
3

CHAPTER 1

The Object-Oriented
Paradigm

Overview

In this chapterThis chapter introduces you to the object-oriented paradigm by

comparing and contrasting it with something familiar: standard

structured programming.

The object-oriented paradigm grew out of a need to meet the chal-

lenges of past practices using standard structured programming. By

being clear about these challenges, we can better see the advan-

tages of object-oriented programming, as well as gain a better

understanding of this mechanism.

This chapter will not make you an expert on object-oriented meth-

ods. It will not even introduce you to all of the basic object-oriented

concepts. It will, however, prepare you for the rest of this book,

which will explain the proper use of object-oriented design meth-

ods as practiced by the experts.

In this chapter,

• I discuss a common method of analysis, called functional

decomposition.

• I address the problem of requirements and the need to deal

with change (the scourge of programming!).

• I describe the object-oriented paradigm and show its use in

action.

ch01.fm Page 3 Friday, June 8, 2001 11:58 AM

4 Part I • An Introduction to Object-Oriented Software Development

• I point out special object methods.

• I provide a table of important object terminology used in this

chapter on page 21.

Before The Object-Oriented Paradigm:
Functional Decomposition

Functional decompo-

sition is a natural

way to deal with

complexity

Let’s start out by examining a common approach to software devel-

opment. If I were to give you the task of writing code to access a

description of shapes that were stored in a database and then dis-

play them, it would be natural to think in terms of the steps

required. For example, you might think that you would solve the

problem by doing the following:

1. Locate the list of shapes in the database.

2. Open up the list of shapes.

3. Sort the list according to some rules.

4. Display the individual shapes on the monitor.

You could take any one of these steps and further break down the

steps required to implement it. For example, you could break down

Step 4 as follows:

For each shape in the list, do the following:

4a. Identify type of shape.

4b. Get location of shape.

4c. Call appropriate function that will display shape, giving it the

shape’s location.

This is called functional decomposition because the analyst breaks

down (decomposes) the problem into the functional steps that

compose it. You and I do this because it is easier to deal with

smaller pieces than it is to deal with the problem in its entirety. It is

the same approach I might use to write a recipe for making lasagna,

ch01.fm Page 4 Friday, June 8, 2001 11:58 AM

Chapter 1 • The Object-Oriented Paradigm 5

or instructions to assemble a bicycle. We use this approach so often

and so naturally that we seldom question it or ask if there are other

alternatives.

The challenge with

this approach:

dealing with change

The problem with functional decomposition is that it does not help

us prepare the code for possible changes in the future, for a graceful

evolution. When change is required, it is often because I want to

add a new variation to an existing theme. For example, I might

have to deal with new shapes or new ways to display shapes. If I

have put all of the logic that implements the steps into one large

function or module, then virtually any change to the steps will

require changes to that function or module.

And change creates opportunities for mistakes and unintended con-

sequences. Or, as I like to say,

Many bugs originate with changes to code.

Verify this assertion for yourself. Think of a time when you wanted

to make a change to your code, but were afraid to put it in because

you knew that modifying the code in one place could break it

somewhere else. Why might this happen? Must the code pay atten-

tion to all of its functions and how they might be used? How might

the functions interact with one another? Were there too many

details for the function to pay attention to, such as the logic it was

trying to implement, the things with which it was interacting, the

data it was using? As it is with people, trying to focus on too many

things at once begs for errors when anything changes.

And no matter how hard you try, no matter how well you do your

analysis, you can never get all of the requirements from the user.

Too much is unknown about the future. Things change. They

always do . . .

And nothing you can do will stop change. But you do not have

to be overcome by it.

ch01.fm Page 5 Friday, June 8, 2001 11:58 AM

6 Part I • An Introduction to Object-Oriented Software Development

The Problem of Requirements

Requirements

always change

Ask software developers what they know to be true about the

requirements they get from users. They will often say:

• Requirements are incomplete.

• Requirements are usually wrong.

• Requirements (and users) are misleading.

• Requirements do not tell the whole story.

One thing you will never hear is, “not only were our requirements

complete, clear, and understandable, but they laid out all of the

functionality we were going to need for the next five years!”

In my thirty years of experience writing software, the main thing I

have learned about requirements is that . . .

