, it is useful to keep these two parts in mind. The

implementation’s interface should be designed considering the dif-

ferent derivations of the abstract class that it will have to support.

Note that a designer shouldn’t necessarily put in an interface that

will implement all possible derivations of the abstract class (yet

another possible route to paralysis by analysis). Only those deriva-

tions that actually are being built need be supported. Time and time

again, the authors have seen that the mere consideration of flexibil-

ity at this point often greatly improves a design.

Note: In C++, the Bridge pattern’s implementation must be imple-

mented with an abstract class defining the public interface. In Java,

either an abstract class or an interface can be used. The choice

depends upon whether implementations share common traits that

abstract classes can take advantage of. See Peter Coad’s Java Design,

discussed on page 316 of the Bibliography, for more on this.

Field Notes: Using the Bridge Pattern

The Bridge pattern

often incorporates

the Adapter pattern

Note that the solution presented in Figures 9-12 and 9-13 integrates

the Adapter pattern with the Bridge pattern. I do this because I was

given the drawing programs that I must use. These drawing pro-

grams have preexisting interfaces with which I must work. I must

use the Adapter to adapt them so that they can be handled in the

same way.

While it is very common to see the Adapter pattern incorporated

into the Bridge pattern, the Adapter pattern is not part of the Bridge

pattern.

ch09.fm Page 150 Friday, June 8, 2001 12:01 PM

Chapter 9 • The Bridge Pattern 151

The Bridge Pattern: Key Features

Intent Decouple a set of implementations from the set of objects using them.

Problem The derivations of an abstract class must use multiple implementations
without causing an explosion in the number of classes.

Solution Define an interface for all implementations to use and have the deriva-

tions of the abstract class use that.

Participants and

Collaborators

The Abstraction defines the interface for the objects being

implemented. The Implementor defines the interface for the specific
implementation classes. Classes derived from the Abstraction use

classes derived from the Implementor without knowing which particu-

lar ConcreteImplementor is in use.

Consequences The decoupling of the implementations from the objects that use them
increases extensibility. Client objects are not aware of implementation

issues.

Implementation • Encapsulate the implementations in an abstract class.

• Contain a handle to it in the base class of the abstraction being imple-
mented.

Note: In Java, you can use interfaces instead of an abstract class for the

implementation.

GoF Reference Pages 151–162.

Figure 9-15 Standard, simplified view of the Bridge pattern.

ch09.fm Page 151 Friday, June 8, 2001 12:01 PM

152 Part III • Design Patterns

Compound design

patterns

When two or more patterns are tightly integrated (like my Bridge

and Adapter), the result is called a composite design pattern.7,8 It is

now possible to talk about patterns of patterns!

Instantiating the

objects of the Bridge

pattern

Another thing to notice is that the objects representing the abstrac-

tion (the Shapes) were given their implementation while being

instantiated. This is not an inherent part of the pattern, but it is very

common.

Now that you understand the Bridge pattern, it is worth reviewing

the Gang of Four’s Implementation section in their description of

the pattern. They discuss different issues relating to how the

abstraction creates and/or uses the implementation.

An advantage of

Java over C++ in the

Bridge pattern

Sometimes when using the Bridge pattern, I will share the imple-

mentation objects across several abstraction objects.

• In Java, this is no problem; when all the abstraction objects go

away, the garbage collector will realize that the implementation

objects are no longer needed and will clean them up.

• In C++, I must somehow manage the implementation objects.

There are many ways to do this; keeping a reference counter or

even using the Singleton pattern are possibilities. It is nice,

however, not to have to consider this effort. This illustrates

another advantage of automatic garbage collection.

7. Compound design patterns used to be called composite design patterns, but are
now called compound design patterns to avoid confusion with the composite
pattern.

