
APPLICATION OF PATTERNS TO REAL-TIME
OBJECT-ORIENTED SOFTWARE DESIGN

by

ROSS ALBERT MCKEGNEY

A thesis submitted to the Department of Computing &
Information Science in conformity with the requirements

for the degree of Master of Science

Queen’s University,

Kingston, Ontario Canada

July 2000

Copyright © Ross Albert McKegney, 2000

 ii

ABSTRACT

The design and development of real-time software (i.e. software that must ensure timeliness
while interacting with an external environment) is more difficult than for most other
software. Modeling tools help deal with this complexity, allowing developers to view the
system at various levels of abstraction, animate the models in a simulation environment,
and even generate the code for a variety of target hardware/RTOS configurations. A natural
extension to these tools is to provide support for design patterns (a method of documenting
experience in the form of problem/context/solution triples for recurring problems). Such an
extension provides yet another layer of abstraction to the models, and makes explicit the
application of design patterns.

This thesis will extract from the patterns literature a set of patterns dealing with issues
relevant to the design of real-time object-oriented software (in order to demonstrate their
variety and quality) - then will propose an extension to Rational Rose-RT to support
patterns as an abstraction layer.

 iii

ACKOWLEDGMENTS

I would like to acknowledge my supervisor, Dr. Terry Shepard, for his guidance and direction

throughout the writing of this thesis.

I also acknowledge the members of my ‘hot-topics’ group at ChiliPLoP 2000: Mary-Lynn Manns

(UNCS), Linda Rising (AGCS), Don Olson (AGCS), John Letourneau (Lucent Technologies), and

Carol Stimmel (MediaOne Labs) for introducing me to pattern writing workshops.

Also Grant Larsen of Blueprint-Technologies for providing a free copy of Framework Studio, and

Francis Bordeleau (Carleton University) for reading and commenting on drafts of this thesis.

Finally, I would like to thank my fiancé Sarah – for all her love and support.

 iv

TABLE OF CONTENTS

ACKOWLEDGMENTS... III

TABLE OF CONTENTS ..IV

LIST OF TABLES ...VII

LIST OF FIGURES ... VIII

CHAPTER 1: INTRODUCTION..1

1.1 MOTIVATION..1
1.2 PROBLEM..2
1.3 OBJECTIVES..2
1.4 ORGANIZATION OF CONTRIBUTIONS ..3

CHAPTER 2: PATTERNS...4

2.1 PATTERN ORIGINS – CHRISTOPHER ALEXANDER ..4
2.1.1 Pattern Languages ...5

2.2 SOFTWARE PATTERNS ...5
2.2.1 Design Patterns..6
2.2.2 Other Pattern Types...8

2.3 RELATED RESEARCH ...10
2.3.1 Frameworks..10
2.3.2 Refactoring...11

2.4 SUMMARY ..11

CHAPTER 3: REAL-TIME OBJECT-ORIENTED MODELING ..12

3.1 REAL-TIME SYSTEMS...12
3.1.1 Environment ...13
3.1.2 Effectors & Sensors..13
3.1.3 Hardware Interface..14
3.1.4 Software..14

3.2 OBJECT ORIENTATION IN REAL-TIME SOFTWARE..15
3.3 REAL-TIME OBJECT-ORIENTED PROGRAMMING LANGUAGES...16

3.3.1 Ada 95 ..16
3.3.2 C++..18
3.3.3 Java ..18

3.4 RTOO MODELING NOTATIONS & TOOLS ..19
3.4.1 SDL...19
3.4.2 ROOM ..20
3.4.3 Statecharts..21
3.4.4 UML..23

3.5 SUMMARY ..25

CHAPTER 4: EXPERIENCES WITH RTOO DESIGN PATTERNS27

4.1 GENERAL DESIGN PATTERNS EXPERIENCES ..27

 v

4.1.1 Industrial Experience with Design Patterns ...27
4.1.2 Patterns in Practice ...31
4.1.3 Pros and Cons of Adopting and Applying Design Patterns ...32
4.1.4 Using Design Patterns to Develop Reusable OO Communication Software...................33
4.1.5 Using Design Patterns Against a Moving Target ...34
4.1.6 How to Preserve the Benefits of Design Patterns ...35

4.2 DESIGN PATTERNS AND FRAMEWORKS..36
4.2.1 Speech Recognition Framework..36
4.2.2 Communication Software Framework ..37
4.2.3 Vessel Control Systems Framework ..38

4.3 SUMMARY ..39

CHAPTER 5: SURVEY OF REAL-TIME OBJECT-ORIENTED DESIGN PATTERNS ...41

5.1 WIDELY APPLICABLE RTOO DESIGN PATTERNS ..41
5.1.1 Douglass’ Real-time Design Patterns ...42
5.1.2 Schmidt et. al.’s Patterns for Concurrent, Parallel, and Distributed Systems.................44
5.1.3 Real-time Constraints as Strategies Pattern ...48
5.1.4 Multithreaded Rendezvous Pattern ...48
5.1.5 Recursive Control Pattern ...49
5.1.6 Recoverable Distributor Pattern ...49

5.2 DOMAIN SPECIFIC RTOO DESIGN PATTERNS ..50
5.2.1 Process Control Patterns...50
5.2.2 Communication, Command and Control Patterns..52
5.2.3 Embedded Computer Systems Patterns...58

5.3 RTOO DESIGN PATTERN LANGUAGE ..64
5.3.1 Organization/Classification...65
5.3.2 Inter-pattern Relationships..65
5.3.4 Completeness..69

5.4 SUMMARY ..71

CHAPTER 6: TOOL SUPPORT FOR PATTERNS ..72

6.1 TYPES OF PATTERN TOOLS..72
6.2 EXAMPLES OF PATTERN REPOSITORY TOOLS ..74

6.2.1 Portland Pattern Repository..74
6.2.2 Wiki Wiki Web..74
6.2.3 Pattern Depot ...74
6.2.4 Budinsky et. al. ...75
6.2.5 Blueprint Technologies Framework Studio ..75

6.3 TOOL CONVERGENCE ..77
6.3.1 Desirable Functionality ...78
6.3.2 Issues ..79
6.3.3 Proposal for Extension ..79

6.4 SUMMARY ..84

CHAPTER 7: SUMMARY & DISCUSSION ..85

7.1 COSTS & BENEFITS OF PATTERNS ..85
7.1.1 Benefits ...85
7.1.2 Costs ...86
7.1.3 Risks..87

7.2 AVAILABLE RTOO PATTERNS..88

 vi

7.2.1 Current State of the Literature ..88
7.2.2 Pattern Quality...88

7.3 CONVERGENCE OF TOOLS FOR RTOO MODELING AND DESIGN PATTERNS89
7.4 FUTURE RESEARCH..90

7.4.1 Tool Implementation ..90
7.4.2 Other Pattern Types...90
7.4.3 Inter-pattern Relationships..91

7.5 CONCLUDING REMARKS..91

BIBLIOGRAPHY..92

APPENDIX A: ALEXANDER’S WINDOW PLACE PATTERN..98

APPENDIX B: GANG OF FOUR DECORATOR PATTERN...102

VITA ..111

 vii

LIST OF TABLES

Table 5.1: RTOO Patterns Exhibiting the Alias Relationship ..66
Table 5.2: RTOO Patterns Exhibiting the Uses Relationship...67
Table 5.3: RTOO Patterns Exhibiting the Specializes Relationship ..67
Table 5.4: RTOO Patterns Exhibiting the Alternative Relationship ..68

 viii

LIST OF FIGURES

Figure 2.1: Structure of a typical system derived from a Framework ..10
Figure 3.1: Basic Elements of a Real-time System...13
Figure 3.2: SDL Diagram (from [Web00]) ...20
Figure 3.3: ROOM Diagram..21
Figure 3.4: A Simple State Diagram..22
Figure 3.5: Statechart for a multi-function watch (from [Har87])..22
Figure 3.6: Rational Rose-RT 6.1 Screen Capture..24
Figure 4.1: Speech Recognition Framework...36
Figure 4.2: Schematic picture of a typical vessel control system ...38
Figure 5.1: Example of Pattern Hierarchy Relationships (from [PS97])..69
Figure 6.1: Tool Convergence ...77

1

C h a p t e r 1

CHAPTER 1: INTRODUCTION

This thesis will extract from the patterns literature a set of patterns dealing with issues relevant to

the design of real-time object-oriented software (in order to demonstrate their variety and quality) -

then will propose an extension to Rational Rose-RT to support patterns as an abstraction layer.

1.1 Motivation

Two recent trends provide the major motivation for this research:

1. Once a very specialized domain focused on hardware and low-level software programming,

real-time software development is increasingly part of the mainstream, with well-established

RT-specific software development tools (e.g. Rational Rose-RT [Rat00c], Objectime Developer

5.2 [Obj00], i-Logix Rhapsody [iLo00a] and Statemate Magnum [iLo00b], and Telelogic Tao

[Tel00]) based on the object-oriented methodology.

2. The ‘pattern’ concept originated by Christopher Alexander (a building architect [AIS77, Ale79,

AS+75]) in the 1970s has become very popular among computer scientists as a means of

documenting recurring software design problem/context/solution triples.

Real-time developers often resort to hardware or low-level language programming because of

efficiency requirements imposed by the target system’s limited memory and processing power. As

the cost of hardware decreases, developers must consider the tradeoff between hardware costs and

software development costs, and decide whether to focus on optimizing hardware usage, or to apply

software abstraction to reduce the costs associated with the software. Object-oriented programming

languages (e.g. Ada95 [ISO95] and C++ [ISO98]), and design notations (e.g. ROOM [SGW94],

UML [BRJ99]) make software easier to develop and understand - thereby decreasing initial

software costs while improving maintainability and reusability. Real-time Object-oriented (RTOO)

modeling tools (e.g. Rational Rose-RT [Rat00c], Objectime Developer 5.2 [Obj00], i-Logix

2

Rhapsody [iLo00a] and Statemate Magnum [iLo00b], and Telelogic Tao [Tel00]) allow developers

to focus on software design by automating the generation of RTOO source code from models.

Unfortunately, object-oriented design is difficult, and significant experience is required to become

proficient. The pattern form has recently become popular among OO designers as a means of

capturing experience in terms of solutions to recurring design problems. A wealth of design

experience documented as ‘patterns’ currently exists, describing many ways of dealing with the

complex issues faced in the development of all types of object-oriented software – including RTOO

software.

1.2 Problem

In general, the research problem addressed by this thesis can be described as follows:

“Expertise distinguishes a novice from an expert, and it is difficult for experts to convey
their expertise to novices. Capturing expertise is one challenge, communicating it is
another, and assimilating it is yet another.” [BF+96]

This statement is particularly true for object-oriented design, and for the design of real-time

software. Fortunately, there currently exists a method of documenting design experience (design

patterns), and for transforming designs into source code (RTOO modeling tools). Thus, the specific

research problem becomes: “How can we facilitate capturing, communicating and assimilating

design patterns in the context of RTOO structure and behaviour models?”

1.3 Objectives

The objectives of this thesis are as follows:

• Provide thorough background for design patterns and RTOO modeling.

• Discuss costs and benefits of pattern use, based on available experience reports from the RT

software domain.

• Summarize and classify the existing design patterns for RTOO software.

• Propose an extension to the Rose-RT toolset to support patterns as an abstraction layer.

3

1.4 Organization of Contributions

Background information on patterns (Chapter 2) and real-time object-oriented modeling (Chapter 3)

put the research in context. In Chapter 4, the validity of the proposed research is discussed; an

overview of existing case studies and experience reports from the RTOO domain demonstrate that

design patterns are applicable to the domain, and that tool support is necessary to deal with the

quantity and disorganization of the patterns literature. Next, a critical survey of design patterns for

RTOO software (Chapter 5) describes the varied and extensive nature of the existing design and

experience documentation available through patterns. Chapter 6 presents an overview of the variety

of design patterns tools; followed by a description of the extensions necessary to make Rational

Rose-RT support design patterns. Summary and conclusions are presented in Chapter 7.

4

C h a p t e r 2

CHAPTER 2: PATTERNS

One of the most interesting aspects of design patterns is that they are nothing new; instead, they

describe proven solutions to recurring problems based on actual experience. Ralph Johnson

describes the movement philosophically:

“One of the distinguishing characteristics of computer people is the tendency to go ‘meta’
at the slightest provocation. Instead of writing programs, we want to invent programming
languages. Instead of inventing programming languages, we want to create systems for
specifying programming languages. There are many good reasons for this tendency, since a
good theory makes it a lot easier to solve particular instances of the problem. But if you try
to build a theory without having enough experience in the problem, you are unlikely to find
a good solution. Moreover, much of the information in a design is not derived from first
principles, but obtained by experience.” [Joh94, p. 50]

This chapter presents first the philosophical origins of the ‘pattern’ idea, followed by a discussion of

the application of patterns to software.

2.1 Pattern Origins – Christopher Alexander

The Pattern entity was originally defined by Christopher Alexander (a building architect [AS+75,

AIS77, Ale79]) in the 1970s:

“Each pattern describes a problem that occurs over and over again in our environment and
then describes the core of the solution to that problem in such a way that you can use this
solution a million times over without ever doing it the same way twice.” [AIS77, p. x]

Alexander sought to capture (as patterns) that which makes structures and spaces comfortable and

beautiful – what he called the ‘Quality Without A Name’ (QWAN). He believed that given a set of

patterns, individuals could design for themselves spaces that met their needs – functionally and

aesthetically.

5

To illustrate Alexander’s patterns, the full text of the Window Place pattern from A Pattern

Language [AIS77] has been included in Appendix A.

2.1.1 Pattern Languages

Notice in the example pattern from Appendix A that Alexander explicitly refers to other patterns

that could be applied either prior to, or immediately after the current pattern. This is because in

Alexander’s view patterns do not stand on their own; instead, they belong to cohesive collections

called ‘pattern languages’. The patterns in a pattern language each contribute to the resolution of

forces in a given problem space, and are linked together in such a way that a designer can work

through the language from coarser to finer grain patterns.

At the beginning of each pattern description, Alexander refers to the patterns that come above in the

language and in which the pattern can be embedded. At the end of each pattern description,

references are supplied to smaller patterns that help completing the pattern. The systematic

application of patterns leads to something that Alexander calls compression (harmonizing multiple

patterns in a single design – e.g. using the Window Place pattern in conjunction with the Light On

Two Sides Of Every Room pattern). The notion of compression is in fact a very significant concept

– one that makes patterns very powerful, while at the same time making the automation of their

application difficult.

2.2 Software Patterns

In the decade that followed the publication of Alexander’s trilogy of pattern books, object-oriented

software designers began examining and applying his ideas. Most notable of the early efforts were

Kent Beck and Ward Cunningham, who developed a simple five pattern language [BC87] for user

interface design in SmallTalk; the patterns – Window Per Task, Few Panes, Standard Panes, Nouns

and Verbs, and Short Menus – helped novice designers take advantage of Smalltalk's strengths and

avoid its weaknesses. The benefits of the Alexandrian pattern form were beginning to be recognized

6

in the object-oriented community, with sessions devoted to patterns at OO conferences becoming

more frequent.

In the early 1990s, a variety of patterns related research was being conducted in parallel: Erich

Gamma was working on design patterns (attempting to capture recurring design structures in the

ET++ [WGM88] application framework) as part of his Ph.D. research; James Coplien was

developing a set of C++ idioms [Cop92] – essentially low-level, or language specific, patterns; the

Hillside group [Hil00] was formed (including Cunningham, Beck, Desmond DeSouza, Norm Kerth,

Doug Lea, Wolfgang Pree, and others) and coordinated the first annual Pattern Languages of

Programming (PLoP) conference in 1994; finally, Gamma, along with Richard Helm, Ralph

Johnson, and John Vlissides (thereafter known as the Gang of Four, or GoF) collaborated to write

the now famous book Design Patterns: Elements of Reusable Object-oriented Software [GH+95].

Certainly the most significant of these early efforts was the GoF book, which has been credited with

the current popularity of the movement.

2.2.1 Design Patterns

The GoF define their design pattern as:

“A design pattern names, abstracts, and identifies the key aspects of a common design
structure that make it useful for creating a reusable object-oriented design. The design
pattern identifies the participating classes and instances, their roles and collaborations, and
the distribution of responsibilities.” [GH+95, p. 3-4]

Philosophically, the GoF patterns borrowed significantly from Alexander: context, problem and

solution are explicitly stated; the patterns are carefully categorized, by Purpose (creational,

structural, or behavioural) and Scope (applies to objects, classes, or both); and the inter-

relationships are clearly identified. However, the GoF used a much more formal pattern template

than had Alexander, allowing the reader to clearly see the different components that made up the

pattern. This template follows:

7

“Pattern Name and Classification: The pattern’s name conveys the essence of the pattern
succinctly. A good name is vital, because it will become part of your design vocabulary.
The pattern’s classification reflects the scheme introduced above.

Intent: A short statement that answers the following questions: What does the design
pattern do? What is its rationale and intent? What particular design issue or problem does it
address?

Also Known As: Other well-known names for the pattern, if any.

Motivation: A scenario that illustrates a design problem and how the class and object
structures in the pattern solve the problem. The scenario will help you understand the more
abstract description of the pattern that follows.

Applicability: What are the situations in which the design pattern can be applied? What are
examples of poor designs that the patterns can address? How can you recognize these
situations?

Structure: A graphical representation of the classes in the pattern using a notation based on
the Object Modeling Technique (OMT) [RB+91]. We also use interaction diagrams
[JC+92, Boo94] to illustrate sequences of requests and collaborations between objects.