Requirements always change.

I have also learned that most developers think this is a bad thing.

But few of them write their code to handle changing requirements

well.

Requirements change for a very simple set of reasons:

• The users’ view of their needs change as a result of their discus-

sions with developers and from seeing new possibilities for the

software.

• The developers’ view of the users’ problem domain changes as

they develop software to automate it and thus become more

familiar with it.

• The environment in which the software is being developed

changes. (Who anticipated, five years ago, Web development as

it is today?)

ch01.fm Page 6 Friday, June 8, 2001 11:58 AM

Chapter 1 • The Object-Oriented Paradigm 7

This does not mean you and I can give up on gathering good

requirements. It does mean that we must write our code to accom-

modate change. It also means we should stop beating ourselves up

(or our customers, for that matter) for things that will naturally

occur.

Dealing with Changes:
Using Functional Decomposition

Using modularity to

contain variation

Look a little closer at the problem of displaying shapes. How can I

write the code so that it is easier to handle shifting requirements?

Rather than writing one large function, I could make it more

modular.

For example, in Step 4c on page 4, where I “Call appropriate function

that will display shape, giving it the shape’s location,” I could write a

module like that shown in Example 1-1.

Example 1-1 Using Modularity to Contain Variation

function: display shape
input: type of shape, description of shape
action:
 switch (type of shape)
 case square: put display function for square here
 case circle: put display function for circle here

Change happens! Deal with it.

• In all but the simplest cases, requirements will always

change, no matter how well we do the initial analysis!

• Rather than complaining about changing requirements, we

should change the development process so that we can

address change more effectively.

ch01.fm Page 7 Friday, June 8, 2001 11:58 AM

8 Part I • An Introduction to Object-Oriented Software Development

Then, when I receive a requirement to be able to display a new type

of shape—a triangle, for instance—I only need to change this mod-

ule (hopefully!).

Problems with

modularity in a

functional decompo-

sition approach

There are some problems with this approach, however. For exam-

ple, I said that the inputs to the module were the type of shape and

a description of the shape. Depending upon how I am storing

shapes, it may or may not be possible to have a consistent descrip-

tion of shapes that will work well for all shapes. What if the descrip-

tion of the shape is sometimes stored as an array of points? Would

that still work?

Modularity definitely helps to make the code more understandable,

and understandability makes the code easier to maintain. But mod-

ularity does not always help code deal with all of the variation it

might encounter.

Low cohesion, tight

coupling

With the approach that I have used so far, I find that I have two sig-

nificant problems, which go by the terms low cohesion and tight cou-

pling. In his book Code Complete, Steve McConnell gives an excellent

description of both cohesion and coupling. He says,

• Cohesion refers to how “closely the operations in a routine are

related.”1

I have heard other people refer to cohesion as clarity because the

more that operations are related in a routine (or a class), the easier

it is to understand things.

• Coupling refers to “the strength of a connection between two

routines. Coupling is a complement to cohesion. Cohesion

describes how strongly the internal contents of a routine are

1. McConnell, S., Code Complete: A Practical Handbook of Software Construction,
Redmond: Microsoft Press, 1993, p. 81. (Note: McConnell did not invent these
terms, we just happen to like his definitions of them best.)

ch01.fm Page 8 Friday, June 8, 2001 11:58 AM

Chapter 1 • The Object-Oriented Paradigm 9

related to each other. Coupling describes how strongly a rou-

tine is related to other routines. The goal is to create routines

with internal integrity (strong cohesion) and small, direct, visi-

ble, and flexible relations to other routines (loose coupling).”2

Changing a function,

or even data used by

a function, can

wreak havoc on

other functions

Most programmers have had the experience of making a change to

a function or piece of data in one area of the code that then has an

unexpected impact on other pieces of code. This type of bug is

called an “unwanted side effect.” That is because while we get the

impact we want (the change), we also get other impacts we don’t

want—bugs! What is worse, these bugs are often difficult to find

because we usually don’t notice the relationship that caused the

side effects in the first place (if we had, we wouldn’t have changed

it the way we did).

In fact, bugs of this type lead me to a rather startling observation:

We really do not spend much time fixing bugs.