8. For more information, refer to Riehle, D., “Composite Design Patterns,” In,
Proceedings of the 1997 Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA ‘97), New York: ACM Press, 1997, pp. 218–228. Also
refer to “Composite Design Patterns (They Aren’t What You Think),” C++ Report,
June 1998.

ch09.fm Page 152 Friday, June 8, 2001 12:01 PM

Chapter 9 • The Bridge Pattern 153

The Bridge pattern

solution is good, but

not always perfect

While the solution I developed with the Bridge pattern is far supe-

rior to the original solution, it is not perfect. One way of measuring

the quality of a design is to see how well it handles variation. Han-

dling a new implementation is very easy with a Bridge pattern in

place. The programmer simply needs to define a new concrete

implementation class and implement it. Nothing else changes.

However, things may not go so smoothly if I get a new concrete

example of the abstraction. I may get a new kind of Shape that can

be implemented with the implementations already in the design.

However, I may also get a new kind of Shape that requires a new

drawing function. For example, I may have to implement an

ellipse. The current Drawing class does not have the proper method

to do ellipses. In this case, I have to modify the implementations.

However, even if this occurs, I at least have a well-defined process

for making these changes (that is, modify the interface of the Draw-

ing class or interface, and modify each Drawing derivative accord-

ingly)—this localizes the impact of the change and lowers the risk

of an unwanted side effect.

Bottom line: Patterns do not always give perfect solutions. How-

ever, because patterns represent the collective experience of many

designers over the years, they are often better than the solutions

you or I might come up with on our own.

Follow one rule, one

place to help with

refactoring

In the real world, I do not always start out with multiple implemen-

tations. Sometimes, I know that new ones are possible, but they

show up unexpectedly. One approach is to prepare for multiple

implementations by always using abstractions. You get a very

generic application.

But I do not recommend this approach. It leads to an unnecessary

increase in the number of classes you have. It is important to write

code in such a way that when multiple implementations do occur

(which they often will), it is not difficult to modify the code to

ch09.fm Page 153 Friday, June 8, 2001 12:01 PM

154 Part III • Design Patterns

incorporate the Bridge pattern. Modifying code to improve its struc-

ture without adding function is called refactoring. As defined by

Martin Fowler, “Refactoring is the process of changing a software

system in such a way that it does not alter the external behavior of

the code yet improves its internal structure.”9

In designing code, I was always attending to the possibility of refac-

toring by following the one rule, one place mandate. The drawLine

method was a good example of this. Although the place the code

was actually implemented varied, moving it around was fairly easy.

A useful way to look

at the bridge pattern

While deriving the pattern, I took the two variations present

(shapes and drawing programs) and encapsulated each in their own

abstract class. That is, the variations of shapes are encapsulated in

the Shape class, the variations of drawing programs are encapsu-

lated in the Drawing class.

Stepping back and looking at these two polymorphic structures, I

should ask myself, “What do these abstract classes represent?” For

the shapes, it is pretty evident that the class represents different kinds

of shapes. The Drawing abstract class represents how I will imple-

ment the Shapes. Thus, even in the case where I described how new

requirements for the Drawing class may arise (say, if I need to imple-

ment ellipses) there is a clear relationship between the classes.

9. Fowler, M., Refactoring: Improving the Design of Existing Code, Reading, Mass.:
Addison-Wesley, 2000, p. xvi.

Refactoring.

Refactoring is commonly used in object-oriented design. How-

ever, it is not strictly an OO thing . . . It is modifying code to

improve its structure without adding function.

ch09.fm Page 154 Friday, June 8, 2001 12:01 PM

Chapter 9 • The Bridge Pattern 155

Summary

In this chapterIn learning the Bridge pattern, I looked at a problem where there

were two variations in the problem domain—shapes and drawing

programs. In the problem domain, each of these varied. The chal-

lenge came in trying to implement a solution based on all of the

special cases that existed. The initial solution, which naively used

inheritance too much, resulted in a redundant design that had tight

coupling and low cohesion, and was thus difficult to maintain.

You learned the Bridge pattern by following the basic strategies for

dealing with variation:

• Find what varies and encapsulate it.

• Favor composition over inheritance.

Finding what varies is always a good step in learning about the

problem domain. In the drawing program example, I had one set of

variations using another set of variations. This indicates that the

Bridge pattern will probably be useful.