Participants: The classes and/or objects participating in the design pattern and their
responsibilities.

Collaborations: How the participants collaborate to carry out their responsibilities.

Consequences: How does the pattern support its objectives? What are the trade-offs and
results of using the pattern? What aspect of system structure does it let you vary
independently?

Implementation: What pitfalls, hints, or techniques should you be aware of when
implementing the pattern? Are there language-specific issues?

Sample Code: Code fragments that illustrate how you might implement the pattern in C++
[Str91] or Smalltalk [Win97].

Known Uses: Examples of the pattern found in real systems. We include at least two
examples from different domains.

Related Patterns: What design patterns are closely related to this one? What are the
important differences? With which other patterns should this one be used?” [GH+95, pp. 6-
7]

To illustrate the GoF design patterns, the full description of Decorator is provided in Appendix B.

This pattern is typical of the GoF catalog; its description consists of diagrams and text describing in

detail the problem, potential solutions, tradeoffs between solutions, and related patterns.

8

2.2.2 Other Pattern Types

Since the mid 1990s, the annual PLoP conference has expanded to Europe (European Pattern

Language of Programming conference), to Arizona (ChiliPLoP) and to Australia (KoalaPLoP).

These conferences provide a forum for pattern discussion and facilitate the iterative pattern

development process. By pairing the pattern writer with a mentor (often referred to as a ‘shepherd’)

from the pattern community, the pattern is refined and integrated with the existing patterns. Many of

the best patterns arising from these conferences have been published in a series of books

[CS95,VCK96, MRB97, HFR99]. While design patterns (particularly object-oriented design

patterns) remain the most popular of the software patterns, researchers and practitioners have

proposed a variety of other types. These include: Organizational Patterns, Analysis Patterns, Process

Patterns, Idioms, and Anti-Patterns.

2.2.1 Organizational Patterns

Organizational patterns [Cop00], promoted chiefly by James Coplien of the Systems and Software

Research Center at Bell Laboratories [Sys00], describe problem/context/solution triples for dealing

with organizational issues such as team structure and collaborations. Examples of Coplien’s

organizational patterns include Self-selecting Team and Apprentice.

2.2.2 Analysis Patterns

Analysis patterns have been proposed by a variety of authors, principally Martin Fowler [Fow97,

Fow99a], Coad et. al. [CNM95], and David Hay [Hay96]. Each author approaches analysis patterns

from a slightly different perspective; the common thread is that they all describe models whose

semantics make them applicable to very specific domains or applications. For example, Fowler’s

patterns use UML to describe recurring analysis models for object-oriented systems, whereas Hay’s

patterns focus on modeling the system data.

9

2.2.3 Process Patterns

Software process patterns [Amb99, Amb98] can be viewed either as a pattern type, or as a subtype

of organizational patterns. Ambler uses these patterns to describe his Object-oriented Software

Process (OOSP), which details how to deal with the following issues (in the context of a medium-

large scale organizations actively using object-oriented technology): “successfully deliver large

applications using object technology; develop applications that are truly easy to maintain and

enhance; manage these projects; and ensure that your development efforts are of high quality”

[Amb00].

The software process patterns are categorized as: Task process patterns, the detailed steps to

perform a specific task, such as the Technical Review and Reuse First process patterns; Stage

process patterns, depicting the steps, which are often performed iteratively, of a single project stage.

A stage process pattern is presented for each project stage such as the Program and Rework stages;

Phase process patterns, the interactions between the stage process patterns for a single project

phase, such as the Initiate and Delivery phases.

2.2.4 Language Specific Patterns (Idioms)

Language-specific patterns, also known as Idioms, have been created for C++ [Cop92] and

Smalltalk [Bec96].

2.2.5 Anti-Patterns

Anti-patterns document solutions to commonly used, yet misguided, attempts at resolving software

problems. Thus, they focus on refactoring existing software. Brown et. al., in their text

AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis [BM+98] have identified

the relationship between design patterns and AntiPatterns:

“The essence of an AntiPattern is two solutions, instead of a problem and a solution for
ordinary design patterns. The first solution is problematic. It is a commonly occurring
solution that generates overwhelmingly negative consequences. The second solution is
called the refactored solution. The refactored solution is a commonly occurring method in
which the AntiPattern can be resolved and reengineered into a more beneficial form.”
[BM+98, pp. 16]

10

Like patterns, anti-patterns can be applied to virtually any conceivable aspect of the software

development process. Brown et. al. identify three perspectives from which anti-patterns may be

particularly relevant: Software Development AntiPatterns comprise technical problems and

solutions encountered by programmers (e.g. Spaghetti Code, Cut-and-Paste Programming);

Software Architecture AntiPatterns identify and resolve common problems in how systems are

structured (e.g. Stovepipe System, Reinvent the Wheel); and Software Project Management

AntiPatterns address common problems in software processes and development organizations (e.g.

Death by Planning, Blowhard Jamboree).

2.3 Related Research

Presented in this section are two research areas closely related to software patterns, frameworks and

refactoring.

2.3.1 Frameworks

Frameworks provide generic and extendible architectures for a family of applications. Knowing

where and how to extend a framework can be very complex; this is exactly the type of

problem/solution pair to which patterns are suited. Frameworks and patterns are thus highly

synergistic: a pattern can be used to describe a framework, and a framework can be written as a

concrete implementation of a pattern. The typical structure of a framework is presented

diagrammatically below:

Figure 2.1: Structure of a typical system derived from a Framework

Library

cClass

cClass

cClass

…
User Application

cClass cClass cClass …

cClass cClass cClass

Framework

cClass cClass cClass

aClass aClass aClass

…

…

…

11

This diagram has three components: the framework consists of concrete classes (denoted ‘cClass’ in

the diagram) and abstract classes (denoted ‘aClass’ in the diagram); the user application consists of

concrete classes that extend the abstract classes in the Framework, as well as any supporting classes

that the application needs; and the library serves as a repository for previously implemented

framework extension classes. Designing a system as an extendible framework has the potential to

make it reusable by other related applications; this is particularly useful when the shared code is

very complex – since the framework can be designed to completely hide this complexity.

2.3.2 Refactoring

Fowler provides the following definition of a refactoring:

“Refactoring (noun): a change made to the internal structure of software to make it easier
to understand and cheaper to modify without changing its observable behaviour.” [Fow99b,
p. 53]

Over time, system architectures tend to degrade – refactoring provides a means of recapturing the

initial design, or evolving the design to make it better suited to changing requirements. Because

refactorings are always confined to a small scope (to ensure that any bugs introduced will be easy to

find), they can be automated [Ref00].

2.4 Summary

Christopher Alexander’s pattern concept has proven useful for documenting recurring problems in

software design (at the architectural and code levels), analysis models, organizational structures,

and other areas of interest to the software community. However, this is a relatively new area in

computer science, and suffers from a lack of standards as to how patterns should be described. This

is complicated by the philosophical nature of Alexander’s work, to which software patterns writers

often turn for inspiration and clarification. As the movement matures, definitions of key terms like

‘pattern’, ‘design pattern’, etc. will be made concrete, and standardized pattern templates, design

notations, and classifications mechanisms should naturally evolve.

12

C h a p t e r 3

CHAPTER 3: REAL-TIME OBJECT-ORIENTED MODELING

Real-time systems must not only be functionally correct, but also timely (i.e. return responses

within a specified time interval). This additional dimension, coupled with the safety-critical nature

of many such systems, makes the design and development of real-time software more difficult than

for most other software. Fortunately, modeling can help:

“Through modeling, we achieve four aims:
1. Models help us visualize a system as it is or as we want it to be.
2. Models permit us to specify the structure or behaviour of a system.
3. Models give us a template that guides us in constructing a system.
4. Models document the decisions we have made.” [BRJ99, p. 6]

Models simplify reality; they allow developers to narrow in on the aspects of the system that they

want, or to back away and view the context. Using currently available RTOO modeling tools (e.g.

Rational Rose-RT [Rat00c], Objectime Developer 5.2 [Obj00], i-Logix Rhapsody [iLo00a] and

Statemate Magnum [iLo00b], and Telelogic Tao [Tel00]), models can be given enough detail to

express complete real-time systems – and even generate their source code for a variety of target

hardware/RTOS configurations.

3.1 Real-time Systems

Buttazzo gives a succinct definition of real-time systems: “computing systems that must react

within precise time constraints to events in the environment” [But97]. The two components of this

definition (timely response, and interaction with an external environment) conspire to make the

design and implementation of such systems particularly difficult. Figure 3.1 shows the relationships

between the basic elements of a real-time system; these elements are described in the sections that

follow.

13

Figure 3.1: Basic Elements of a Real-time System

3.1.1 Environment

By definition, real-time systems must interact with their external environment (i.e. the computer

hardware and software are ‘embedded’ within a larger system, hence the term ‘embedded system’).

For example, the embedded computer controlling an automobile’s ABS braking system must

monitor each wheel’s speed, and apply varying levels of brake pressure as required (including

pulsing the brakes if they approach lock-up). In this example, the real-time system’s external

environment consists of the automobile’s four wheels – it must constantly monitor this

environment, and effect change in a timely manner when required. This example also illustrates the

concurrent and distributed nature of the external environment; the ABS system must monitor four

wheels at the same time – and must potentially respond to four changes occurring simultaneously.

The system has no way of knowing what event (or events) will occur next – but it must be prepared

to deal with any situation in a timely fashion.

3.1.2 Effectors & Sensors

Real-time systems can collect information about their environment via sensors, and can effect

change in the environment via effectors. Hence, the set of sensors and effectors in the system

constrain what environmental changes can be detected, and what actions can be taken to change the

environment. Examples of sensors include temperature sensors and altimeters; examples of

effectors include pressure release valves and ailerons.

Software

Hardware Interface

Effectors Sensors

Environment

14

3.1.3 Hardware Interface

The layer between the real-time application software and the effectors and sensors in the external

system is known as the hardware interface. For example, analog to digital converters are often used

to translate sensor signals to a format readable by the RT-software.

3.1.4 Software

Real-time software must perform three functions:

1. Sample sensor data.

2. Calculate new state based on sensor data and previous state information.

3. Effect change in the environment via effectors.

There are two schemes for gathering sensor data: time triggered or event triggered. In a time-

triggered system, a real-time clock is used to coordinate activities. The system polls sensors at given

time intervals to detect state changes (thus the latency – or the interval between the time when the

environment changes and the time when the change starts to be serviced - is at most the polling

interval). Event-triggered systems wait for the environment to provide notification of changes in

state (making the latency dependent on how many events occur simultaneously).

The processing portion of the real-time software often involves processor intensive calculations to

determine exactly what the external system is doing, and what action needs to be taken to keep the

system running smoothly. The amount of time required to process an input is known as the service

time for that input. Embedded systems are often required to run on processor and memory limited

target hardware; these resources must often be used optimally to keep service time short.

The interval between a change in the environment and effecting corrective action is known as the

reaction time (equivalent to the sum of the latency and the service time) for that change. Ideally,

reaction times will always be less than their pre-defined deadlines – however, this may not always

be required. Real-time systems can thus be classified as either soft or hard real-time, depending on

15

the required relationship between reaction times and deadlines. Soft real-time systems must respond

in a timely fashion; however, some deadlines may be occasionally missed without serious negative

consequence (indeed, there may not even be deadlines). Systems of this type include e-commerce

applications, where transactions must be processed in a timely fashion – but where intermittent

network delays may be tolerated. By contrast, hard real-time systems are those where any missed

deadline can lead to severe adverse consequences (in safety-critical systems, these consequences

can include loss of life). Systems of this type include nuclear power plant control systems,

manufacturing control, and military applications.

3.2 Object Orientation in Real-time Software

Despite its popularity within the software development community at large, object-orientation has

been slow to catch on in the real-time domain. There appear to be three fundamental reasons for

this:

Perceived shortcomings: Real-time software developers have traditionally tried to get as close

to the underlying hardware as possible (despite the additional development costs and

resulting loss of portability). Consequently, the level of abstraction imposed by OO

software constructs is perceived as being too inefficient.

Resistance to change: Because RT software developers often have the added burden of being

potentially responsible for loss of life if their software malfunctions, they are typically very

resistant to change. Consequently, OO technology has been slow to catch on in hard real-

time applications.

Programmer vs. Software Engineer Mindset: Many RT domain specialists are doing RT

coding, and not paying attention to software engineering issues.

Despite these factors, object-orientation is increasingly being used for real-time software. The

benefits, including increased portability, reusability, and maintainability, mean that long-term

development costs of OO software should be much lower than for assembly or procedural code. For

many systems, this means that it may be cost-effective to purchase the processor power required to

16

handle the slightly less efficient software. Additionally, there are ways of alleviating some of the

overhead associated with object-orientation:

Use a profiler to determine where the system should be optimized: A profiler can be used to

determine which methods are used most heavily and changes can be made to improve

performance. In most cases (by Pareto's Law, also known as the 80/20 rule) programs

spend a majority of their running time in a small portion of the code, so there is often an

opportunity for dramatic performance increase for a low cost and with minimal disruption

to design integrity.

Transform OO code at compile/link time: In theory, OO overhead can be taken out by using

a pre-compiler [FP88]. Such a pre-compiler could transform OO code into structured code -

then optimize it. The downside of this technique is the difficulty associated with recovering

the system structure for debugging purposes.

Use a subset of an OO programming language: Subsets of both C++ [Emb00] and Ada95

[Pra00a] have been proposed – which exclude the features most responsible for boosting

memory requirements, reducing efficiency, and making verification complex.

3.3 Real-time Object-oriented Programming Languages

Two of the most widely used real-time object-oriented programming languages are: Ada95 [ISO95]

(an extension of Ada83 [ISO87]) and C++ [ISO98] (a variant of the widely used C [ISO99]

language). For soft real-time applications, non-RT programming languages have also been used

(including Java [Sun95], which has an RT Java specification under development [RTJ00]).

3.3.1 Ada 95

Ada95 [ISO95] emerged from the Ada83 [ISO87] standard; it consists of the core language, and six

annexes (Systems Programming, Real-time Systems, Distributed Systems, Information Systems,

Numeric Algorithms, Safety and Security). Ada83 already offered encapsulation in the form of

packages, but Ada95 added additional object-oriented features (including polymorphism and

inheritance). Programs written in Ada95 are composed of one or more ‘program units’, which can

be: subprograms (which define executable algorithms), packages (which define collections of

17

entities), task units (which define concurrent computations), protected units (which define

operations for the coordinated sharing of data between tasks), or generic units (which define

parameterized forms of packages and subprograms). Each program unit normally consists of two

parts: a specification, containing the information that must be visible to other units, and a body,

containing the implementation details, which need not be visible to other units. Most program units

can be compiled separately.

Real-time facilities supported by Ada95 include built-in support for concurrency (tasks),

synchronization and communication (shared variables, protected types, and rendezvous), assigning

priorities to tasks, various dispatching policies (including FIFO queuing and priority queuing, but

also allowing for user-defined policies), interrupts, and access to the computer’s hardware clock

(supporting time intervals in terms of Durations in days, hours, minutes, seconds, etc., or sub-

millisecond ticks).

A subset of Ada95 has been developed (called SPARK [Pra00a]) for use in high integrity

applications – where it is essential that programs exhibit logical soundness, formal definition,

expressive power, security, verifiability, bounded space and time requirements, and minimal

runtime system requirements. The features included in the subset are listed below:

“It includes Ada constructs regarded as essential for the construction of complex software,
such as packages, private types, typed constants, functions with structured values, and the
library system. It excludes tasks, exceptions, generic units, access types, use clauses, type
aliasing, anonymous types, default values in record declarations, default subprogram
parameters, goto statements, and declare statements.” [Pra00a]

SPARK programs must include mandatory formal annotations (including descriptions of variables

used in procedures or functions, and any dependency relations that exist between imported and

exported variables in procedures), and may include optional formal annotations (pre-conditions,

post-conditions, and assertions). The consistency between SPARK code and annotations can then

be checked using automated tools (such as the SPARK Examiner [Pra00b]).

18

3.3.2 C++

C++ evolved from ANSI C [ISO99] and Simula67 [Poo87]; the designers of C++ wanted to add

Simula67’s object-oriented mechanisms (including classes and inheritance) without compromising

the efficiency and power that made ANSI C so popular. Any program written in ANSI C is also a

valid C++ program; C++ does nothing to enforce OOP. Many of the features required by real-time

developers are not supported by C++ directly; for example, concurrency in C++ relies on external

APIs (like POSIX [IEE96]).

A subset of C++ has been proposed for embedded systems, called Embedded C++ (or EC++)

[Emb00]. This subset includes most of the object-oriented concepts of C++, but excludes the

features that are most responsible for boosting memory requirements and reducing efficiency (i.e.

multiple inheritance, virtual base classes, templates, and exceptions). While each of the excluded

language features can be very useful, the penalty for including it in the language (even if it is never

actually used) can significantly affect the performance and determinism of embedded programs.

Compilers (i.e. [Gre00]) designed specifically for EC++ can ensure that excluded features are not

used, and can provide better code optimization.

3.3.3 Java

Despite being initially developed by Sun for embedded applications [Sun95], the Java language has

been most widely used for Internet applications. Java borrows its syntax from C/C++, but resolves

many of the faults of C++: it is not bloated with the entire C language as a subset, pointer arithmetic

is prohibited, and garbage collection is automated. Java is an interpreted language; programs are

compiled to byte code, then run on a Java Virtual Machine (JVM) layered over the target hardware.