I think fixing bugs takes a short period of time in the maintenance

and debugging process. The overwhelming amount of time spent in

maintenance and debugging is on finding bugs and taking the time

to avoid unwanted side effects. The actual fix is relatively short!

Since unwanted side effects are often the hardest bugs to find, hav-

ing a function that touches many different pieces of data makes it

more likely that a change in requirements will result in a problem.

2. ibid, p. 87.

ch01.fm Page 9 Friday, June 8, 2001 11:58 AM

10 Part I • An Introduction to Object-Oriented Software Development

Functional decompo-

sition focuses on the

wrong thing

With functional decomposition, changing requirements causes my

software development and maintenance efforts to thrash. I am

focused primarily on the functions. Changes to one set of functions

or data impact other sets of functions and other sets of data, which

in turn impact other functions that must be changed. Like a snow-

ball that picks up snow as it rolls downhill, a focus on functions

leads to a cascade of changes from which it is difficult to escape.

Dealing with Changing Requirements

How do people do

things?

To figure out a way around the problem of changing requirements

and to see if there is an alternative to functional decomposition,

let’s look at how people do things. Let’s say that you were an

instructor at a conference. People in your class had another class to

attend following yours, but didn’t know where it was located. One

of your responsibilities is to make sure everyone knows how to get

to their next class.

If you were to follow a structured programming approach, you

might do the following:

1. Get list of people in the class.

2. For each person on this list:

a. Find the next class they are taking.

b. Find the location of that class.

The devil is in the side effects.

• A focus on functions is likely to cause side effects that are dif-

ficult to find.

• Most of the time spent in maintenance and debugging is not

spent on fixing bugs, but in finding them and seeing how to

avoid unwanted side effects from the fix.

ch01.fm Page 10 Friday, June 8, 2001 11:58 AM

Chapter 1 • The Object-Oriented Paradigm 11

c. Find the way to get from your classroom to the person’s next

class.

d. Tell the person how to get to their next class.

To do this would require the following procedures:

1. A way of getting the list of people in the class

2. A way of getting the schedule for each person in the class

3. A program that gives someone directions from your classroom

to any other classroom

4. A control program that works for each person in the class and

does the required steps for each person

Doubtful you’d

follow this approach

I doubt that you would actually follow this approach. Instead, you

would probably post directions to go from this classroom to the

other classrooms and then tell everyone in the class, “I have posted

the locations of the classes following this in the back of the room, as

well as the locations of the other classrooms. Please use them to go

to your next classroom.” You would expect that everyone would

know what their next class was, that they could find the classroom

they were to go to from the list, and could then follow the direc-

tions for going to the classrooms themselves.

What is the difference between these approaches?

• In the first one—giving explicit directions to everyone—you

have to pay close attention to a lot of details. No one other than

you is responsible for anything. You will go crazy!

• In the second case, you give general instructions and then

expect that each person will figure out how to do the task him-

self or herself.

ch01.fm Page 11 Friday, June 8, 2001 11:58 AM

12 Part I • An Introduction to Object-Oriented Software Development

Shifting responsi-

bility from yourself

to individuals . . .

The biggest difference is this shift of responsibility. In the first

case, you are responsible for everything; in the second case, stu-

dents are responsible for their own behavior. In both cases, the

same things must be implemented, but the organization is very

different.

What is the impact of this?

To see the effect of this reorganization of responsibilities, let’s see

what happens when some new requirements are specified.

Suppose I am now told to give special instructions to graduate stu-

dents who are assisting at the conference. Perhaps they need to col-

lect course evaluations and take them to the conference office

before they can go to the next class. In the first case, I would have

to modify the control program to distinguish the graduate students

from the undergraduates, and then give special instructions to the

graduate students. It’s possible that I would have to modify this pro-

gram considerably.

. . . can minimize

changes

However, in the second case—where people are responsible for

themselves—I would just have to write an additional routine for

graduate students to follow. The control program would still just

say, “Go to your next class.” Each person would simply follow the

instructions appropriate for himself or herself.

Why the difference? This is a significant difference for the control program. In one case,

it would have to be modified every time there was a new category

of students with special instructions that they might be expected to

follow. In the other one, new categories of students have to be

responsible for themselves.

What makes it

happen?

There are three different things going on that make this happen.