In general, you should identify which patterns to use by matching

them with the characteristics and behaviors in the problem domain.

By understanding the whys and whats of the patterns in your reper-

toire, you can be more effective in picking the ones that will help

you. You can select patterns to use before deciding how the pat-

tern’s implementation will be done.

By using the Bridge pattern, the design and implementation are

more robust and better able to handle changes in the future.

Summary of object-

oriented principles

used in the Bridge

pattern

While I focused on the pattern during the chapter, it is worth point-

ing out several object-oriented principles that are used in the Bridge

pattern.

ch09.fm Page 155 Friday, June 8, 2001 12:01 PM

156 Part III • Design Patterns

Concept Discussion

Objects are responsible for
themselves

I had different kinds of Shapes, but all drew themselves (via the
draw method). The Drawing classes were responsible for draw-

ing elements of objects.

Abstract class I used abstract classes to represent the concepts. I actually had
rectangles and circles in the problem domain. The concept

“Shape” is something that lives strictly in our head, a device to bind

the two concepts together; therefore, I represent it in the Shape
class as an abstract class. Shape will never get instantiated

because it never exists in the problem domain (only Rectangles

and Circles do). The same thing is true with drawing programs.

Encapsulation via an

abstract class

I have two examples of encapsulation through the use of an

abstract class in this problem.

• A client dealing with the Bridge pattern will have only a derivation
of Shape visible to it. However, the client will not know what type

of Shape it has (it will be just a Shape to the client). Thus, I have

encapsulated this information. The advantage of this is if a new
type of Shape is needed in the future, it does not affect the client

object.

• The Drawing class hides the different drawing derivations from
the Shapes. In practice, the abstraction may know which imple-

mentation it uses because it might instantiate it. See page 155 of

the Gang of Four book for an explanation as to why this might be
a good thing to do. However, even when that occurs, this knowl-

edge of implementations is limited to the abstraction’s constructor

and is easily changed.

One rule, one place The abstract class often has the methods that actually use the

implementation objects. The derivations of the abstract class call

these methods. This allows for easier modification if needed, and
allows for a good starting point even before implementing the entire

pattern.

ch09.fm Page 156 Friday, June 8, 2001 12:01 PM

Chapter 9 • The Bridge Pattern 157

Supplement: C++ Code Examples

Example 9-4 C++ Code Fragments: Rectangles Only

void Rectangle::draw () {
 drawLine(_x1,_y1,_x2,_y1);
 drawLine(_x2,_y1,_x2,_y2);
 drawLine(_x2,_y2,_x1,_y2);
 drawLine(_x1,_y2,_x1,_y1);
}

void V1Rectangle::drawLine
 (double x1, double y1,
 double x2, double y2) {
 DP1.draw_a_line(x1,y1,x2,y2);
}

void V2Rectangle::drawLine
 (double x1, double y1,
 double x2, double y2) {
 DP2.drawline(x1,x2,y1,y2);
}

Example 9-5 C++ Code Fragments:

Rectangles and Circles without Bridge

class Shape {
 public: void draw ()=0;
}
class Rectangle : Shape {
 public:
 void draw();
 protected:
 void drawLine(
 double x1,y1, x2,y2)=0;
}
void Rectangle::draw () {
 drawLine(_x1,_y1,_x2,_y1);
 drawLine(_x2,_y1,_x2,_y2);
 drawLine(_x2,_y2,_x1,_y2);
 drawLine(_x1,_y2,_x1,_y1);
}

(continued)

ch09.fm Page 157 Friday, June 8, 2001 12:01 PM

158 Part III • Design Patterns

// V1Rectangle and V2Rectangle both derive from
// Rectangle header files not shown
void V1Rectangle::drawLine (
 double x1,y1, x2,y2) {
 DP1.draw_a_line(x1,y1,x2,y2);
}
void V2Rectangle::drawLine (
 double x1,y1, x2,y2) {
 DP2.drawline(x1,x2,y1,y2);
 }
}

class Circle : Shape {
 public:
 void draw() ;
 protected:
 void drawCircle(
 double x, y, z) ;
}
void Circle::draw () {
 drawCircle();