This means that a program can be written once then run on any hardware platform that has a JVM.

Java has the potential to be very useful for soft real-time systems: development tools are available

and inexpensive; it is an easy language to learn and use; and the “write once, run everywhere”

promise is very appealing. However, there are issues that must be addressed before the language

19

will see widespread use in this domain: the JVM has a relatively large footprint (the minimal

configuration requires 256-512k of ROM and 256-512k of RAM [Wal98]); and interpreted Java

code is slow (interpreted Java code runs between 10 and 40 times slower than equivalent C code

[Wal98]). As a result, embedded systems using Java must be configured with more memory and a

faster processor. Often these costs cannot be justified by Java’s benefits.

There are areas where Java as it is currently specified has great potential: in systems where memory

and processor limitations are not an issue; and in embedded systems configured as web servers

transmitting applets to their host(s). The latter configuration does not require that the embedded

system have a JVM.

There currently exist at least two ways of dealing with Java’s efficiency limitations: C code can be

embedded in areas where a faster response is required; and a Just-In-Time (JIT) compiler can be

used (which compiles the class files just before they are needed). A real-time specification for Java

is currently under development [RTJ00]; this specification aims to address the following issues:

thread scheduling and dispatching; memory management; synchronization and resource sharing;

asynchronous event handling; asynchronous transfer of control; thread termination; and physical

memory access.

3.4 RTOO Modeling Notations & Tools

Modeling tools help deal with the complexity inherent in the design and development of real-time

software. They allow developers to view the system at various levels of abstraction, and simulate

running the software on a variety of target hardware/RTOS configurations.

3.4.1 SDL

SDL (Specification and Description Language) [ITU93] is a formal and standardized graphical

language intended for the description of complex, event-driven, real-time systems. System structure

is captured as hierarchical partitions (called ‘blocks’); behaviour is captured as processes (described

20

using extended finite state machines) running simultaneously, and communicating with each other

via signals. Figure 3.2 shows the four levels of a typical SDL diagram:

Figure 3.2: SDL Diagram (from [Web00])

The system is partitioned into blocks (Bl1 and Bl2), whose behaviour is implemented by processes

(Proc1 and Proc2), which are described using hierarchical finite state machines consisting of states

(State1) and procedures (Pr1). Two types of communication are supported: asynchronous signals

and synchronous remote procedure calls; communications channels (e.g. C1, C2, C3) and signal

routes (e.g. R1, R2, R3, R4) must be explicitly documented.

3.4.1.1 TeleLogic Tau SDL Suite

The Telelogic Tau SDL suite [Tel00] supports the specification and design of systems using SDL

[ITU93] notation. It consists of a graphical editor and syntax analyzer, a simulator and validator and

several optimized code generators (for C/C++ or CHILL [CHI00] on a variety of targets). It also

integrates with the Telelogic Tau UML Suite [Tel00] (for requirements capture and use case

description), and with the Telelogic Tau TTCN Suite [Tel00] for testing.

3.4.2 ROOM

Models in Real-time Object-oriented Modeling (ROOM) format are composed of elements of the

following types: Actors (classes that define independent, concurrent objects); Protocols (classes that

define the messages to be used for inter-actor and actor to runtime system communication); Ports

(actor interfaces, used to accept or relay messages); and Data (additional classes used to define the

data stored by actors or carried in messages). ROOMCharts (essentially an extended state machine

21

notation) and structure diagrams are used to describe the behaviour and structure of the system.

Figure 3.3 shows a simple ROOM diagram (Structure Diagram and ROOMChart) for a Dyeing Run

Controller Actor [from SGW94]:

Figure 3.3: ROOM Diagram

The Structure diagram shows that the actor has five ports (in this case they are endPorts – meaning

that DyeingRunController can receive messages on them) and no internal actors. The ROOMChart

shows the top state and six legal substates for the actor; given more detail it would be possible to

examine each state transition to see the triggers, and to examine states and transitions to see the

associated code.

3.4.2.1 Objectime Developer 5.2

Objectime Developer 5.2 [Obj00] is a software development tool that enables software developers

to generate complete applications from ROOM models. Developer 5.2 also supports: Message

Sequence Charts (MSCs) [ITU96], for expressing the intended behaviour of a system and for

automatically verifying this behaviour at run-time; model level debugging, including state-machine

animation and breakpoints; and integration with third party source debuggers, compilers,

configuration management and operating systems.

3.4.3 Statecharts

Statecharts [Har87] were originally developed by David Harel as an extension to state diagrams

(shown in Figure 3.4), for expressing the reactive behaviour of systems.

22

Figure 3.4: A Simple State Diagram

The state diagram in Figure 3.4 shows a state machine with three states (Initial, ‘Idle’, and

‘Running’), and three transitions (initial, ‘Start’, and ‘Stop’). When the object is in one of the states,

it is performing some activity (processing) and waiting for some event (occurrence of a stimulus that

can trigger a state transition). When the right combination of events and conditions occurs, flow of

control follows a transition from one state to the next.

The base notation for Harel’s statechart is the same as for a state diagram (states, transitions, events,

conditions, etc.), but is extended with AND/OR decompositions, inter-level transitions, and a

broadcast mechanism for communicating between concurrent components. The statechart in Figure

3.5 shows many of these features:

Figure 3.5: Statechart for a multi-function watch (from [Har87])

Running

Start

Stop

Initial

Idle

23

States can encapsulate other states, representing abstractions for the state diagram encapsulated and

allowing the description of common properties. Typically, only one substate can be active at a time

(XOR decomposition); however, a dashed line can be used to represent orthogonality, meaning that

for each of the subsystems one of the states is active (AND decomposition). Finally, ‘H-entrances’

substates can be defined, that keep a history of the most recently active substate, so that when flow

of control returns to the state, it will be redirected to that substate.

3.4.3.1 i-Logix Statemate MAGNUM

The core of the Statemate MAGNUM [iLo00b] modeling language is the statechart (used to specify

reactive behaviour of objects); system structure is modeled using Activity-charts (flow of data

between classes) and Module-charts (physical structure). The i-Logix Statemate MAGUM toolset

[iLo00b] is based on this language – and allows developers to graphically model, simulate, analyze,

verify, and prototype the functionality and behaviour of complex embedded systems.

The major features of the Statemate MAGNUM toolset are: (1) Visual requirements validation

using scenarios; (2) Automatic generation of Ada, C, VHDL, or Verilog code from models; (3)

Visual animation of the running model; (4) Rapid prototype development; and (5) Complete

mathematical specification of the design is generated as the system models are developed, that can

be checked against the requirements specification.

3.4.4 UML

The Unified Modelling Language (UML) [BRJ99] was developed by combining features from the

following methods: Booch, Jacobson’s OOSE (Object-oriented Software Engineering),

Rumbaugh’s OMT (Object Modeling Technology), Fusion, Schlaer-Mellor, and Coad-Yourdon.

The result is a modeling language with Structural diagrams (Class diagram, Object diagram,

Component diagram, and Deployment diagram) and Behavioural diagrams (Use case diagram,

Sequence diagram, Collaboration diagram, Statechart diagram, Activity diagram). These nine

24

diagram types provide tremendous flexibility, and can be used throughout the software development

process.

There have been at least two proposals for real-time extensions to UML: the first [SR98] by Bran

Selic and Jim Rumbaugh - the second [Dou97] by Bruce Douglass.

3.4.4.1 Rational Rose Realtime 6.1

Rational Rose Realtime [Rat00c] extends the Rational Rose [Rat00b] visual modeling tool with

model execution and code generation capabilities from Objectime Limited [Obj00]. Models are

built using active objects (called capsules) that interact with each other through signal-based

boundary objects called ‘ports’. Each capsule has an associated state machine (which specifies its

functionality); complex capsules can also contain sub-capsules. Complete C or C++ based

executables can be generated directly from the UML models – for a variety of hardware/RTOS

targets.

Figure 3.6: Rational Rose-RT 6.1 Screen Capture

25

Figure 3.6 shows how a system can be specified in Rose-RT: (1) system specifications are described

as use case diagrams; (2) class diagrams are used to describe classes and their associations; (3)

hierarchical state machines are used to capture the behaviour of capsule classes; and (4) capsule

structure is captured using structure diagrams. Other supported UML diagrams include

collaboration diagrams, sequence diagrams, component diagrams, and deployment diagrams.

3.4.4.2 i-Logix Rhapsody

i-Logix Rhapsody [iLo00a] is a UML-compliant visual programming environment. Functional

requirements are captured as use cases, and design as UML models (Class diagrams capture static

structure; Sequence and Collaboration diagrams capture interactions among objects; and Statecharts

capture reactive behaviour of classes). Models can be animated; translation from models to C, C++

or Java code is completely automated.

3.5 Summary

This chapter has discussed the wide range of OO programming languages (e.g. Ada95 [ISO95],

C++ [ISO98], and Java [Sun95]), and design notations (e.g. ROOM [SGW94], and UML [BRJ99])

that can be used for the design and development of real-time software. These technologies have the

potential to assist in the design of real-time software that is more portable, reusable, and

maintainable.

Object-oriented technologies are not appropriate for every software project, in part because the

abstractions introduce memory and processing overhead. However, these extra resource needs can

be minimized with good design and by using optimization techniques. In particular, using an OO

programming subset (e.g. SPARK Ada [Pra00a] or Embedded C++ [Emb00]) ensures that the most

inefficient and unpredictable language features will not be used, and helps the compiler with its

optimization.

26

For those systems where OO is applicable, RTOO modeling tools (e.g. Rational Rose-RT [Rat00c],

Objectime Developer 5.2 [Obj00], i-Logix Rhapsody [iLo00a] and Statemate Magnum [iLo00b],

and Telelogic Tao [Tel00]) can aid the development process by helping to abstract away low-level

details – allowing users to focus on design. Developers use the tool to create ‘executable models’,

typically including some form of hierarchical state machine to specify system behaviour, and

structure diagrams that allow individual FSMs to relate to one another, support scaling up,

decomposition and separation of concerns. These models can then be animated, simulated on the

host, and ported to a variety of target hardware/RTOS configurations.

27

C h a p t e r 4

CHAPTER 4: EXPERIENCES WITH RTOO DESIGN PATTERNS

Speaking at OOPSLA ’99, Alexander asked the following question about the value of patterns in

software development:

“I understand that the software patterns, insofar as they refer to objects and programs, and
so on, can make a program better. That isn't the same thing, because in that sentence
‘better’ could mean merely technically efficient, not actually ‘good.’ Again, if I'm
translating from my experience, I would ask that the use of pattern language in software has
the tendency to make the program or the thing that is being created morally profound -
actually has the capacity to play a more significant role in human life. A deeper role in
human life. Will it actually make human life better as a result of its injection into a software
system?” [Ale99]

Software pattern writers tend to be more pragmatic, and enjoy the superficial benefits of the pattern

form. This chapter will discuss some of these perceived benefits; serving both as background for the

design patterns presented in the next chapter, and as validation of the proposed research into tool

support for RTOO design patterns.

4.1 General Design Patterns Experiences

This chapter is organized in 6 parts: Industrial experience with design patterns; Patterns in practice;

Pros and cons of adopting and applying design patterns; Using design patterns to develop reusable

OO communication software; Using design patterns against a moving target; and How to preserve

the benefits of design patterns. The experiences discussed are not all RTOO specific, but they

discuss some general costs and benefits of using patterns.

4.1.1 Industrial Experience with Design Patterns

Kent Beck (First Class Software), James O. Coplien (AT&T), Ron Crocker (Motorola, Inc.), Lutz

Dominick (Siemens, AG), Gerard Meszaros (Bell Northern Research), Frances Paulisch (Siemens,

28

AG), and John Vlissides (IBM Research) collaborated to present their experiences with design

patterns in [BC+96]. This is a widely cited article on the costs and benefits of pattern integration by

some of the major proponents of the approach.

Kent Beck’s contribution revolves around his work on a set of Smalltalk Best Practice Patterns

(SBPP) [Bec96]; these are language-specific patterns meant to describe the ‘habits’ of expert

Smalltalk programmers. Even in a fairly rough form, the SBPP was used successfully in two

projects: the first with a team of five developers at Hewitt Associates, the second with 25-30

developers at Orient Overseas Container Limited (OOCL). Beck suggests that the positive effects of

using his patterns include better communication within teams, improved code quality and increased

quantity of produced code. This is not to say that patterns are a silver bullet [Bro87]: “Patterns solve

a limited (but critically important) set of communication problems with team development, and

make individuals more productive. They cannot substitute for effective project management.”

[BC+96, p. 105]

James Coplien describes three of the ways in which patterns have been applied at AT&T: Design

patterns have been used to describe the architecture of high-availability fault-tolerant

communications systems; organizational patterns have been used to document effective software

development processes and organization; idioms (language-specific patterns) have been used to

capture low-level language-specific programming techniques. Observed benefits of pattern use at

AT&T include: Pattern mining (extracting patterns from existing code) has proven a useful method

for documenting design architectures; mined patterns can then be applied to new projects,

facilitating the design of new architectures; the resource base provided by patterns facilitates the

analysis of new project requirements, which helps to determine feasibility and assign deadlines; and

Process patterns have been used to assess the ‘health’ of development groups.

Ron Crocker describes experiences by Motorola’s Cellular Infrastructure Group (CIG) with design

patterns as a means of achieving ‘large-grain’ reuse. Previous reuse efforts within the group had

29

been relatively unsuccessful, due to strong coupling of OO artifacts within products, and near-

sightedness. The reuse effort was further complicated by communication problems between

developers and software architects (architects used a different terminology, and were not available

for reference). The solution: “…use design patterns to capture problem-domain-specific entities in

an implementation-independent way for sharing across projects (and products)” [BC+96, p. 107].

Gerard Meszaros describes two types of patterns that were in use at Bell Northern Research (BNR):

Process/method patterns, which describe design methodology and patterns of behaviour which may

lead to good architectures; and technical patterns, used for defining the technical aspects of

communications system architecture. Meszaros reflects on the impact of patterns at BNR as

follows: “…communication between people with a ‘shared space’ of patterns is quicker, more

complete, and less likely to be misunderstood.” [BC+96, p. 109] Further, he observed three

personality types (with respect to patterns): “…those who see patterns everywhere and can describe

them, those who can recognize patterns but can not describe them easily, and those who are

oblivious to the patterns surrounding them.” [BC+96, p. 109] Meszaros suggests that the majority of

individuals are of the second type; only a very small percentage of developers belong to one of the

two extremes. These observations suggest that most developers can successfully apply patterns, and

once they do, a significant improvement in communication (with many resulting benefits) will

follow.

Francis Paulisch & Lutz Dominick describe the results of a project for Siemens, AG investigating

the effectiveness of applying patterns to technology oriented applications like the process control of

steel mills. Their experiment involved three steps: First, a team consisting of two domain experts

and two patterns experts met to develop an initial set of patterns; Second, these patterns were made

available online – allowing all developers to access the patterns, and providing a forum for

suggesting refinements and adding new patterns; third, pattern usage was analyzed. The creation of

the initial set of patterns took approximately three meetings; yielding a set of patterns that met the

30

criteria that they correctly represent the problem solution pair, and that they be a useful

representation of knowledge demanded by their projects. These patterns were made available as an

online catalog, which facilitated searching and made it possible to represent the set of patterns

graphically in several formats. Initial analysis suggested that the patterns were well received, but

that tool support became necessary for more than 30 patterns.

John Vlissides’ consulting experiences on software projects with a variety of companies lead him to

the realization that most face similar problems. Two ‘irritants’ repeatedly surfaced: The first irritant

was the difficulty associated with getting a proper picture of the system’s architecture. Faced with

one spaghetti class diagram after another, Vlissides was forced to resort to ‘interrogation’ to get an

understanding of the relationships between components in the system. A related irritant was the lack

of documentation for design changes. Without explanations for why a design change (large or

small) was made, Vlissides repeatedly found himself in the position of blindly reverse engineering

design choices. Design patterns inherently address these two fundamental problems. They provide a

mechanism for communicating design, while explicitly documenting its rationale.

The six experience reports presented in this paper describe applications of patterns in a variety of

contexts. Despite a lack of quantitative data on the benefits of patterns, experiences from members

of the community suggest that their impact can be significant – and positive. The perspectives

presented are those of patterns advocates; however, their discussion on the benefits of patterns is

balanced with common-sense advice on how to properly use patterns, and how to avoid potential

pitfalls. Particularly interesting are the ways in which the various organizations have dealt with the

inherent complexity and variety of patterns. Each has developed internal mechanisms for

classifying patterns, and many have developed tools for making pattern access easier.

31

4.1.2 Patterns in Practice

Richard Helm (DMR Group Inc.) presented "Patterns in Practice" [Hel95] at OOPSLA ‘95. Data

for this report comes from two years experience with CEE - a cellular network management and

engineering system developed by DMR in collaboration with Ericsson Communications. Helm

makes several observations:

• Patterns are applicable throughout the system and across domains.

• Patterns cover a large portion of a system’s design and architecture.

• Patterns can be used to describe relationships/couplings between sub-systems.

• The proportion of pattern specific code is very small.

• Designs based on patterns seem more robust to requirements changes, are more reusable, and

lessen the need for class refactoring and re-design.

• Patterns provide a shared vocabulary.

• Patterns provide a ready resource for less experienced team members to rapidly produce

effective designs.

• There are dangers in naively applying patterns to the design of systems.