They are:

ch01.fm Page 12 Friday, June 8, 2001 11:58 AM

Chapter 1 • The Object-Oriented Paradigm 13

• The people are responsible for themselves, instead of the con-

trol program being responsible for them. (Note that to accom-

plish this, a person must also be aware of what type of student

he or she is.)

• The control program can talk to different types of people (grad-

uate students and regular students) as if they were exactly the

same.

• The control program does not need to know about any special

steps that students might need to take when moving from class

to class.

Different perspectivesTo fully understand the implications of this, it’s important to estab-

lish some terminology. In UML Distilled, Martin Fowler describes

three different perspectives in the software development process.3

These are described in Table 1-1.

3. Fowler, M., Scott, K., UML Distilled: A Brief Guide to the Standard Object Modeling
Language, 2nd Edition, Reading, Mass.: Addison-Wesley, 1999, pp. 51–52.

Table 1-1 Perspectives in the Software Development Process

Perspective Description

Conceptual This perspective “represents the concepts in the
domain under study. . . . a conceptual model

should be drawn with little or no regard for the

software that might implement it . . .”

Specification “Now we are looking at software, but we are

looking at the interfaces of the software, not the

implementation.”

Implementation At this point we are at the code itself. “This is

probably the most often-used perspective, but in

many ways the specification perspective is often
a better one to take.”

ch01.fm Page 13 Friday, June 8, 2001 11:58 AM

14 Part I • An Introduction to Object-Oriented Software Development

How perspectives

help

Look again at the previous example of “Go to your next class.”

Notice that you—as the instructor—are communicating with the

people at the conceptual level. In other words, you are telling people

what you want, not how to do it. However, the way they go to their

next class is very specific. They are following specific instructions

and in doing so are working at the implementation level.

Communicating at one level (conceptually) while performing at

another level (implementation) results in the requestor (the

instructor) not knowing exactly what is happening, only knowing

conceptually what is happening. This can be very powerful. Let’s

see how to take these notions and write programs that take advan-

tage of them.

The Object-Oriented Paradigm

Using objects shifts

responsibility to a

more local level

The object-oriented paradigm is centered on the concept of the

object. Everything is focused on objects. I write code organized

around objects, not functions.

What is an object? Objects have traditionally been defined as data

with methods (the object-oriented term for functions). Unfortunately,

this is a very limiting way of looking at objects. I will look at a better

definition of objects shortly (and again in Chapter 8, “Expanding Our

Horizons”). When I talk about the data of an object, these can be sim-

ple things like numbers and character strings, or they can be other

objects.

The advantage of using objects is that I can define things that are

responsible for themselves. (See Table 1-2.) Objects inherently

know what type they are. The data in an object allow it to know

what state it is in and the code in the object allows it to function

properly (that is, do what it is supposed to do).

ch01.fm Page 14 Friday, June 8, 2001 11:58 AM

Chapter 1 • The Object-Oriented Paradigm 15

In this case, the objects were identified by looking at the entities in

the problem domain. I identified the responsibilities (or methods)

for each object by looking at what these entities need to do. This is

consistent with the technique of finding objects by looking for the

nouns in the requirements and finding methods by looking for

verbs. I find this technique to be quite limiting and will show a bet-

ter way throughout the book. For now, it is a way to get us started.

How to think about

objects

The best way to think about what an object is, is to think of it as

something with responsibilities. A good design rule is that objects

should be responsible for themselves and should have those

responsibilities clearly defined. This is why I say one of the respon-

sibilities of a student object is knowing how to go from one class-

room to the next.

Or, taking Fowler’s

perspective

I can also look at objects using the framework of Fowler’s perspec-

tives:

• At the conceptual level, an object is a set of responsibilities.4

Table 1-2 Objects and Their Responsibilities

This Object . . . Is Responsible For . . .

Student Knowing which classroom they are in
Knowing which classroom they are to go to next

Going from one classroom to the next

Instructor Telling people to go to next classroom

Classroom Having a location

Direction giver Given two classrooms, giving directions from one

classroom to the other

4. I am roughly paraphrasing Bertrand Meyer’s work of Design by Contract as out-
lined in Object-Oriented Software Construction, Upper Saddle River, N.J.: Prentice
Hall, 1997, p. 331.

ch01.fm Page 15 Friday, June 8, 2001 11:58 AM

16 Part I • An Introduction to Object-Oriented Software Development

• At the specification level, an object is a set of methods that can be

invoked by other objects or by itself.