}

// V1Circle and V2Circle both derive from Circle
// header files not shown
void V1Circle::drawCircle (
 DP1.draw_a_circle(x, y, r);
}

void V2Circle::drawCircle (
 DP2.drawcircle(x, y, r);
}

Example 9-5 C++ Code Fragments:

Rectangles and Circles without Bridge (continued)

ch09.fm Page 158 Friday, June 8, 2001 12:01 PM

Chapter 9 • The Bridge Pattern 159

Example 9-6 C++ Code Fragments:

The Bridge Implemented

void main (String argv[]) {
 Shape *s1;
 Shape *s2;
 Drawing *dp1, *dp2;

 dp1= new V1Drawing;
 s1=new Rectangle(dp,1,1,2,2);

 dp2= new V2Drawing;
 s2= new Circle(dp,2,2,4);

 s1->draw();
 s2->draw();

 delete s1; delete s2;
 delete dp1; delete dp2;
}

// NOTE: Memory management not tested.
// Includes not shown.

class Shape {
 public: draw()=0;
 private: Drawing *_dp;
}
Shape::Shape (Drawing *dp) {
 _dp= dp;
}
void Shape::drawLine(
 double x1, double y1,
 double x2, double y2)
 _dp->drawLine(x1,y1,x2,y2);
}

Rectangle::Rectangle (Drawing *dp,
 double x1, y1, x2, y2) :
 Shape(dp) {
 _x1= x1; _x2= x2;
 _y1= y1; _y2= y2;
}

(continued)

ch09.fm Page 159 Friday, June 8, 2001 12:01 PM

160 Part III • Design Patterns

void Rectangle::draw () {
 drawLine(_x1,_y1,_x2,_y1);
 drawLine(_x2,_y1,_x2,_y2);
 drawLine(_x2,_y2,_x1,_y2);
 drawLine(_x1,_y2,_x1,_y1);
}
class Circle {
 public: Circle (
 Drawing *dp,
 double x, double y, double r);
};

Circle::Circle (
 Drawing *dp,
 double x, double y,
 double r) : Shape(dp) {
 _x= x;
 _y= y;
 _r= r;
}

Circle::draw () {
 drawCircle(_x, _y, _r);
}

class Drawing {
 public: virtual void drawLine (
 double x1, double y1,
 double x2, double y2)=0;
};

class V1Drawing :
 public Drawing {
 public: void drawLine (
 double x1, double y1,
 double x2, double y2);
 void drawCircle(
 double x, double y, double r);
};

void V1Drawing::drawLine (
 double x1, double y1,
 double x2, double y2) {
 DP1.draw_a_line(x1,y1,x2,y2);
}

(continued)

Example 9-6 C++ Code Fragments:

The Bridge Implemented (continued)

ch09.fm Page 160 Friday, June 8, 2001 12:01 PM

Chapter 9 • The Bridge Pattern 161

void V1Drawing::drawCircle (
 double x1, double y, double r) {
 DP1.draw_a_circle (x,y,r);
}
class V2Drawing : public
 Drawing {
 public:
 void drawLine (
 double x1, double y1,
 double x2, double y2);
 void drawCircle(
 double x, double y, double r);
};
void V2Drawing::drawLine (
 double x1, double y1,
 double x2, double y2) {
 DP2.drawline(x1,x2,y1,y2);
}

void V2Drawing::drawCircle (
 double x, double y, double r) {
 DP2.drawcircle(x, y, r);
}

// We have been given the implementations for
// DP1 and DP2

class DP1 {
 public:
 static void draw_a_line (
 double x1, double y1,
 double x2, double y2);
 static void draw_a_circle (
 double x, double y, double r);
};

class DP2 {
 public:
 static void drawline (
 double x1, double x2,
 double y1, double y2);
 static void drawcircle (
 double x, double y, double r);
};

Example 9-6 C++ Code Fragments:

The Bridge Implemented (continued)

ch09.fm Page 161 Friday, June 8, 2001 12:01 PM