• There is a danger in viewing the GoF patterns as “the gospel according to the Gang of Four”.

• OO methodologies and tools need to adapt and take into account patterns during the transition

from analysis to design.

• Patterns influence analysis object models.

• Reconciling pattern-based approach with OO methodologies (which say little about reuse) is

difficult.

• Knowing when to use patterns is difficult.

• When an appropriate pattern is found, the design tends to fall into place.

Helm describes some of the benefits to be gained from pattern integration – while also exposing

some of the potential pitfalls. This balanced discussion brings forward several issues ripe for future

research, particularly in the intersection between OO methodology and design patterns.

32

4.1.3 Pros and Cons of Adopting and Applying Design Patterns

Marshall P. Cline (Paradigm Shift, Inc.) discusses some of the costs and benefits of integrating

patterns in "The Pros and Cons of Adopting and Applying Design Patterns in the Real World"

[Cli96]. Having successfully employed design patterns for a three-year development project (150

OO/ C++ developers), Cline recognized several practical benefits of patterns:

• Design patterns provide a shared vocabulary between developers, designers, and project

management – thereby coordinating the entire process and community.

• The uniform and widespread application of design patterns facilitates passing off code to new

developers or a new team. Design decisions and rationale are captured explicitly in the code,

rather than staying in the heads of the original team.

• Design pattern use improves code quality. Design tradeoffs are explicitly documented, resulting

in architectures that are more robust.

• Design patterns provide means of designing code with ‘hinges’ or ‘hot-spots’ where future

extension can be made. Thus, architectures are more adaptable and extendible.

• Design patterns may even provide solutions that will enable seemingly mutually exclusive

qualities simultaneously.

• Design degradation over time is less likely with code designed using design patterns. Since the

code’s structure is explicitly documented, the probability that a maintenance programmer will

make a change that damages the design is decreased.

Cline also recognizes some inhibitors to pattern application:

• Design patterns have been overly hyped; they are not a ‘silver bullet’, and the consequences of

their use must be understood (since in most cases their benefits do not come without cost).

• Some design patterns are unnecessarily difficult to learn; patterns with unclear names and/or

problem statements can be more of a distraction than a benefit.

• The GoF design pattern categorization mechanism (along purpose and scope axes) does not

reflect the breadth of available patterns.

33

4.1.4 Using Design Patterns to Develop Reusable OO Communication Software

Douglas C. Schmidt (Washington University) documented his experiences with design patterns for

large-scale commercial distributed systems (projects at Ericsson, Motorola, and Kodak) in

[Sch95b]. A long list of lessons learned is provided – including benefits gained from pattern use,

and workarounds for problems encountered. These include:

Rewards should be institutionalized for developing patterns: Schmidt suggests that

corporate policies are needed for rewarding the creators of useful patterns. He found that in

many cases developers saw their knowledge as a competitive advantage over their peers –

and needed some form of incentive (i.e. take the pattern writing into consideration at the

next performance review) to encourage them to share their knowledge.

Patterns may lead developers to think they know more about the solution to a problem

than they actually do: Patterns by their nature address complex problems in an intuitive

fashion – this may lead developers to a false sense of security. In most cases, implementing

the structure described in the pattern in an efficient and portable fashion is very difficult.

The focus should be on developing patterns that are strategic to the domain and reusing

tactical patterns: Development organizations should focus their pattern writing on the

development of domain specific patterns; general purpose (or tactical) patterns should be

reused – not reinvented.

Integrating patterns into a software development process is a human-intensive activity:

Learning to use patterns effectively cannot be done individually; it is most successful

through interactive sessions like pattern reviews or pattern mining exercises.

Implementing patterns efficiently requires careful selection of language features: Design

patterns abstract the architecture of the application, leaving the implementation details up to

the developer. The Gang of Four used inheritance and polymorphism to describe the

structure of their patterns; however, more efficient language features (such as

parameterized types) may be used when high performance is required.

Schmidt’s comments suggest that developers should not blindly use patterns; patterns are a tool that

can facilitate design and improve communication – but they must be used correctly to see these

benefits.

34

4.1.5 Using Design Patterns Against a Moving Target

Kim G. Woodward (DCS Corporation) presented "Heading off Tragedy: Using Design Patterns

Against a Moving Target" [Woo96] at the Second World Conference on Integrated Design and

Process Technology. She suggests that most designs are not static; instead, they must adapt to

changing requirements. Systems must be designed for a ‘moving target’, and patterns can help.

Woodward begins by describing the characteristics of bad design: they are rigid (it is difficult to

make the changes that customers demand); they are fragile (changes made to one part of the

application adversely affect other components); and they are not reusable (coupling is so high that

desirable components cannot be extracted for reuse). Good designs can then be said to be set in

‘mushy concrete’ – resilient enough to meet the system’s demands, but with the flexibility to

change as required. She proposes an eight-step process intended to result in better designs:

“Identify the minimal set of requirements first”: Extract from the requirements definition

those that are not likely to change.

“Design a flexible framework second”: Use the subset of static requirements to build a

framework for the application.

“Search for answers in patterns last”: Design patterns should be used to assist in choosing

implementation methods. Using standard approaches to solving problems helps reuse, and

makes the framework easier to understand.

“Encapsulate, Encapsulate, Encapsulate”: Components which are likely to change should be

encapsulated.

“Write it down”: The system’s design should be well documented, including: rejected and

accepted components of the design, design patterns used, and the rationale for design

decisions.

“Use your tools”: Tools should be used throughout the development lifecycle – not only

during the design phase.

“Keep the design current”: The design should be periodically refactored to reflect the true

architecture of the system and preventing design degradation over time.

35

“Force changes to follow a rulebook”: A rulebook documenting how and when the design

should be changed will help limit changes that damage the original intentions of the design.

Woodward’s proposed eight-step design process relies heavily on patterns: assisting the design of

an original framework based on initial system requirements; providing mechanisms for decoupling

components – thereby facilitating low-level changes; and documenting the purpose and structure of

the original design, so that future changes do not degrade the design.

4.1.6 How to Preserve the Benefits of Design Patterns

Ellen Agerbo and Aino Cornilis (University of Aarhus, Denmark) presented "How to preserve the

benefits of Design Patterns" [AC98] at OOPSLA '98. The authors recognize three fundamental

benefits to be gained from design patterns: They encapsulate experience; they provide a common

vocabulary for computer scientists across domain barriers; and they enhance the documentation of

software designs. Unfortunately, as the number of patterns increases, these benefits may be lost:

“…an overdose of Design Patterns will eliminate two of the three benefits that Design Patterns

offer; they will make it too laborious to find and use the encapsulated experience, and they will

make the common vocabulary too large to be easily comprehended” [AC98, p. 134].

Agerbo & Cornilis’ propose categorizing patterns as: Fundamental Design Patterns (FDP) -

language-independent design patterns solving recurring design problems using original ideas;

Language Dependent Design Patterns (LDDP) - programming language specific design patterns; or

Related Design Patterns (RDP): applications or variations of existing design patterns. Once patterns

of different types have been differentiated, FDPs can be studied for their contribution to the

literature, RDPs can be scanned to assess the particularities of the pattern application, and LDDPs

can be used in a pattern library. As an example, the categorization was applied to the 23 Gang of

Four patterns: twelve of the patterns were categorized as FDPs, seven as LDDPs, two as RDPs, and

two uncategorized.

36

4.2 Design Patterns and Frameworks

This section discusses experiences using design patterns with three frameworks; for speech

recognition, telecommunications, and vessel control.

4.2.1 Speech Recognition Framework

Savitha Srinivasan (IBM) describes the application of design patterns to an object-oriented

framework for speech recognition applications using IBM’s ViaVoice speech recognition

technology [Sri99]. The goal of the framework was to hide the complexity of the speech recognition

technology, thereby facilitating the development of a family of applications that used the

technology. The framework can be represented diagrammatically as follows:

Figure 4.1: Speech Recognition Framework

Figure 4.1 represents the relationship between an application built using the speech recognition

framework, and IBM’s ViaVoice speech recognition engine. The speech application and its

associated GUI are built on top of a core framework, which encapsulates the methods required to

modify the current active vocabulary (the set of words that the speech recognition engine is

listening for) and to retrieve a recognized word from the speech recognition engine. This framework

has been successfully used to build four applications: MedSpeak/Radiology [LV97],

MedSpeak/Pathology [LV97], the VRAD (visual rapid application development) environment, and

a video cataloging tool with speech recognition functionality. The framework was refined in parallel

with application development, such that by the fourth application almost all of the speech

Core Framework

GUI Extension

Speech Application

Speech Recognition
Engine

Recognized Word

Engine Status

Recognition Session

Vocabulary
Definition

37

functionality was in the core framework (whereas earlier applications had up to 25% of the speech

functionality in the GUI extensions).

Design patterns were used extensively in the design of the core framework – particularly in the

design of the ‘hotspots’. The patterns used were classified as ‘Object-oriented’ (Adapter, Façade,

Observer, and Singleton) and ‘Distributed or Concurrent’ (Active Object, Asynchronous

Completion Token, and Service Configurator). Srinivasan suggests that design patterns made the

evolution of the framework easier, and simplified the documentation of framework extensions.

4.2.2 Communication Software Framework

Douglas C. Schmidt (Washington University) and Paul Stephenson (Ericsson, Inc.) discuss the

applicability of design patterns to large-scale communications software in [SS95]. They use as a

case study the evolution of an object-oriented telecommunications framework from UNIX to

Windows NT OS platforms.

The porting of Ericsson’s ADAPTIVE Service eXecutive (ASX) framework from UNIX to

Windows NT was complicated by the different mechanisms used for event demultiplexing and I/O.

Despite not being able to reuse many of the modules in the framework, the underlying architecture

(developed using design patterns) could be reused. Two patterns were discussed in detail: Reactor –

used to decouple event demultiplexing from event handler dispatching; and Acceptor – for

decoupling connection establishment from the resulting service to be performed. Despite

differences in the specifics of the required low-level functionality on the two OS platforms, the

basic structure of these two patterns could be reused effectively.

Schmidt & Stephenson describe mechanisms for maximizing patterns benefits:

Expectation management: Design patterns are no silver bullet; for patterns to be used

effectively, the hype currently associated with them must be dispelled.

38

Wide-spectrum pattern exemplars: Patterns should provide a variety of sample

implementations; ideally, this would be done using a hypertext-enabled browser, so that the

user could simply follow links to sample code.

Integrate patterns with object-oriented frameworks: An extension to the solution above

would be to reference ‘mini-frameworks’ that provide concrete and extendible

implementations of the pattern. Developers could follow the link to the implementation that

interests them, copy the code to the project that they are working on, and extend it.

This case study, and the resulting conclusions, explicitly describes the effects that target

hardware/OS can have on software design. For communication software (complex large scale

software systems typically ported to multiple hardware/OS platforms) the architectural reuse made

possible by correct use of design patterns can be extremely useful.

4.2.3 Vessel Control Systems Framework

Per Dagermo and Jonas Knutsson co-wrote [DK96] as part a report on the DOVER (Development

of an Object-oriented Framework for Vessel Control Systems) project. It was expected that having

an object-oriented framework would lead to reduced software development cost, shorter software

development time, better estimation of development time, and higher quality in future vessel control

systems.

Vessel control is an example of a real-time process control system:

Figure 4.2: Schematic picture of a typical vessel control system

Inputs come from controls in the wheelhouse (WH) and engine control room (ECR), and from

external systems such as the autopilot, GPS and echo sounder; processing determines if and where

39

faults are located, and displays meta-data; and actuators maneuver the ship. Redundancy is built-in

to ensure that the system continues to function even if a component fails (using exceptions), and

timeliness of processing and effecting change is guaranteed (time-triggered mechanism).

The architecture of the framework is not discussed in detail; however, the patterns used in its

implementation were described. The Observer pattern was used to update dependent values in the

system as inputs change; Singleton was used to ensure that a class had only one globally accessible

instance (e.g. to keep a single network manager); Proxy was used to make it transparent that value

objects are located on different nodes; and State to change an object’s behaviour at runtime

depending on current state (e.g. the engine class behaves differently when it is in running state vs.

stopped state).

Dagermo & Knutsson list several observations based on their experience with patterns and

frameworks:

• Migrating from structured C to object-oriented C++ was more difficult than expected

• Design patterns are best learned through experience

• Framework development requires expert knowledge of OO techniques, and of the specific

domain

• Research projects such as DOVER with no short-term profit have lower priority; management

support is needed to keep from having developers pulled in and out of the project.

Preliminary analysis of the DOVER framework suggests a significant reduction in code size, and

significant increases in reuse and code quality. Design patterns proved beneficial to the

framework’s design.

4.3 Summary

The experiences presented in this chapter were from developers in many different domains; each

had their own conclusions about the benefits of patterns – and suggestions for avoiding pitfalls in

40

their application. Despite a lack of quantitative proof (a difficult but very important area for future

research), some general observations can be made based on the consensus of this group of authors:

• Understanding a shared set of patterns can improve communication among team members and

within organizations.

• Design patterns are good at documenting design tradeoffs, and framework extensions.

• Many organizations are developing their own classification mechanisms (often with tool

support) for dealing with the volume and complexity in the pattern literature.

Documenting experience in patterns form has many benefits; unfortunately, the volume and

disorganization of the current literature is a significant impediment to their use. Organizations have

independently developed their own mechanisms for dealing with this issue; this is an area where

standards could be very beneficial and tool support is necessary.

41

C h a p t e r 5

CHAPTER 5: SURVEY OF REAL-TIME
OBJECT-ORIENTED DESIGN PATTERNS

The design of real-time object-oriented software requires dealing with complex issues, which may

include: concurrency, distribution, limited memory and processing power, schedulability,

timeliness, availability, scalability, predictability, maintainability, and portability. This chapter

presents summaries and discussion of design patterns addressing many of these issues. Timeliness

and schedulability issues are notably absent from the collection of patterns, since to the best of our

knowledge they are not addressed in the literature.

The patterns were extracted from the design patterns literature, and organized according to a simple

classification. The top-level classification is by domain specificity – widely applicable RTOO

design patterns are presented first, followed by domain specific RTOO design patterns. The widely

applicable RTOO design patterns are sub-classified by primary author; while the domain specific

RTOO design patterns are sub-classified by the domain to which they apply.

Following the survey of patterns is an analysis of the collection, with discussion of how they form a

pattern language for real-time object-oriented software design. The relationships between the

patterns are made explicit, as are the more incomplete areas of the collection.

5.1 Widely Applicable RTOO Design Patterns

This section presents two sets of patterns and four stand-alone patterns; these are more specialized

than the GoF design patterns, but are generally applicable to real-time software. The first set of

patterns comes from Bruce Douglass of i-Logix, the second set of patterns is a pattern language for

42

concurrent, parallel and distributed systems – developed by a variety of authors, principally Doug

Schmidt of Washington University.

5.1.1 Douglass’ Real-time Design Patterns

Bruce Douglass presents many design patterns for real-time software in [Dou99]. The wide scope of

this text makes it a good starting point for this chapter.

At the highest level, Douglass classifies his patterns as Architectural (design patterns) vs.

Mechanistic (language specific patterns). The architectural patterns are further classified as:

Architectural Support Patterns; Collaboration and Distribution Patterns; Safety and Reliability

Patterns; and State Behaviour Patterns.

5.1.1.1 Architectural Support Patterns

Microkernel Architecture Pattern: Systems can be made more portable by separating

responsibilities into layers (by level of abstraction). Two implementation alternatives are

discussed: open architecture subpattern - in which layers can invoke services of any layer

below; closed architecture subpattern - in which layers can invoke services of only the layer

immediately below.

Six-Tier Microkernel Architecture Pattern: Alternatively, systems can be separated into

layers based on subject areas of interest (or domain). The Six-Tier Microkernel

Architecture pattern divides systems into the following domains: Application, Distribution,

User Interface, Protocol, OS, and Hardware. An open or closed architecture can be used

with this pattern.

5.1.1.2 Collaboration and Distribution Patterns

The first three Collaboration and Distribution Patterns (Container-Iterator, Observer, and Proxy)

come directly from [GH+95]. The Broker pattern is an extension of Proxy:

Broker Pattern: The Broker pattern is applicable in cases when a proxy could not know the

location of objects. An object broker is used to connect object requests with object services.

43

5.1.1.3 Safety and Reliability Patterns

Watchdog Pattern: A watchdog can be used to monitor the behaviour of objects and provide

error correction in case one of them stops responding.

Safety Executive Pattern: A more sophisticated version of the watchdog that provides central

monitoring of objects. The Safety executive typically tracks: watchdog timeouts, software

error assertions, and faults identified by monitors in the Monitor-Actuator pattern.

5.1.1.4 State Behaviour Patterns

Latch State: Used to guard against certain behavior before the required pre-conditions have

been met.

Persistent Latch State: Provide a Latch State pattern that persists in a larger context by

remembering the latch sub-state.

Polling State: Periodically perform an action.

Latched Data: Combine Polling and Latch patterns to retain data even if the system isn’t ready

to process it.

Device Mode State: Model independent device modes of operation

Transaction State: Model different quality of service transaction styles, such as for remote

communications.

Component Synchronization State: General synchronization based on a set of ANDed pre-

conditions.

Waiting Rendezvous: Implement a waiting rendezvous with the Component Synchronization

State pattern.

Timed Rendezvous: Implement a timed rendezvous with the Component Synchronization

State pattern.

Balking Rendezvous: Implement a balking rendezvous with the Component Synchronization

State pattern.