• At the implementation level, an object is code and data.

Unfortunately, object-oriented design is often taught and talked

about only at the implementation level—in terms of code and

data—rather than at the conceptual or specification level. But there

is great power in thinking about objects in these latter ways as well!

Objects have

interfaces for other

objects to use

Since objects have responsibilities and objects are responsible for

themselves, there has to be a way to tell objects what to do.

Remember that objects have data to tell the object about itself and

methods to implement functionality. Many methods of an object

will be identified as callable by other objects. The collection of these

methods is called the object’s public interface.

For example, in the classroom example, I could write the Student

object with the method gotoNextClassroom(). I would not need

to pass any parameters in because each student would be responsi-

ble for itself. That is, it would know:

• What it needs to be able to move

• How to get any additional information it needs to perform this

task

Organizing objects

around the class

Initially, there was only one kind of student—a regular student who

goes from class to class. Note that there would be many of these

“regular students” in my classroom (my system). But what if I want

to have more kinds of students? It seems inefficient for each student

type to have its own set of methods to tell it what it can do, espe-

cially for tasks that are common to all students.

A more efficient approach would be to have a set of methods associ-

ated with all students that each one could use or tailor to their own

ch01.fm Page 16 Friday, June 8, 2001 11:58 AM

Chapter 1 • The Object-Oriented Paradigm 17

needs. I want to define a “general student” to contain the defini-

tions of these common methods. Then, I can have all manner of

specialized students, each of whom has to keep track of his or her

own private information.

In object-oriented terms, this general student is called a class. A class

is a definition of the behavior of an object. It contains a complete

description of:

• The data elements the object contains

• The methods the object can do

• The way these data elements and methods can be accessed

Since the data elements an object contains can vary, each object of

the same type may have different data but will have the same func-

tionality (as defined in the methods).

Objects are

instances of classes

To get an object, I tell the program that I want a new object of this

type (that is, the class that the object belongs to). This new object is

called an instance of the class. Creating instances of a class is called

instantiation.

Working with objects

in the example

Writing the “Go to the next classroom” example using an object-ori-

ented approach is much simpler. The program would look like this:

1. Start the control program.

2. Instantiate the collection of students in the classroom.

3. Tell the collection to have the students go to their next class.

4. The collection tells each student to go to their next class.

5. Each student:

a. Finds where his next class is

b. Determines how to get there

ch01.fm Page 17 Friday, June 8, 2001 11:58 AM

18 Part I • An Introduction to Object-Oriented Software Development

c. Goes there

4. Done.

The need for an

abstract type

This works fine until I need to add another student type, such as

the graduate student.

I have a dilemma. It appears that I must allow any type of student

into the collection (either regular or graduate student). The prob-

lem facing me is how do I want the collection to refer to its constit-

uents? Since I am talking about implementing this in code, the

collection will actually be an array or something of some type of

object. If the collection were named something like, Regular-

Students, then I would not be able to put GraduateStudents

into the collection. If I say that the collection is just a group of

objects, how can I be sure that I do not include the wrong type of

object (that is, something that doesn’t do “Go to your next class”)?

The solution is straightforward. I need a general type that encom-

passes more than one specific type. In this case, I want a Student

type that includes both RegularStudents and GraduateStu-

dents. In object-oriented terms, we call Student an abstract class.

Abstract classes

define what a set of

classes can do

Abstract classes define what other, related, classes can do. These

“other” classes are classes that represent a particular type of related

behavior. Such a class is often called a concrete class because it repre-

sents a specific, or nonchanging, implementation of a concept.

In the example, the abstract class is Student. There are two types

of Students represented by the concrete classes, Regular-

Students and GraduateStudents. RegularStudent is one kind

of Student and GraduateStudent is also a kind of Student.