Thread Barrier State: Implements a barrier for n components or threads.

Event Hierarchy State: Perform a general action on a class of events, as well as a specific

action.

44

Unexpected Event: A specialized sub-pattern of the Event Hierarchy Pattern used when it is a

semantic error to ignore an unexpected event.

Random State: Enter a new state using random selection.

Null State: Use the results of a transition action in a guard by inserting a null state.

Watchdog State: Execute a periodic liveness check to ensure the application is continuing

properly by generating a stroke event for the watchdog orthogonal state component.

Keyed Watchdog State: A more elaborate watchdog, which checks for a proper sequence of

events rather than a single stroke event.

Retriggerable Counter State: Decode pulse-modulated information with a retriggerable

counter.

Several of Douglass’ patterns were omitted from the classification above, including: Multi-Channel

Voting; Homogeneous Redundancy; Diverse Redundancy; Monitor-Actuator; Rendezvous;

Semaphore. In most cases UML documents were provided; however, the supporting documentation

was not sufficient. For example, the Semaphore pattern consisted of a reference to a later chapter –

then was never mentioned further.

This text is useful as a reference manual for real-time software since it discusses such a wide range

of topics. However, the patterns are not useful unless they are used in conjunction with an external

classification such as was provided above.

5.1.2 Schmidt et. al.’s Patterns for Concurrent, Parallel, and Distributed Systems

Doug Schmidt (Washington University), in collaboration with other researchers at Washington

University’s Center for Distributed Object Computing [Cen00], has developed several patterns for

concurrent, parallel and distributed (CPD) systems. These patterns have been applied to large-scale

distributed telecommunications, medical imaging, and financial services projects. Examples of

these patterns in practice can be found in the open-source ACE communications framework

45

[Cen00]. Schmidt divides his patterns into four categories: Concurrency, Event, Initialization, and

Synchronization.

5.1.2.1 Concurrency Patterns

These patterns address concurrency issues in multi-threaded systems:

Thread-per-request: The Thread-per-Request pattern [LS96] describes a concurrency

technique whereby a new thread is allocated for every incoming request to a server.

Active Object (Thread-per-Object): The Active Object pattern [LS96] facilitates

synchronized access to an object. When a request arrives at a server, it is assigned a thread

associated with the data object it wishes to access. This simplifies the handling of critical

regions – and reduces the probability of having a thread blocked for an extended period

while waiting for an object to be released (since the thread will not be assigned until the

object is available).

Thread Pool: The Thread Pool pattern [LS96] suggests pre-allocating a pool of threads, which

can then be associated to incoming requests. May be used in conjunction with Active

Object or Thread-per-Request.

Half-Sync/ Half-Async: The Half-Sync/Half-Async pattern [SC95] specifies a mechanism for

improving efficiency of I/O in concurrent systems. Higher-level tasks use synchronous I/O,

while lower-level tasks use asynchronous I/O.

Thread Specific Storage: The Thread Specific Storage pattern [SHP97] allows multiple

threads to use one logically global (but physically specific) access point to retrieve thread-

specific data. Using this pattern results in no locking overhead for each data access, thereby

improving performance and simplifying multi-threaded applications.

5.1.2.1.1 Synchronizer

The Synchronizer pattern [Gra97] was developed by Ennio Grasso of the Centro Studi e Laboratori

Telecomunicazioni (Torino, Italy) as a specialization of the Active Object pattern [LS96]. The

Active Object pattern stipulated that each shared object should have one associated thread – Grasso

suggests that this technique limits concurrency.

Synchronizer: complements the thread-per-request pattern with the synchronization model of

the thread-per-object (Active Object) pattern to avoid unnecessarily waiting on

46

synchronization constraints. Essentially, the Scheduler selects a request that satisfies

synchronization constraints, and assigns it to a thread. This technique allows increased

concurrency over Thread-per-object (since multiple requests can concurrently operate on

the same object), and reduced probability of having threads suspended until

synchronization constraints are met (unlike Thread-per-request, threads are not assigned

until synchronization constraints are met). This pattern uses Proxy and Chain of

Responsibility from [GH+95].

Transactional Synchronizer: the Synchronizer pattern can easily be extended to handle the

two-phased locking policy (growing phase: transaction progressively acquires and retains

locks while active; shrinking phase: locks released when the transaction completes) for a

transaction service. This functionality can be obtained by a simple modification to the

running queue – rather than remove a thread from the running queue when it finishes

processing its request, do not remove it until the entire transaction is complete.

5.1.2.2 Event Patterns

The following patterns describe techniques for handling the occurrence of synchronous and

asynchronous events in event-driven systems.

Reactor: The Reactor pattern [Sch95d] provides a means of implementing concurrency without

using multiple threads. The premise is that the application waits in an event loop until an

event occurs, at which time an event handler is allocated and put into a priority queue. At

given intervals a dispatcher notifies the event handler at the head of the queue that it can

initiate its operation.

Proactor: The Proactor pattern [PH+97] associates with each event handler the handlers for

events that are to immediately follow it. Upon event completion, the associated handlers are

put in the queue.

Asynchronous Completion Token: The premise of the Asynchronous Completion Token

(ACT) pattern [HSP96] is that many RT systems perform long-running operations

asynchronously to avoid blocking the processing of other, higher priority, operations. When

these asynchronous operations complete, they should notify the calling application – not

only that they have finished, but also with some state information. The ACT is used to

associate this state information.

47

5.1.2.3 Initialization Patterns

These patterns document techniques for creation and deletion of objects.

Acceptor-Connector: The Acceptor and Connector patterns [Sch95c] decouple connection

establishment and service initialization in a distributed system from the processing

performed once a service is initialized. A Connector is used to establish a connection with a

remote Acceptor component, and initialize a Service Handler to process data exchanged on

the connection.

Service Configurator: The Service Configurator pattern [SJ97] decouples the instantiation of

services from the time when they are configured. This allows services to be reconfigured at

run-time – particularly useful for reconfiguring communication systems in distributed

environments.

Object Lifetime Manager: The Object Lifetime Manager pattern [Sch99a] is complementary

to creational patterns like Singleton and Factory Method (from [GH+95]). The pattern

defines an Object Lifetime Manager component, which governs the entire lifecycle of

managed objects, from creation to ensuring proper destruction.

5.1.2.4 Synchronization Patterns

The synchronization patterns discuss techniques for improving the efficient synchronization of

objects in concurrent systems:

Double Checked Locking: The Double Checked Locking pattern [SH96] discusses a

technique for reducing synchronization overhead whenever critical sections need to acquire

locks just once. A lightweight conditional test is made before entering the method where

locking will be necessary.

Strategized Locking: The Strategized Locking pattern [Sch99b] ‘strategizes’ (i.e. Strategy

pattern [GH+95]) a component’s synchronization to increase flexibility and reusability

without degrading performance or maintainability. Synchronization strategies (e.g. single-

threaded, multi-threaded using a thread mutex, multi-threaded using a readers/writers lock)

can then be dynamically changed.

Thread-Safe Interface (Also known as Thread-safe Decorator): The Thread-Safe Interface

pattern [Sch99b] is used to avoid self-deadlock (one component acquires a lock, then calls

another method that tries to reacquire the same lock) and minimize unnecessary locking

48

overhead (if a recursive component lock is used, then significant overhead may be incurred

acquiring and releasing locks multiple times across intra-component method calls).

Components should be structured so that locks will only be acquired/released at their

‘border’ (i.e. implementation methods should trust their calling methods, and not acquire or

release locks).

5.1.3 Real-time Constraints as Strategies Pattern

The Real-time Constraints as Strategies pattern [Bus98] was developed by Frank Buschmann

(Siemens AG). It is a special version of the Strategy pattern [GH+95], allowing the decoupling of

real-time specific constraints and behaviour from the service to which they apply. Service methods

are coded as strategies (ignoring timing requirements), while real-time behaviour and constraints are

implemented as hook methods [Pre95]. For example, the service class might call a hook to deal with

deadline misses for the system, or for a particular task.

By decoupling real-time behaviour from processing, RT applications implemented using this

pattern are more portable, easier to modify, and potentially more efficient (as they allow runtime re-

configuration of timing behaviour). The Real-time Constraints as Strategies pattern has been

successfully applied to several real-time applications: including TAO [Cen00] (The ACE ORB, a

real-time object request broker), REFORM [Sch97] (a framework for hot steel rolling mills), and

REBOOT [Kar95] (for its flow control system).

5.1.4 Multithreaded Rendezvous Pattern

The Multithreaded Rendezvous pattern [JPA99] was developed by Ricardo Jiménez-Peris, Marta

Patiño-Martínez, and Sergio Arévalo (Universidad Politecnica de Madrid); it proposes a variant of

the Ada95 [ISO95] Rendezvous synchronization primitive for distributed transactions. The

traditional Rendezvous primitive consists of a single-threaded server that provides a variety of

services, and a set of clients that synchronize (or rendezvous) with the server as part of the calling

49

mechanism. The proposed variant uses a multi-threaded server (one thread associated with each

client), and a forwarder object that forwards calls to the corresponding server thread.

The advantage of using the multithreaded rendezvous pattern is that requests arriving from a variety

of clients do not interfere with one another. The Multithreaded Rendezvous pattern has been applied

successfully to the implementation of the language Transactional Drago [PJA98], an Ada extension

to build fault-tolerant distributed applications that offers rendezvous as a synchronization

mechanism for distributed transactions.

5.1.5 Recursive Control Pattern

The Recursive Control pattern [Sel96] was developed by Bran Selic (ObjecTime Ltd.). It describes

a systematic method for dealing with support functions. Selic explains that these functions

(including system startup/shutdown, failure detection and discovery, preventive maintenance,

performance monitoring and statistics gathering, synchronization with external control systems, and

online loading of new hardware and software) represent as much as 80% of all code written – but

are typically given low priority at design time.

The Recursive Control pattern separates the control and service-providing aspects of a real-time

program - allowing each to be defined and modified independently.

5.1.6 Recoverable Distributor Pattern

The Recoverable Distributor Pattern [ID96], developed by Nayeem Islam & Murthy Devarakonda

(IBM T. J. Watson Research Center), assists developers of fault-tolerant, state-sharing distributed

programs. This pattern focuses on the issues of performance and fault tolerance in distributed

systems, and its usefulness is demonstrated through its successful implementation in two IBM

projects – the Octopus distributed scheduler [IPS96] and a distributed lock manager for the Calypso

file system [MDK91].

50

The Recoverable Distributor is used in systems where state sharing between multiple distributed

processes is required. It provides a facility to manage the sharing in an efficient manner, and

provides recovery facilities in case any of the processors fail. The actual methods used to deal with

data consistency and fault tolerance are abstracted away – meaning that protocols for each can be

set according to the requirements of a particular system.

5.2 Domain Specific RTOO Design Patterns

The patterns in the previous section were generally applicable to real-time software. This section

presents more specialized patterns – applicable to a specific domain. The patterns are classified

according to the type of real-time software to which they apply: Process Control; Communications,

Command, and Control; or Embedded Computer.

5.2.1 Process Control Patterns

Process Control systems involve monitoring sensors, processing to calculate the current state (based

on sensor inputs and previous state), and effecting change in the external system via effectors.

Process control systems must react very quickly to changes in their environment.

5.2.1.1 Design Patterns for Avionics Control Systems

Doug Lea (SUNY Oswego and NY CASE Center) has collected a set of patterns [Lea00] for

Avionics Control Systems (ACS), the main navigation system of an aircraft. These patterns were

developed based on experience with the Avionics Domain Application Generation Environment

(ADAGE) portion of the Domain-Specific Software Architecture (DSSA) project [DSS00].

There are 13 patterns in this collection:

Navigation Models: Represent estimates about the actual state of the aircraft and other real-

world objects (updated continuously based on sensor data).

Objective Models: Represent the desired state of the aircraft.

Error Models: Represent differences between actual and desired state.

51

Action Models: Represent desired effector and display settings, in a form suitable for

manipulating aircraft hardware.

Staging: Helper models interposed for estimation purposes.

Sensors: Inputs to the system.

Effectors: Transduce desired settings into mechanical actions.

Filters: Transform data on its way from component to component.

Guidance Modes: Components that compute objective model values.

Flow: Policies that govern the mechanics of information flow through the system.

Monitoring and Control: Facilities to dynamically track, enable, and alter system

components.

Updates: Protocol allowing components to update each other.

Configuration: Strategies and tools for putting together an instance of the system.

5.2.1.2 Design Patterns for Fire Alarm Control Systems

The Design Patterns for Fire Alarm Control Systems [Mol96] were developed by Peter Molin and

Lennart Ohlsson (University College of Karlskrona/Ronneby, Sweden), for microprocessor based

fire alarm systems. There are five patterns in this collection:

Point pattern: Each sensor/actuator is logically modeled as a set of points whose binary state is

determined internally. This decouples the fire alarm system from the specifics of how a

sensor/actuator determines its state.

Deviation pattern: Sensors and actuators can be in normal state, or in some 'deviated' state

(triggered by a fire, low-battery, faulty, etc.). Rather than store the state of each

sensor/actuator at every microprocessor (which would use up valuable memory resources),

store only information on ‘deviated’ objects and assume everything else valid.

Ticked Object pattern: The role of the fire-alarm system is to sample sensors, do some

processing, then actuate alarm bells/close fire doors/call fire department/ etc. in case of fire.

This functionality could be achieved using multi-threading but at too high a cost. Instead,

use a simple event loop iterating through a list of TickedObject (one for each sensor).

Because each sensor type has potentially different sampling/processing requirements, make

52

a different child of TickedObject for each. This scheme uses the Bridge and Composite

patterns from [GH+95].

Pool pattern: The pool pattern provides a mechanism for keeping a virtual container for all

deviations in the system (accessible from any node in the system). Such a mechanism can

use either remote iteration or the Proxy pattern [GH+95] - allowing querying for a list of all

alarm signals, all faulty system components, etc. An additional benefit of this mechanism is

that, in case of fire (which may destroy portions of the fire alarm communications network)

the unaffected nodes can store physical copies of the disrupted nodes last state.

Lazy State pattern: Fire alarm systems, like most systems, allow user commands to over-ride

the system logic (for testing purposes, to shut off part of the system, etc.). Since the

system's behaviour is modeled using state charts, use the State pattern [GH+95] to

dynamically compute state each time state-dependent behaviour is invoked. This solution

allows new user commands to be added without requiring significant changes to the state

machine.

5.2.2 Communication, Command and Control Patterns

Telecommunications software developers have been quick to embrace the design patterns

movement, and to publish their patterns and experiences with them. Communication, Command

and Control systems gather information from a variety of terminals and sensors, and effect change

through effectors automatically or in response commands from the command post.

5.2.2.1 Pattern Language for Improving the Capacity of Reactive Systems

The Pattern Language for Improving the Capacity of Reactive Systems [Mes96] was developed by

Gerard Meszaros (Bell Northern Research). The ten patterns in the language address issues relevant

to distributed systems operating under heavy load:

Capacity Bottleneck: Customers frequently want to add terminals/users or otherwise allow an

increasing number of requests without buying new hardware. A possible solution is to

determine the bottlenecks for the system - their nature (memory, processing, messaging,

etc.) and location (client, server, network, etc.) - then use optimization techniques on those

elements that truly affect throughput.

53

Processing Capacity: There are three potential solutions when the bottleneck is a lack of

processing power at one of the system components: optimize handlers for frequently

recurring requests; add more processors; reduce the size of each processor's safety buffer.

By understanding the effects of each alternative on system throughput, an appropriate

compromise can be devised.

Optimize High-Runner Cases: When available processor power has already been maximized,

but desired throughput has not been achieved, optimize the handlers for the most costly

requests. Optimizing all handler code is infeasible, so use a profiler to determine where the

system spends most of its resources, and optimize appropriately.

Shed Load: In order to prevent thrashing (wasting resources dealing with requests that it can't

handle - occurs when the number of requests exceeds the maximum which can be

successfully handled) the system should ‘shed’ requests when throughput approaches

capacity.

Finish Work in Progress: Rather than shed requests arbitrarily, choose to shed new requests

over continuations of work in progress. This requires an understanding of the relationship

between requests.

Fresh Work Before Stale: Although a violation of the fairness doctrine, using a LIFO queue

for requests ensures that all handled requests are done promptly. For example, in a

telecommunications system operating at capacity, the oldest requests in the queue are

probably stale anyway (e.g. user has given up waiting, and probably tried again).

Match Progress Work with New: If relationships between requests are known, then it may be

possible to discard multiple waiting requests without processing them. For example,

consider the following scenario from a telecom system at capacity: a user picks up the

receiver, waits for a dial tone, gives up, and then hangs up the telephone. Since the system

is at capacity, it may not get to the request for dial tone until after it processes the ‘hang-up’

event. If the two events are associated, the system can discard the ‘wait for dial-tone’ event

at the same time as the 'hang-up' - without processing it.

Share the Load: If other optimization techniques do not provide the required increase in

throughput, a solution might be to divide the load between more processors. Unfortunately,

adding more processors does not provide a linear increase in processing power (due to

54

inter-processor communication costs incurred). Ideally, move clearly partitioned processing

to the new processor(s) to minimize synchronization costs.

Work Shed at Periphery: In cases of high load, requests may be moving through the system,

only to be shed when they reach a capacity bottleneck. A solution is to inform processing

nodes at the system's periphery of the available processing capacity of the system - thereby

allowing requests to be shed early.

Leaky Bucket of Credits: In order for peripheral nodes to be able to shed requests effectively,

they must be able to recognize when the system is overloaded. A solution is to use a 'leaky

bucket' counter which is kept full by the central processor when the system is not at

capacity. In this way, peripheral nodes can accept requests as long as they have credits in

their bucket (which cause the counter to decrement) and shed them when the bucket is

empty.

5.2.2.2 Pattern Language for Improving the Capacity of Layered Client/Server Systems with
Multi-threaded Servers

Dorina Petriu and Gurudas Somadder (Carleton University) extended Meszaros’ pattern language

[Mes96] with [PS97], introducing the software server as a potential system bottleneck. Distributed

systems are represented using directed acyclic graphs whose nodes represent clients or servers; by

comparing these graphs with performance analysis results from the system under heavy load,

bottleneck locations (client or intermediate server) can be uncovered and addressed. The patterns

explain how to diagram the layered system, how to conduct performance analysis, and how

uncovered software server bottlenecks should be dealt with.

Intermediate Server Bottleneck: This pattern describes a technique for determining if the

bottleneck in an intermediate server is with the software, or the hardware. Such a bottleneck

can occur if the request input queue builds up too rapidly, preventing the underlying

hardware from being used effectively.

Server Multi-threading: If the bottleneck is at a software server using blocking I/O and

communication primitives, then multi-threading should be used. The Thread Per Request,

Thread Per Session, and Thread Pool patterns describe valid approaches.

55

Thread Per Request: Same as the Thread-per-Request pattern from [LS96], described in

section 5.1.2.1.

Thread Per Session: Solution for a small number of sessions: server spawns off a thread for

each incoming session.

Thread Pool: Same as the Thread Pool pattern from [LS96], described in section 5.1.2.1.

Minimized Serial Thread Management: Given a system that implements a Thread Pool,

improve capacity by moving as much of the thread pool management from the main thread

to each of the worker threads.

Multiprocessor: Same as the Share the Load pattern [Mes96], described in section 5.2.2.1.

5.2.2.3 Fault-tolerant Telecommunications System Patterns

The Fault-tolerant Telecommunications System Patterns [AC+96] were developed by Michael

Adams, James Coplien, Robert Gamoke, Robert Hammer, Fred Keeve, and Keith Nicodemus

(AT&T Bell Labs). These patterns are a subset of the pattern language used at AT&T, and focus on

the ‘human factors’ (such systems must provide facilities to assist maintenance personnel) and

‘reliability’ (downtime of no more than two hours in forty years) characteristics of switching

systems developed for the telecommunications industry.

Minimizing human intervention: History has shown that people cause the majority of

problems in continuously running systems (taking incorrect actions, misinterpreting error

messages, etc.). This pattern suggests designing systems to do almost everything

themselves, deferring to the human only as a last resort.

People know best: However, there are cases when the human operator is better able to make

correct decisions. Therefore design the system so that a knowledgeable user can override

the automatic controls.

Five minutes of no escalation messages: When errors occur in continuously running systems,

the human-machine interface can become saturated with error reports that may be rolling

off the screen, or consuming resources just for the intense displaying activity. Rather than

displaying a message for every change in state, display a periodic update message until the

system is back to normal.

56

Riding over transients: Design the system to make sure that potentially transient error

conditions really exist (either by checking several times, or using Leaky Bucket Counters to

detect a critical number of occurrences). This way faults will be detected, but the system

will not waste resources trying to deal with conditions that will go away naturally.

Leaky bucket counters: Same as Leaky Bucket of Credits pattern from [Mes96], described in

5.2.2.1.

SICO first and always: In systems where the System Integrity Control Program (SICO)

coordinates system integrity, be sure to give it the ability and power to reinitialize the

system whenever system sanity is threatened by error conditions. SICO should always be

the highest-level function.

Try all hardware combos: In highly fault-tolerant systems the central controller (CC) must

select a valid configuration (or path through the subsystems), even when some of the

subsystems are faulty. This pattern suggests using a hardware counter representing which

of the configurations is currently being attempted; if the initialization fails, then the counter

is incremented, and the system reinitialized.

Fool me once: In systems where the Try All Hardware Combos pattern is used, the following

scenario may occur: a valid configuration is found, the hardware counter is reset,

application software starts, a software fault causes the system to reboot. To resolve this

fault, the system may loop in reboots (“roll in recovery”), each time returning to the same

configuration. This pattern suggests setting a time interval (using a Leaky Bucket Counter),

then acknowledging only the first counter reset request received during the interval.

5.2.2.4 Telecommunications Distributed Processing Patterns

Another subset of the patterns used at AT&T Bell Labs is Dennis DeBruler’s Telecommunications

Distributed Processing Patterns. These patterns are a work in progress, but have been presented at

PLoP conferences, and are available online [DeB00]. There are 16 patterns:

Define the Data Structure: The initial design of a distributed real-time system can be

overwhelming. A good start is with a data-analysis exercise while ignoring processor

boundaries.

Identify the Nouns: Begin the design stage with a brainstorming session - identifying the

values, attributes, and roles of the system (and giving them precise names).

57

Factor Out Common Attributes: Design for reuse – in order to prevent cutting and pasting

code at the coding stage. Identify relationships between objects, and diagram the

inheritance structure.

Normalize the Roles: Many of the roles derived earlier should be split into multiple roles. Use

normalizing techniques (the removal of undesirable insertion, update, and deletion

dependencies; and the reduction of the need to restructure relations as additional

information is added to the model).

Identify Problem Domain Relationships: Convert many-to-many relationships to two

functional mappings and a new role.

Introduce Virtual Attributes: One problem with a network implementation is that quite a bit

of navigation can be necessary to access an attribute. A solution to this problem is to

provide ‘accessor functions’ for attributes (i.e. pass a pointer to attributes down the

inheritance chain so that all children can easily access its value).

Animate the Data: The important events in the system all relate to the data – i.e. sampling

inputs, processing based on input and state information, effecting change in the external

world. The most generic way of meeting these functionality requirements is to assign each

role to an actor, and map each actor to a processor.

Time Thread Analysis: Time thread analysis involves: (1) list the problem domain

events/transactions that the real-world generates; (2) for each event, trace the causality flow

through the roles of the data structure and note actions performed by each role. The result is

that the actions needed by roles to animate the data are identified.

Determine the Actors: Use objects, callbacks, and Finite State Machines (FSM) to determine

what lines of code get executed when an event happens.

Processes Considered Harmful (Draft): There are three problems with processes: context

switching overhead, wasted stack space, and unnecessary message buffering. Use finite

state machines instead.

Time Granularities (Draft): Determine the granularity required for responses (microsecond,

millisecond, etc.). If granularity is extremely small (and related to processing), dedicate a

processor to the task. Otherwise, use interrupts or queues.

58

Run to Completion (Draft): Avoid interrupts and preemptive scheduling whenever possible.

Instead, allow handlers to run to completion (or voluntarily give up control). Avoid error

handler interrupts by designing hardware with error counters that can be periodically

polled.

Triage (Draft): The importance of an alarm is relative – significant system faults can become

eclipsed by a greater fault. Likewise, a minor fault can sometimes be an indicator of

something more serious.

System-Wide Pressure Gauges (Draft): Put some of the “computing” into the message

transport sub-system. For example, this processing could bundle messages heading for the

same destination, or delete low-priority error messages that may be obscuring (or slowing

the delivery of) high-priority error messages.

Strategy vs. Tactics (Draft): Traditionally, algorithms have been either centralized or

distributed. In many cases (such as with the use of the System-wide Pressure Gauges

pattern for error messages), a hybrid approach would be beneficial.

Don't Retransmit at the Link Level (Draft): Because data will have to be validated at the

higher levels of the protocol stack anyway, don’t bother wasting time and resources re-

transmitting lost data at the link layer. Instead, keep the link layer as fast and efficient as

possible.

5.2.3 Embedded Computer Systems Patterns

Embedded computer systems reside within and are dedicated to monitoring, some physical

equipment. Typically, these systems have limited processor and memory resources, no secondary

storage, and must operate without user intervention. These and other issues make the design of

software for embedded systems difficult.

5.2.3.1 Patterns for Managing Limited Memory

The Patterns for Managing Limited Memory [NW98] were developed by James Noble and Charles

Weir. The patterns presented address issues relevant primarily to programmers of embedded

commercial products such as mobile phones and palmtop computers where the cost of memory is

still a significant development consideration. The patterns are categorized as “high-level and

59

process”, “choose suitable data structures”, “compression”, “secondary storage”, and “read-only

storage”.

The High-level and process patterns are a set of organizational patterns that encourage a memory-

efficient mindset.

Think Small: Imagine the system as smaller than it really is, and encourage every team

member to keep tight control on memory use. Use design and code reviews to get rid of

wasteful features, habits, and techniques.

Memory Budget: Develop a memory budget up-front, allocating resources for the system and

for each component.

Memory Overdraft: Include some flexibility in the memory budget to account for unforeseen

needs.

Make the User Worry: Memory allocations for interactive systems can be difficult to budget;

often it makes more sense to leave memory as overdraft, and let the user manage it.

Partial Failure: When programs run out of memory, choose partial failure or degraded

performance over complete failure.

Do the Decent Thing: When a system runs out of memory, choose to free up memory from

less vital components rather than fail the most important tasks. As the system approaches

memory capacity, notify all running tasks that they should relinquish unnecessary

resources. In extreme cases, less vital components should be told to close down.

Test Small: Use testing techniques that simulate out of memory conditions, to ensure that

Partial Failure and Do the Decent Thing work properly.

Memory Performance Assessment: An alternative approach for developing software for

systems with limited memory is to design the software considering memory constraints

only where they have a significant impact on design, then (if the memory requirements

exceed available memory) locate and optimize wasteful areas.

The Choose suitable data structures patterns encourage the use of data structures that will scale

down to memory-constrained systems:

60

Variable Sized Data Structure: Most data structures in limited memory systems should be

variable sized. As memory requirements change, the data structure should either request

more memory, or relinquish the memory that it no longer needs.

Fixed Size Data Structure: Fixed size data structures should be used for operations for which

it is crucial that memory requirements do not exceed memory available. Aside from

improving the predictability of memory usage, this scheme also simplifies memory

accesses, and reduces the overhead associated with garbage collection and memory

management. Although fixed size data structures will always use more memory than they

need, the overall memory requirements may be less – since the memory management

overhead is not required.

Multiple Representations: Since there is often no one best representation for a data structure, a

single interface should be provided – with multiple concrete implementations. This way the

programmer can choose which implementation is most appropriate for a particular task.

Variants of this pattern include: Dynamic Multiple Representations – which allows

dynamically changing between implementations at runtime; and Basic Type with Object

Wrapper – which suggests using a compressed representation for storage, and wrapping it

in an object for processing.

Once the system has been coded as efficiently as possible, techniques described in the Compression

patterns can be used to shrink the footprint even further. Compression techniques introduce

additional complexity, and possibly reduced performance - these tradeoffs must be carefully

considered:

Sharing: When the same data occurs many times in a program, store it once and allow it to be

shared.

Byte Coding: To reduce the space occupied by program code, compile it to an intermediate

form (byte code) optimized to take up as little space as possible, then use an interpreter to

convert it back to full machine language as required.

String Compression: Use a standard string compression technique to reduce the storage space

required for strings (e.g. strings displayed to the user, database keys, etc.).

File Compression: To reduce the space occupied by data files, use a standard compression

algorithm.

61

Short Names: A simple technique for reducing the amount of memory needed to store source

code or scripting code is to shorten the length of variable names.

Secondary storage (although not available in most embedded systems) gives the programmer access

to lots of cheap memory but at the cost of management complexity and performance. The

Secondary storage patterns provide details of these tradeoffs, and provide useful recommendations:

Program Chaining: If a large program can be broken up into independent ‘pieces’, then only

one piece needs to be kept in primary memory at a time – the rest moved to secondary

storage. The pieces can be chained together so that when one finishes, the next is loaded to

memory and executed.

Data Chaining: The same process can be applied to data; in cases where there is a large

amount of data to be processed, break it up into several smaller pieces, then process them

one at a time.

Autoloading: Divide the system into a main program, and a set of extensions. Move the

extensions from secondary storage to primary memory only when required.

Resource Files: An efficient mechanism for handling static data that will only be needed for

short periods of time is to store it in secondary storage as resource files. Programs can then

request a resource files from a resource manager, which will load it if is not already in

memory. When finished processing the resource file, it is simply unloaded. For example, a

resource file containing the information required to properly display a window in a GUI

system can be loaded and processed when the window is opened, then immediately

unloaded.

Segmentation: Segmentation is an alternative to autoloading. Programs are divided into

segments, which can be loaded and unloaded as required. The division of code into

segments, and the loading and unloading of segments are typically the responsibility of the

programmer.

Paging: Demand paging can be used to give the illusion of more primary memory. Given a

page size, memory is automatically divided into pages, and shuffled between main memory

and secondary storage as required.

62

Another method of conserving main memory is to store static code and data in read-only memory.

The Read-only storage provide strategies for dividing programs into modifiable and static modules,

and for efficiently using read-only memory:

Copy-on-Write: Sometimes code or data stored in read-only memory needs to be changed. A

solution is to copy the code or data to memory, make the change, and then use the copy in

the future.

Hooks: Link read-only code and data together using hooks in writable memory. This way, if a

section of read-only code or data needs to be extended or replaced, all that is needed is to

change the hook.

Pre-initialize Data: Pre-initialize data in the read-only store, then load it directly. This

technique saves the processing time that would be otherwise required to initialize the data

structure.

5.2.3.2 Pattern Language for Simple Embedded Systems

The Pattern Language for Simple Embedded Systems [Bot99] was developed by Mark Bottomley

(Computing Devices Canada); it consists of a framework called The Carousel, and a set of patterns.

The carousel framework relies on the use of a fixed foreground/background cyclic executive

(foreground cycles through I/O and determines new state while background does the data

processing). The following patterns assist in fine-tuning the framework to suite a particular project.

The Carousel: For a system designed around a fixed cycle time, processing time must be

allocated for the Foreground (synchronous I/O, Process, and Update) and Background

(asynchronous) activities. This pattern describes how to classify the various activities in the

system.

The Carousel Rate: Once the system activities have been identified and classified, the carousel

rate must be determined. This pattern describes how to calculate the speed at which the

carousel should ‘spin’.

Too Fast for Me: Many activities will not need to be performed at the Carousel Rate; instead,

keep a ‘step’ counter, and have the slower activities run every N cycles.

63

Asynchronous Activities: Some activities cannot be polled, or require a response time that is

much faster than can be met at the Carousel Rate; these must be handled using interrupts.

Background Activities: The processing time remaining after the foreground activities of the

Carousel are finished can be used to process background activities. This pattern suggests

using a priority queue to select which activity to process next.

Big Calculation: Some calculations may require processing time equivalent to many cycles.

These calculations must be examined to determine their total processing requirement,

latency and update frequency – then broken down into foreground, background, and

interrupt activities.

Nap Time: For systems with power saving requirements, the background processing time

remaining after all activities have been processed can be used to put the micro-controller

and possibly associated peripherals into an idle (keep the peripherals running) or power-

down mode.

Maintenance Check: Sanity checking for safety and/or functionality should be conducted

regularly. These activities should be assigned to the Carousel as appropriate.

Sharing: Often inputs and outputs will share common hardware (e.g. sensors, digital I/O ports,

and communication busses). As a way of than multiplexing or de-multiplexing the data on

these shared resources, use virtual I/O. This makes I/O handling simple and consistent.

Sensor Filter: Since many input signals will not be clean, some processing and filtering will be

required to prepare them for use in the rest of the system. This pattern suggests passing

inputs through the Noisy World and the Perfect World filters consecutively.

Noisy World: The Noisy World uses five filters to extract the signal from the noise: (1)

sensor/converter health to verify that the converter believes that the signal conversion is

valid; (2) anomaly clipping to filter large noise spikes; (3) averaging filter takes the average

of several samples; (4) dead banding filter which ignores low-level noise; (5) result re-

scaling filter to convert the scale used by the sensor to a more useful unit (e.g. to convert a

binary sensor value to p.s.i. or kPa).

Perfect World: Once the signal has been extracted from the noise, the Perfect World filter is

used to condition it for use by the remainder of the system. Three filters are used: (1) cross-

coupling filter which combines multiple inputs to create or calibrate a sensor; (2) soft

limiting filter to restrict the range of acceptable values (e.g. to report zero rather than a

64

negative value); (3) default/override filter to decide how to handle faults reported by Noisy

World.

5.2.3.3 Patterns to Ease the Port of Micro-kernels in Embedded Systems

The Patterns to Ease the Port of Microkernels in Embedded Systems [deC96] were developed by

Michel de Champlain (University of Canterbury, New Zealand). The purpose of these patterns is to

facilitate the design of portable micro-kernels.

Object Manager: The Object Manager pattern encapsulates the implementation and

management of a set of simple and predictable abstractions (descriptor stack, priority

queue, and delta list). This pattern is very similar to Schmidt’s Object Lifetime Manager

pattern [Sch99a], but differs in that the allowable abstractions (objects with methods and

data) are explicitly specified.

Timer: The Timer pattern decouples timing from scheduling functionality. The simple

mechanism periodically updates delta list objects with the current time, and detects the

presence of expired objects.

Scheduler: The Scheduler pattern allows dynamic scheduling policy selection (i.e. by priority,

by earliest deadline, or by rate monotonic analysis). This pattern is essentially a

specialization of the GoF Strategy pattern [GH+95].