This type of relationship is called an is-a relationship, which is for-

mally called inheritance. Thus, the RegularStudent class inherits

from Student. Other ways to say this would be, the Graduate-

Student derives from, specializes, or is a subclass of Student.

ch01.fm Page 18 Friday, June 8, 2001 11:58 AM

Chapter 1 • The Object-Oriented Paradigm 19

Going the other way, “the Student class is the base class, generalizes,

or is the superclass of GraduateStudent and of RegularStudent.

Abstract classes act as

placeholders for

other classes

Abstract classes act as placeholders for other classes. I use them to

define the methods their derived classes must implement. Abstract

classes can also contain common methods that can be used by all der-

ivations. Whether a derived class uses the default behavior or

replaces it with its own variation is up to the derivation (this is con-

sistent with the mandate that objects be responsible for themselves).

This means that I can have the controller contain Students. The

reference type used will be Student. The compiler can check that

anything referred to by this Student reference is, in fact, a kind of

Student. This gives the best of both worlds:

• The collection only needs to deal with Students (thereby

allowing the instructor object just to deal with students).

• Yet, I still get type checking (only Students that can “Go to

their next classroom” are included).

• And, each kind of Student is left to implement its functionality

in its own way.

Abstract classes are more than classes

that do not get instantiated.

Abstract classes are often described as classes that do not get

instantiated. This definition is accurate—at the implementation

level. But that is too limited. It is more helpful to define abstract

classes at the conceptual level. Thus, at the conceptual level,

abstract classes are simply placeholders for other classes.

That is, they give us a way to assign a name to a set of related classes. This

lets us treat this set as one concept.

In the object-oriented paradigm, you must constantly think

about your problem from all three levels of perspective.

ch01.fm Page 19 Friday, June 8, 2001 11:58 AM

20 Part I • An Introduction to Object-Oriented Software Development

Visibility Since the objects are responsible for themselves, there are many

things they do not need to expose to other objects. Earlier, I men-

tioned the concept of the public interface—those methods that are

accessible by other objects. In object-oriented systems, the main

types of accessibility are:

• Public—Anything can see it.

• Protected—Only objects of this class and derived classes can see it.

• Private—Only objects from this class can see it.

Encapsulation This leads to the concept of encapsulation. Encapsulation has often

been described simply as hiding data. Objects generally do not

expose their internal data members to the outside world (that is,

their visibility is protected or private).

But encapsulation refers to more than hiding data. In general,

encapsulation means any kind of hiding.

In the example, the instructor did not know which were the regular

students and which were the graduate students. The type of student

is hidden from the instructor (I am encapsulating the type of stu-

dent). As you will see later in the book, this is a very important

concept.

Polymorphism Another term to learn is polymorphism.

In object-oriented languages, we often refer to objects with one

type of reference that is an abstract class type. However, what we

are actually referring to are specific instances of classes derived from

their abstract classes.

Thus, when I tell the objects to do something conceptually through

the abstract reference, I get different behavior, depending upon the

specific type of derived object I have. Polymorphism derives from

poly (meaning many) and morph (meaning form). Thus, it means

ch01.fm Page 20 Friday, June 8, 2001 11:58 AM

Chapter 1 • The Object-Oriented Paradigm 21

many forms. This is an appropriate name because I have many differ-

ent forms of behavior for the same call.

In the example, the instructor tells the students to “Go to your next

classroom.” However, depending upon the type of student, they

will exhibit different behavior (hence polymorphism).

Review of Object-Oriented Terminology

Term Description
Object An entity that has responsibilities. I implement these by

writing a class (in code) that defines data members
(the variables associated with the objects) and meth-

ods (the functions associated with the objects).

Class The repository of methods. Defines the data members
of objects. Code is organized around the class.

Encapsulation Typically defined as data-hiding, but better thought of

as any kind of hiding.

Inheritance Having one class be a special kind of another class.

These specialized classes are called derivations of the

base class (the initial class). The base class is some-
times called the superclass while the derived classes

are sometimes called the subclasses.

Instance A particular example of a class (it is always an object).

Instantiation The process of creating an instance of a class.

Polymorphism Being able to refer to different derivations of a class in

the same way, but getting the behavior appropriate to
the derived class being referred to.