Portability is a significant concern for real-time developers; systems are often coded in assembly

language (and/or make use of other hardware specific features) that improve performance and

predictability but significantly increase development cost and reduce portability.

5.3 RTOO design pattern language

The ‘pattern language’ concept comes from Alexander, who believed that the inter-pattern

relationships were as important as the patterns themselves – and should be explicitly documented.

Unfortunately, most of the RTOO patterns discussed in this chapter – even those claiming to belong

to a pattern language – documented independent solutions with little mention of how they could be

used in conjunction with other patterns.

65

This chapter has attempted to present design patterns for RTOO software in pattern language form,

by using a simple classification (along ‘applicability’ axes) and discussing some of the inter-pattern

relationships. The following sections will make these details explicit, and will discuss some of the

issues to be overcome before this collection of patterns can be called a ‘pattern language’. These

issues include the high level classification and organization of the language, inter-pattern

relationships, pattern language hierarchies, and the completeness of the language.

5.3.1 Organization/Classification

The RTOO design patterns in this chapter are organized/classified according to applicability axes:

the top-level classification is by domain specificity (widely applicable RTOO design patterns vs.

patterns that are domain specific); the widely applicable RTOO design patterns are sub-classified by

primary author, while the domain specific RTOO design patterns are sub-classified by the domain

to which they apply.

This is a simple classification mechanism that seems to be appropriate for this collection of patterns.

Other potential classifications include the GoF classification (by purpose and scope), by pattern

type (e.g. design patterns, organizational patterns, AntiPatterns, etc.), and by problem solved (e.g.

improve efficiency, address synchronization issues, object creation/destruction, etc.).

5.3.2 Inter-pattern Relationships

The systematic application of sets of related patterns requires that inter-pattern relationships be

explicitly documented. Although many authors document these relationships within their own

pattern languages or collections, very few consider the relationships with patterns outside their

authorship. This section will discuss some of the more common relationship types: ‘alias’, ‘uses’,

‘specializes’, and ‘alternative’. It will also discuss some of the relationships present within the

RTOO design patterns presented earlier in the chapter.

66

5.3.2.1 Alias

Many pattern templates (including GoF and Alexandrian) include a section for ‘aliases’ – allowing

authors to document other names by which the pattern may be known. However, it may be that

these aliases are not just other names for the same pattern, but rather distinct patterns that duplicate

the proposed problem, context and solution. This is the first relationship type, called the ‘alias’

relationship.

Because patterns document recurring solutions to problems, and because of the large number of

existing patterns, some duplication is inevitable. This is not necessarily a problem, since authors

will present their patterns differently, and contribute examples from their own experiences.

However, when this relationship is not explicitly documented, readers can become frustrated by the

duplication in the literature. Within repositories, it should be decided whether to retain all duplicates

of a particular pattern, or to keep one and use proxies for the other instances. The latter alternative

was used in this chapter for the following patterns exhibiting the alias relationship:

RTOO Design Pattern Alias Of
Author Pattern Author Pattern

Adams et. al. Leaky Bucket Counters Meszaros Leaky Bucket of Credits
Douglass Container-Iterator GoF Iterator
Douglass Observer GoF Observer
Douglass Proxy GoF Proxy
Grasso Thread-per-object Schmidt Active Object
Petriu & Somadder Thread-per-request Schmidt Thread-per-request
Petriu & Somadder Thread Pool Schmidt Thread Pool

Table 5.1: RTOO Patterns Exhibiting the Alias Relationship

Note that this relationship is bi-directional; there is no implication that one author ‘copied’ another’s

work. There are always subtle differences in how the patterns are describes, in the usage proposed,

and in the examples given; it is therefore assumed that each author discovered the pattern

independently.

5.3.2.2 Uses

The ‘uses’ relationship comes directly from Alexander, although he did not document it as such.

Alexander organized his patterns according to their relative position in a pattern hierarchy

67

(discussed in the next section). Higher level patterns represented coarser solutions, which could be

‘filled in’ using finer grained patterns. This process of ‘filling in’ or completing a given pattern

represents the ‘uses’ relationship.

All of the pattern languages described in this chapter have examples of the ‘uses’ relationship; since

these are explicitly documented in the full texts of the patterns they will not be listed here.

However, this relationship may exist beyond the scope of a single pattern language. These examples

of the ‘uses’ relationship are not so easy to find, and are listed below:

RTOO Design Pattern Uses
Author Pattern Author Pattern

Buschmann Real-time Constraints as
Strategies

GoF Strategy

De Champlain Scheduler GoF Strategy
Molin & Ohlsson Ticked Object GoF Bridge, Composite
Molin & Ohlsson Lazy State GoF State
Molin & Ohlsson Pool GoF Proxy
Schmidt Strategized Locking GoF Strategy
Schmidt Object Lifetime Manager GoF Singleton, Factory

Table 5.2: RTOO Patterns Exhibiting the Uses Relationship

5.3.2.3 Specializes

The ‘specializes’ relationship exists when an author takes an existing pattern and applies it to a

different problem space. The result is two distinct patterns that share a similar problem, but because

the context is different the solution must be adapted. The patterns in this chapter that exhibit this

relationship include:

RTOO Design Pattern Specializes
Author Pattern Author Pattern

De Champlain Object Manager Schmidt Object Lifetime Manager
Douglass Broker GoF Proxy
Douglass Safety Executive Douglass Watchdog
Douglass Latch State Douglass Persistent Latch State
Douglass Microkernel Architecture Douglass Six-Tier Microkernel

Architecture
Grasso Synchronizer Schmidt Active Object
Grasso Transactional Synchronizer Grasso Synchronizer
Noble & Weir Multiple Representations Noble & Weir Dynamic Multiple

Representations
Noble & Weir Multiple Representations Noble & Weir Basic Types with Object

Wrapper
Petriu & Somadder Intermediate Server

Bottleneck
Meszaros Capacity Bottleneck

Schmidt Thread-safe Interface GoF Decorator

Table 5.3: RTOO Patterns Exhibiting the Specializes Relationship

68

5.3.2.4 Alternative

The ‘alternative’ relationship exists between two patterns sharing the same problem and context, but

whose solutions are different. Hence the patterns represent two alternative means of resolving the

same forces. The patterns from this chapter that exhibit the ‘alternative’ relationship include:

RTOO Design Pattern Alternative
Author Pattern Author Pattern

Schmidt Reactor Schmidt Active Object
Noble & Weir Autoloading Noble & Weir Segmentation, Paging
Petriu & Somadder Thread per Request Petriu & Somadder Thread per session

Table 5.4: RTOO Patterns Exhibiting the Alternative Relationship

Since pattern authors document only what they know to work, the ‘alternatives’ relationship

provides a mechanism for other authors to present other ways to resolve the problem. This can add

to the completeness of a language, and help to further specify arbitrary solutions.

5.3.3 Pattern Language Hierarchies

Alexander’s pattern language form suggests that there will always be a hierarchy of patterns in a

pattern language; that a pattern can be either higher or lower in relation to another pattern. However,

there is currently no standard way of documenting these hierarchies either textually or

diagrammatically.

The following sub-languages from this chapter included hierarchy information (either implicitly in

the text, or explicitly using some type of diagram):

• Petriu & Somadder’s Pattern Language for Improving the Capacity of Layered Client/Server

Systems with Multi-threaded Servers [PS97] (which extends Meszaros’ Pattern Language for

Improving the Capacity of Reactive Systems [Mes96]). Figure 5.1 illustrates the hierarchy

(Meszaros’ patterns in boxes).

69

Figure 5.1: Example of Pattern Hierarchy Relationships (from [PS97])

• Mark Bottomley’s Pattern language for simple embedded systems [Bot99].

• Though not completely documented at present, Doug Schmidt is working to integrate his

patterns for concurrent, parallel and distributed systems [Sch00] into a hierarchical pattern

language.

Typically, the relationship represented by the arrows in a hierarchy diagram is the ‘uses’

relationship; higher-level patterns use lower-level patterns to complete their solutions. However, the

other relationship types (alias, specializes, and alternative) can sometimes be detected. For example,

in Figure 5.1 the Thread per Request, and Thread per session are alternatives to each other.

5.3.4 Completeness

For a collection of patterns to be called a pattern language it should not only explicitly document the

inter-pattern relationships, there should also be a sense of ‘completeness’ (that all combinations of

forces in the problem space can be resolved using the constituent patterns). In practice, it is unlikely

that any pattern language will ever be complete – since completing (or even determining

completeness of) a pattern language is extremely difficult.

70

As an RTOO pattern language, the collection described in this chapter is very incomplete. There are

important issues that are not addressed in the language, and although some sub-languages cover

many of the forces in their problem spaces, others address only a very small subset.

Notably absent from the collection of patterns is discussion of timing and schedulability issues.

These can be significant issues in the design of RTOO software, for which there are certainly

patterns to be found. However, their absence from the design patterns literature may be indicative of

the software process currently being employed – to neglect these issues until the implementation

phase. For example, although formal methods may be able to determine in advance that time

constraints would not be met, it is often less costly to do some rough up-front calculations for

feasibility, build the system, and then take corrective action (e.g. hack the code, buy a faster

processor) if the system is not running fast enough.

Despite the incompleteness of the collection as a whole, there are some sub-languages that can

subjectively be judged more complete than others. For example, Doug Schmidt’s patterns [Sch00]

represent a sub-language that can be used to resolve many of forces present in the design of

concurrent, parallel, and distributed systems, particularly when the extensions from Grasso [Gra97]

are incorporated. The communications, command, and control patterns discussed in section 5.2 also

form a fairly complete pattern language.

The less complete sub-languages are those where the patterns themselves do not fully describe their

context, problem, and solution (e.g. Bruce Douglass’ RT Patterns [Dou99] and Doug Lea’s Patterns

for Avionics Control Systems [Lea00]) and those whose solutions are too simplistic or that

otherwise do not resolve their forces (e.g. de Champlain’s patterns to ease the port of micro-kernels

[deC96], which addresses only a very small subset of the issues related to porting micro-kernels).

Sometimes, pattern languages can be made more complete by adding patterns. This is particularly

useful in cases where the author’s choice of solution seems arbitrary (e.g. Mark Bottomley in his

Pattern Language for Simple Embedded Systems [Bot99] discusses only a few of the many filtering

71

techniques available to prepare input signals for processing). The addition of ‘alternative’ patterns

can very easily account for these types of discrepancies – increasing the completeness of the sub-

language and its value to the developer.

5.4 Summary

This chapter has extracted and discussed many design patterns addressing issues related to the

design of real-time object-oriented software. Unfortunately, locating these patterns was difficult due

to the current disorganization of the pattern literature. Patterns are spread through books, journal

articles, conference proceedings, and on the web – with very little structure. This lack of cohesion is

noticeable at the pattern level as well; although the relationships between patterns in languages or

collections are often described, the relationships between patterns across collections/languages are

rarely mentioned. This is unfortunate, since one of the strengths of the pattern form is the way paths

through a set of patterns can be used to resolve complete sets of forces in a problem space. Most

pattern authors are currently focusing on creating new patterns, rather than examining how the

existing patterns should work together.

The simple classification used in this chapter helps resolve these issues by arranging a set of

patterns for RTOO design in a logical ordering, then documenting explicitly the relationships

present in the collection. However, it is far from a final presentation and categorization – this may

happen more completely as the field matures, not just for RT patterns but for the patterns literature

as a whole.

72

C h a p t e r 6

CHAPTER 6: TOOL SUPPORT FOR PATTERNS

There currently exists a wealth and variety of documented experience in pattern form; however,

finding the right pattern when it is needed – then choosing the appropriate implementation method -

remains difficult. One of the reasons for the popularity of the Gang of Four text is that it presents a

relatively small set of very good quality patterns in an organized fashion. With only 23 patterns to

learn, it is not unreasonable to expect developers to remember the basics of the patterns and

recognize instances where they might be applicable. As the number of patterns increases (for

example, the 150+ RTOO design patterns identified in chapter 5 of this thesis) tool support is

needed to make the patterns more accessible.

This chapter will first present an overview of available patterns tools then will discuss the potential

for convergence between patterns tools and RTOO modeling tools. As a concrete example, an

extension to Rational Rose-RT [Rat00c] is proposed, adding the functionality of design pattern tools

as a layer of abstraction over its structure and behaviour model layer.

6.1 Types of Pattern Tools

Many researchers, both from industry and academia, have attempted to develop tools to support the

application of patterns. These tools can loosely be classified as tools that generate code from

patterns, tools that detect patterns in code or design diagrams, tools that automatically refactor code,

and tools that classify and index patterns. Often the tools provide more than one of these functions.

Tools that automatically generate code from design patterns (e.g. [KB95, Mei96]) must consider the

tradeoffs between the expressiveness of the informal pattern notation, and the ability to easily

generate code. The approach that has typically been taken is to formalize patterns as contracts (a

73

mechanism for explicitly specifying behavioural compositions [HHG90, Hol92]), allowing patterns

to be integrated in a design as a set of components, or micro-frameworks. This mechanism allows

for the association of multiple concrete implementations with each abstract pattern.

Tools that detect patterns in code or design diagrams (e.g. [Bro96, Mad00]) are faced with another

dilemma: the concept of ‘compression’ (i.e. multiple patterns may be combined into a single

solution). Not only must the tool recognize a potentially infinite variety of implementations for the

patterns, but also must extract a variety of intertwined patterns from a compressed solution.

Refactoring tools (e.g. [Ref00, Opd92]) have seen some success, particularly with SmallTalk code.

A refactoring is a related but distinct entity from patterns; these are small-scale mechanisms for

making code easier to understand and maintain without changing its behaviour. For example, a

refactoring might provide a mechanism for moving code from a bloated class to a subclass, or for

abstracting a class up a hierarchy. Because it is operating at such a small granularity, this process

can be semi-automatic.

Finally, there are tools that classify and index patterns. These tools range from simple web-based

applications that store patterns by name and provide full text search (e.g. the Portland Pattern

Repository [Por00], the GoF book [GH+95] on CDROM), to collaborative pattern writing

environments (e.g. the Wiki Wiki Web [Wik00]), to basic pattern catalogs (e.g. Pattern Depot

[Pat00]), to more sophisticated tools that store patterns classified according to various criteria along

with sample source code (e.g. Blueprint Technologies Framework Studio [Blu00]). Most experience

reports from chapter 4 describe some type of online catalog – since it is infeasible to expect

developers to search through volumes of patterns every time they have a problem. This type of tool

meets an existing need, and has the potential to integrate with the other tool types (for example,

Budinsky et. al. has developed a pattern cataloging tool that has a section immediately following

each pattern to automatically generate sample code [BF+96]). Pattern repository tools are described

in more detail in the following section.

74

6.2 Examples of Pattern Repository Tools

The tools described in this section provide varying levels of functionality; the first few tools are

very simple, more powerful tools are described later in the section.

6.2.1 Portland Pattern Repository

The Portland Pattern Repository [Por00] is an example of a website that stores patterns and related

material, as well as links to other patterns sites on the Internet. The advantage of this type of

repository is that it makes sets of patterns widely available; the disadvantage is that updates

typically are not frequent enough, so content may be out-of-date.

6.2.2 Wiki Wiki Web

The Wiki Wiki Web [Wik00] is an online tool that allows multiple users to collaboratively edit web

pages via a web browser. The underlying engine consists of a database and a set of CGI scripts used

to retrieve or update the data. When the pages are retrieved from the database certain keywords

appearing in the saved content are translated to the appropriate HTML tags. Access control is

managed by the author, based on the list of authors and editors specified at the bottom of each page.

The beauty of Wiki is that it allows content to grow in a piecemeal fashion. Unfortunately, the cost

of this freedom for the authors is that there is very little structure to the site – making it sometimes

difficult to navigate.

6.2.3 Pattern Depot

Pattern Depot [Pat00] is an online pattern catalog developed and sponsored by Addison-Wesley. It

uses a standard template to store patterns, classified according to domain (miscellaneous, language-

specific, architectural, design, analysis, organizational, pedagogical, telecommunication,

concurrent/ distributed, user interface, or business) and status (published, published draft, hidden

from others, or deleted). The actual pattern can then be attached along with supporting files such as

images, models, or source code.

75

There are some strong features in this tool: the standard template greatly simplifies finding relevant

patterns, and hyperlink capability allows linking to author homepages, relevant patterns, conference

proceedings, and other online content. However, there are also some significant problems:

• The classification by domain mechanism should be multi-dimensional, since the current scheme

does not adequately reflect the domains to which a pattern might be applicable. For example,

most architectural patterns are also design patterns, and most telecommunications patterns are

also concurrent/ distributed.

• Authors must enter content twice, in the classification and as an attachment.

6.2.4 Budinsky et. al.

Recognizing the need for tool support to assist developers in finding and implementing patterns,

Budinsky et. al. developed a tool [BF+96] that provides the GoF patterns in HTML format, and

supports the generating design pattern code automatically from a small amount of user-supplied

information. Patterns are organized with ‘sections’ (i.e. Intent, Context, Problem, etc.) on separate

web pages, followed by a code generation page. The code generation page prompts the user for

information like names for the participants and choices for design tradeoffs - then uses Perl scripts

to automatically create C++ class declarations and definitions that implement the pattern.

The fundamental problem with the solution discussed by Budinsky et. al. is that it requires too

much work to enter new patterns. New scripts must be written for every pattern added to the tool –

and must be modified if new tradeoffs or design choices are added to existing patterns.