Perspectives There are three different perspectives for looking at

objects: conceptual, specification, and implementation.
These distinctions are helpful in understanding the

relationship between abstract classes and their deriva-

tions. The abstract class defines how to solve things
conceptually. It also gives the specification for commu-

nicating with any object derived from it. Each derivation

provides the specific implementation needed.

ch01.fm Page 21 Friday, June 8, 2001 11:58 AM

22 Part I • An Introduction to Object-Oriented Software Development

Object-Oriented Programming in Action

New example Let’s re-examine the shapes example discussed at the beginning of

the chapter. How would I implement it in an object-oriented man-

ner? Remember that it has to do the following:

1. Locate the list of shapes in the database.

2. Open up the list of shapes.

3. Sort the list according to some rules.

4. Display the individual shapes on the monitor.

To solve this in an object-oriented manner, I need to define the

objects and the responsibilities they would have.

Using objects in the

Shape program

The objects I would need are:

Class Responsibilities (Methods)

ShapeDataBase getCollection—get a specified collection of

shapes

Shape (an

abstract class)

display—defines interface for Shapes

getX—return X location of Shape (used for sorting)
getY—return Y location of Shape (used for sorting)

Square (derived
from Shape)

display—display a square (represented by this
object)

Circle (derived
from Shape)

display—display a circle (represented by this
object)

Collection display—tell all contained shapes to display
sort—sort the collection of shapes

Display drawLine—draw a line on the screen
drawCircle—draw a circle on the screen

ch01.fm Page 22 Friday, June 8, 2001 11:58 AM

Chapter 1 • The Object-Oriented Paradigm 23

Running the

program

The main program would now look like this:

1. Main program creates an instance of the database object.

2. Main program asks the database object to find the set of shapes

I am interested in and to instantiate a collection object contain-

ing all of the shapes (actually, it will instantiate circles and

squares that the collection will hold).

3. Main program asks the collection to sort the shapes.

4. Main program asks the collection to display the shapes.

5. The collection asks each shape it contains to display itself.

6. Each shape displays itself (using the Display object) according

to the type of shape I have.

Why this helps—

handling new

requirements

Let’s see how this helps to handle new requirements (remember,

requirements always change). For example, consider the following

new requirements:

• Add new kinds of shapes (such as a triangle). To introduce

a new kind of shape, only two steps are required:

– Create a new derivation of Shape that defines the shape.

– In the new derivation, implement a version of the display

method that is appropriate for that shape.

• Change the sorting algorithm. To change the method for

sorting the shapes, only one step is required:

– Modify the method in Collection. Every shape will use the

new algorithm.

Bottom line: The object-oriented approach has limited the impact

of changing requirements.

ch01.fm Page 23 Friday, June 8, 2001 11:58 AM

24 Part I • An Introduction to Object-Oriented Software Development

Encapsulation

revisited

There are several advantages to encapsulation. The fact that it hides

things from the user directly implies the following:

• Using things is easier because the user does not need to worry

about implementation issues.

• Implementations can be changed without worrying about the

caller. (Since the caller didn’t know how it was implemented in

the first place, there shouldn’t be any dependencies.)

• The insides of an object are unknown to outside objects—they

are used by the object to help implement the function specified

by the object’s interface.

Benefit:

reduced side effects

Finally, consider the problem of unwanted side effects that arise

when functions are changed. This kind of bug is addressed effec-

tively with encapsulation. The internals of objects are unknown to

other objects. If I use encapsulation and follow the strategy that

objects are responsible for themselves, then the only way to affect

an object will be to call a method on that object. The object’s data

and the way it implements its responsibilities are shielded from

changes caused by other objects.

Special Object Methods

Creating and

destroying

I have talked about methods that are called by other objects or pos-

sibly used by an object itself. But what happens when objects are

Encapsulation saves us.

• The more I make my objects responsible for their own

behaviors, the less the controlling programs have to be

responsible for.

• Encapsulation makes changes to an object’s internal behavior

transparent to other objects.

• Encapsulation helps to prevent unwanted side effects.

ch01.fm Page 24 Friday, June 8, 2001 11:58 AM

Chapter 1 • The Object-Oriented Paradigm 25

created? What happens when they go away? If objects are self-

contained units, then it would be a good idea to have methods to

handle these situations.

These special methods do, in fact, exist and are called constructors

and destructors.

Constructors

initialize, or set

up, an object

A constructor is a special method that is automatically called when

the object is created. Its purpose is to handle starting up the object.

This is part of an object’s mandate to be responsible for itself. The

constructor is the natural place to do initializations, set default

information, set up relationships with other objects, or do anything

else that is needed to make a well-defined object. All object-ori-

ented languages look for a constructor method and execute it when

the object is created.

By using constructors properly it is easier to eliminate (or at least

minimize) uninitialized variables. This type of error usually occurs

from carelessness on the part of the developer. By having a set, con-

sistent place for all initializations throughout your code (that is, the

constructors of your objects) it is easier to ensure that initializations

take place. Errors caused by uninitialized variables are easy to fix

but hard to find, so this convention (with the automatic calling of

the constructor) can increase the efficiency of programmers.

Destructors clean up

an object when it is

no longer needed

(when it has been

deleted)

A destructor is a special method that helps an object clean up after

itself when the object goes out of existence; that is, when the object

is destroyed. All object-oriented languages look for a destructor

method and execute it when the object is being deleted. As with the

constructor, the use of the destructor is part of the object’s mandate

to be responsible for itself.

Destructors are typically used for releasing resources when objects

are no longer needed. Since Java has garbage collection (auto-

cleanup of objects no longer in use), destructors are not as important

ch01.fm Page 25 Friday, June 8, 2001 11:58 AM

26 Part I • An Introduction to Object-Oriented Software Development

in Java as they are in C++. In C++, it is common for an object’s

destructor also to destroy other objects that are used only by this

object.

Summary

In this chapter In this chapter, I have shown how object orientation helps us mini-

mize consequences of shifting requirements on a system and how it

contrasts with functional decomposition.

I covered a number of the essential concepts in object-oriented pro-

gramming and have introduced and described the primary termi-

nology. These are essential to understanding the concepts in the rest

of this book. (See Tables 1-3 and 1-4.)

Table 1-3 Object-Oriented Concepts

Concept Review

Functional

decomposition

Structured programmers usually approach program design with functional

decomposition. Functional decomposition is the method of breaking down

a problem into smaller and smaller functions. Each function is subdivided
until it is manageable.

Changing

requirements

Changing requirements are inherent to the development process. Rather

than blaming users or ourselves about the seemingly impossible task of
getting good and complete requirements, we should use development

methods that deal with changing requirements more effectively.

Objects Objects are defined by their responsibilities. Objects simplify the tasks of
programs that use them by being responsible for themselves.

Constructors and

destructors

An object has special methods that are called when it is created and

deleted. These special methods are:
• Constructors, which initialize or set up an object.

• Destructors, which clean up an object when it is deleted.

All object-oriented languages use constructors and destructors to help
manage objects.

ch01.fm Page 26 Friday, June 8, 2001 11:58 AM

Chapter 1 • The Object-Oriented Paradigm 27

Table 1-4 Object-Oriented Terminology

Term Definition

Abstract class Defines the methods and common attributes of a set of classes that are
conceptually similar. Abstract classes are never instantiated.

Attribute Data associated with an object (also called a data member).

Class Blueprint of an object—defines the methods and data of an object of its
type.

Constructor Special method that is invoked when an object is created.

Encapsulation Any kind of hiding. Objects encapsulate their data. Abstract classes
encapsulate their derived concrete classes.

Derived class A class that is specialized from a superclass. Contains all of the attributes

and methods of the superclass but may also contain other attributes or dif-
ferent method implementations.

Destructor Special method that is invoked when an object is deleted.

Functional
decomposition

A method of analysis in which a problem is broken into smaller and
smaller functions.

Inheritance The way that a class is specialized, used to relate derived classes from

their abstractions.

Instance A particular object of a class.

Instantiation The process of creating an instance of a class.

Member Either data or method of a class.

Method Functions that are associated with an object.

Object An entity with responsibilities. A special, self-contained holder of both data

and methods that operate on that data. An object’s data are protected
from external objects.

Polymorphism The ability of related objects to implement methods that are specialized to

their type.

Superclass A class from which other classes are derived. Contains the master defini-

tions of attributes and methods that all derived classes will use (and possi-

bly will override).

ch01.fm Page 27 Friday, June 8, 2001 11:58 AM