6.2.5 Blueprint Technologies Framework Studio

Framework Studio allows developers to store patterns, frameworks, components, or other ‘artifacts’

for later reuse. It integrates with Rational Rose [Rat00b] to capture the design diagrams, and with

Microsoft Visual Studio [Mic00] for the concrete implementations.

Framework Studio provides the following features:

76

• The tool supports storage of four types of potentially reusable elements: Artifacts (any product

of the development process); Components (encapsulated part of a system); Frameworks; or

Patterns. The elements are stored in databases called repositories, either locally or shared over

a network.

• Pattern classification and description has a concrete structure (Name, Author(s), Intent,

Motivation, Known Uses, See Also) but also provides flexibility in what additional content will

be associated under a variety of titles (Business Domains, Problems Solved, Benefits,

Liabilities, Implementation details, etc.).

• Ability to search the repositories for elements. Searches can be brute force (using the full-text

indexes of the Repositories), or more targetted (making use of the classification mechanisms

provided).

• Ability to implement a captured component, framework, or pattern. The developer has the

option of saving associated source files to disk, or to generate into Microsoft Visual Studio

[Mic00].

• Ability to apply a framework or pattern to a Rational Rose [Rat00b] model. This allows the

developer to associate roles in a pattern with classes in an existing model, and to create the

other necessary classes.

• Ability to create HTML files from an element.

• The tool ships with the GoF design patterns (from [GH+95]) and the Buschmann design

patterns (from [BM+96]); Blueprint Technologies sells other pattern repositories, including the

Fowler analysis patterns [Fow97], and David Hay’s data model patterns [Hay96].

• Framework Studio's Object Miner provides the ability to parse documents written in Microsoft

Word [Mic00] or Rational RequisitePro [Rat00b]. This parsing process mines documents

looking for possible classes and methods then saves them in Rational Rose.

However, there are some problems with Framework Studio:

• There is no explicit support for pattern languages – although a partial work-around would be to

have a separate repository for each pattern language, and link the patterns together using the

“See Also” field. Patterns are rarely meant to be used in isolation; the relationships between

patterns are extremely important, and could be better documented in the tool.

• It does not differentiate between pattern types (design patterns vs. analysis patterns for

example).

77

• Associating many implementations with a single pattern is possible, but makes using the

automatic implementation feature difficult, and is very messy with complex patterns that

require multiple files.

6.3 Tool Convergence

There is strong potential for convergence between pattern tools and RTOO modeling tools. One

approach is to add the functionality of design pattern tools as a layer of abstraction over the

structure and behaviour model layers in an RTOO modeling tool. This will allow design patterns to

be more easily integrated into the modeling process.

As a concrete example, this section proposes an extension to Rose-RT [Rat00c]. Figure 6.1

demonstrates the concept underlying the proposal: an abstraction layer for patterns (incorporating

features from a variety of pattern tools) will be added above the Rose-RT models (consisting of

class and structure diagrams, and statecharts). The intent is that this additional abstraction layer will

facilitate the design of Rose-RT executable models that can then be compiled and ported to target.

The result should be to improve the quality of RTOO software designed using Rose-RT, facilitate

the use of design patterns (thereby increasing the level of design reuse), and make explicit the

patterns used in designs.

Figure 6.1: Tool Convergence

RT Software

Hardware Interface

Effectors Sensors

Environment

Rose-RT Structure &
Behaviour Models

Design Patterns Layer Pattern Repository

Mining/Verification

Refactoring

78

6.3.1 Desirable Functionality

This section describes a list of desirable features. The sections that follow will outline some of the

issues to be reconciled before implementation is possible, then will extract from this list a set of

features that are feasible, and make a proposal for the Rose-RT extension.

• Multiple pattern repositories: Provide support for multiple pattern repositories, with the

possibility to share repositories over a network.

• Improved classification mechanism: An improved mechanism for structuring the potentially

large sets of patterns to facilitate finding applicable patterns.

• Ease of Expansion: Relatively easy to add or extend patterns.

• Explicit support for pattern languages: Cross-referencing between patterns in languages, and

the ability to specify relationships, including integration issues, between patterns.

• Multiple pattern implementations: Associate multiple concrete implementations with each

abstract pattern specification.

• Multiple implementation types: Allow pattern implementations to consist of Rose-RT

behaviour models and/or structure models, or files of another type.

• Highlight patterns in models: Keep track of where patterns have been used in a model, and

make it easy for a developer to see where and how these patterns have been applied.

• Pattern verification: Automatically verify whether changes to the model have ‘broken’ any of

the patterns.

• Pattern mining: Automatically detect occurrences of patterns in a model.

• Three methods of pattern implementation: Support top-down, bottom-up, or mixed pattern

implementation (i.e. create Capsules/ Protocols/ Data from one of the stored implementations

for the pattern; associate Capsules/ Protocols/ Data from an existing model with those of a

stored implementation for the pattern; or use some combination).

• HTML publishing: Publish the set of patterns to an Internet or Intranet website so they can be

shared with others who do not have access to the tool.

• Allow patterns and modeling tool to exist independently: Use the patterns tool without

Rose-RT, or use Rose-RT without the patterns extension.

79

6.3.2 Issues

Convergence of design patterns tools with RTOO modeling tools has great potential; however, there

are some significant issues to be addressed. The proposal presented in the next section suggests

particular ways of resolving the following issues:

• Compression: A single class may participate in multiple patterns; this issue will complicate the

pattern detection, verification, and highlighting functionalities.

• Rose-RT Classes: Rose-RT models consist of capsule, protocol and data classes; not all

patterns will have structure/behaviour that can reconcile with these class types. Developers may

have other patterns that they want included in the repository, but that don’t map well to Rose-

RT models (e.g. process/organizational patterns, or design patterns/idioms for components of

systems not implemented in a language supported by Rose-RT).

• Abstract nature of patterns: The mining and verification functions will be very difficult if

flexibility of implementation is allowed.

• Programming language issues: Although design patterns should ideally be language

independent, the reality is that many work only (or at least work best) in the context of a

particular language or language type.

6.3.3 Proposal for Extension

Based on the previous two sections, what appears to be a feasible and appropriate extension to

Rose-RT is proposed. This proposal represents a prototype implementation, and requires minimal

change to the Rose-RT toolset. It is presented in terms of the major design decisions that must be

made.

6.3.3.1 Where should the patterns functionality reside?

The first important decision to be made is whether to add design pattern functionality to Rose-RT or

to keep the pattern tool a distinct entity, with the ability to interact with Rose-RT. The advantages of

having the pattern layer fully integrated into Rose-RT are that the pattern mining and verification

processes, as well as the ability to keep track of where patterns are used in models, are greatly

simplified. However, this is potentially problematic for users who want to use Rose-RT but not

80

patterns, or who want to use patterns without Rose-RT. Further, developers may expend significant

energy developing pattern repositories, and should not risk losing these repositories if they change

modeling tools. It is thus proposed that the pattern tool remain distinct from Rose-RT, but that the

models developed in Rose-RT can be used as implementations of the patterns. For full benefit,

some modifications to Rose-RT may be required (for example, to support highlighting patterns in

models); however, these should be in the form of optional plug-ins rather than a required feature of

the tool.

6.3.3.2 What is the recommended initial set of features?

The following are the recommended initial features of the tool. Choosing to implement these

features raises other design decisions that will be discussed in the sections that follow.

• Multiple pattern repositories

• Improved classification mechanism

• Ease of expansion

• Explicit support for pattern languages

• Multiple pattern implementations

• Multiple implementation types

• Highlight patterns in models

• Three methods of pattern implementation

• HTML publishing

These features all appear to be feasible in the first phase of the toolset, and their implementation

should represent a significant contribution to the Rose-RT toolset.

6.3.3.3 What other features should be considered?

These are features that would be desirable, but that are infeasible in a prototype due to their

complexity. They will not be discussed in detail.

• Refactoring

• Pattern verification

81

• Pattern mining

Refactorings could be used to modify a model to make the application of a pattern easier during a

design; however, this is beyond the current scope of the proposal. Similarly, pattern mining and

verification functionalities would be very useful for discovering patterns in existing models, and for

ensuring that patterns used remain valid – but the complexity required to implement these features

automatically is beyond the scope of the proposed prototype.

6.3.3.4 What pattern template should be used?

Choosing a pattern template is not trivial because the majority of patterns that will be added to

repositories will be existing patterns, that typically are not constrained to any one pattern template.

As a result, a standard template should not be enforced; instead, a list of possible section titles will

be provided, from which authors can choose which ones to incorporate, and their ordering. A

sample list of section titles is provided below; as well, authors may create their own section titles.

• Intent

• Problem

• Context

• Example

• Resulting Context

• Solution

• Structure

• Behaviour

• Benefits

• Known Uses

• Liabilities

• See Also

• References

• Forces

Each of these sections will be implemented as rich text fields, allowing pattern authors to include

diagrams, images, hyperlinks, and other content.

6.3.3.5 How should patterns be classified?

The informal pattern notation is at once a strength and weakness. The lack of constraints on pattern

form means that authors can express their patterns the best way they know how; however, this also

makes the automated application of patterns difficult. A possible solution to this dilemma is to leave

the pattern template informal (see previous subsection), but to require standard meta-data. The

following meta-data classification is proposed:

82

• Name: The name of the pattern.

• Alias(es): Other names by which the pattern is known, with links if other very similar (or

identical) patterns exist in other repositories.

• Source: The original source of the pattern (e.g. book, conference proceedings, website, etc.)

• Pattern Type(s): e.g. Design, Idiom, Organizational, Process, etc.

• Repository: The repository (or repositories) to which the pattern belongs; this is also the name

of the pattern language/collection.

• Next higher-level patterns: If the pattern is a member of a language, then this entry lists links

to the next higher-level patterns (coarser grain patterns that may be implemented immediately

before it) in the hierarchy.

• Next lower-level patterns: If the pattern is a member of a language, then this entry lists links

to the next lower-level patterns (finer grain patterns that may be implemented immediately after

it) in the hierarchy.

• Rose-RT compatible? If the pattern is Rose-RT compatible, indicate whether it is Structural,

Behavioural, or both.

• Domain(s): The domains to which the pattern is applicable.

• Extends: If this pattern extends (or is a specialization of) another pattern, provide a link to that

pattern.

• Uses: If the pattern ‘uses’ other patterns as part of its implementation, provide links to these

patterns.

• Alternatives: If there are other patterns that provide solutions to a similar problem or set of

forces, provide links to these patterns.

These criteria allow applicability and pattern inter-relationships to be explicitly documented.

6.3.3.6 How should pattern implementations be represented?

The tool should place as few constraints on pattern implementation as possible; implementations

can be Rose-RT behaviour models and/or structure models, models from other tools with associated

source code, or files of any other type. Regardless of the specific components of the

implementation, there are some details that must be included:

• Name: A unique handle for the implementation.

83

• Brief description: Describe the solution’s overall purpose and applicability.

• List of Components: List the classes, states, use-cases, etc. included in the implementation.

• Roles/collaborations: Describe the roles and collaborations of the classes from each associated

structure model or class diagram.

• Benefits and liabilities: Discuss the effects this implementation has on the benefits and

liabilities discussed in the general pattern text, and any new benefits or liabilities.

From this starting point, Rose-RT structure and/or behaviour models (or files of other types) can be

added.

6.3.3.7 How will pattern language members be linked together?

Pattern languages and collections of patterns will be handled the same way in the tool. All patterns

belonging to a particular collection/ language will belong to a common repository (specified in the

pattern classification) – that may be nested within a larger repository if desired. Pattern relationships

(e.g. hierarchy, alias, extends, uses, alternatives) described in the classification section will be

implemented as hyperlinks, allowing easy navigation within and between repositories. Thus

patterns will be linked hierarchically based on domain relationships and hierarchical inter-pattern

relationships, and arbitrarily based on other inter-pattern relationships.

6.3.3.8 How will adding patterns to a model in top-down, bottom-up and mixed fashions be
implemented?

Drag-and-drop functionality between the implementation section of the tool and Rose-RT diagrams

will facilitate top-down (add complete pattern from repository to a model), bottom-up (assign roles

to classes in an existing model), and mixed design using patterns. Developers should be able to

drag-and-drop classes or roles from a Rose-RT implementation of a pattern to their model.

6.3.3.9 How can the tool facilitate keeping track of where patterns are used in a model?

When a pattern is added to a model, some meta-data will be added to the documentation section of

the classes affected – specifying the roles played in each of the associated patterns. This meta-data

can then be used by to assist developers in keeping track of where patterns are used in their models.

84

This is one area where changes to Rose-RT will be required – so that patterns can be highlighted in

a model, rather than requiring that the developer look for the meta-data in the class documentation.

6.3.3.10 What will be published to HTML?

There are two reasons for HTML publishing: (1) to get a printable version of a single pattern and

the associated implementations; (2) to make pattern repositories less dependent on particular tools.

The HTML documentation for a single pattern includes a title page, the classification information,

the body of the pattern, and the associated implementations. Scaling to the entire repository (or set

of repositories) in use by an organization requires also generating HTML for index and search

pages, and the hyperlinks between patterns.

6.4 Summary

RTOO modeling tools abstract away the low-level details of systems, allowing developers to focus

on the design model – precisely the area where design patterns can be useful. The extension to

Rose-RT proposed is meant as a basis for a prototype; the complexity of the problem is such that

more than one iteration of prototypes will be needed. This proposal is a starting point for that

experimentation.

85

C h a p t e r 7

CHAPTER 7: SUMMARY & DISCUSSION

This thesis has met all of the objectives outlined in Chapter 1: thorough background was presented

for design patterns and real-time object-oriented modeling; experience reports from RTOO software

practitioners using design patterns were examined; a survey of RTOO design patterns was provided;

and a feasible and useful design patterns extension to Rose-RT was proposed. The available

documentation shows that patterns have significant potential to assist the design process – yet the

nature of the current literature is acting to the movement’s detriment. Tool support for patterns is

needed to make them more usable.

7.1 Costs & Benefits of Patterns

Chapter 4 discussed practical experiences with patterns; from these experiences, the fundamental

benefits, costs, and risks associated with pattern use were extracted and presented here in a

consolidated form.

7.1.1 Benefits

The most widely cited benefits gained by using patterns are:

Patterns enable widespread reuse of software architecture: The fundamental benefit to be

gained from design patterns is the reuse of ideas, concepts, and strategies. Patterns may also

facilitate other types of reuse (for example, patterns can be used to document framework

extensions - thereby facilitating code reuse).

Facilitated architectural design: Design patterns make available a set of solutions that work.

Rather than designing the required system from scratch, developers can think in terms of an

aggregation of existing abstract design components.

86

Improved communication between (and within) project teams: The improvements in

communication come at two levels: (1) when discussing designs, developers can speak in

terms of the patterns they wish to use, rather than in terms of the specifics of the

implementation; (2) because the patterns are language-independent, experience gained by

one project team can potentially be reused by another in a different context. Thus, an

organization that has integrated design patterns into its development strategy can expect

improved communication because of shared vocabulary and concepts.

Better design documentation: Patterns facilitate design documentation by providing a high

level of abstraction.

Since pattern descriptions explicitly enumerate consequences, they serve to record

engineering tradeoffs and design alternatives: One of the intrinsic benefits of design

patterns is that they not only document good designs (or in the case of AntiPatterns, poor

designs), but also why the designs are good (or poor) - and explicitly what consequences

result from their implementations.

Patterns explicitly capture knowledge that experienced developers understand implicitly:

Because patterns are written by developers knowledgeable in a given area, they provide a

means whereby the knowledge gained can be disseminated to others. This leads to many

other advantages, including aiding new developers to get up to speed, and eliminating some

of the loss of knowledge as team members leave the group.

Documentation of successful software: Design patterns have the potential to accomplish

much more than merely document how to design software. Because they are the result of

actual experiences, they serve as documentation of successful software projects. While

studying patterns trains developers to design quality software, merely reading them has an

equally significant benefit - providing an interesting perspective into a successful software

project.

Patterns facilitate training of new developers: New team members can be given the set of

patterns in use, which they can read to help them get up to speed on the techniques and

strategies used in the developed code.

7.1.2 Costs

The costs associated with using patterns include:

87

Developing and maintaining a list of patterns: Many of the advantages discussed in the

previous section (including shared vocabulary, design documentation, and training for new

developers in a group) require that all developers in a project team (or organization) share a

common set of patterns. This entails that someone (or some group of people) be responsible

for selecting which patterns to start with - and over time maintain this list by adding and

removing patterns as needs change.

Training users to develop and use these patterns: Once a set of patterns has been chosen, it

becomes important to train developers in the proper use of the patterns. Most good patterns

are self-explanatory - making the patterns available (hardcopy of online) is thus the

fundamental first-step. Ongoing support via email, Intranet, CBTs, or in-person training

adds to the cost, but also increases the likelihood of having the patterns understood and

applied consistently.

7.1.3 Risks

The risks that could keep pattern benefits out of reach include:

Developers resist the change: As with any change in strategy, the introduction of design

patterns may see some resistance from those people expected to learn and use them. In

practice, it is developers who see the value of this medium and who have been promoting

its use.

Design patterns are not used consistently: The crux of this issue is that all developers must

understand the patterns in use by their development team or organization. Without this

shared pattern subset, the potential advantages of having a shared design vocabulary and

consistent solutions to recurring problems are not gained.

Pattern quality is not maintained: With at least four major conferences a year attracting

pattern authors, and a steady stream of publications, the number of design patterns is

growing rapidly. The original GoF patterns were of a high quality; there is short term

potential for this quality to be lost as the patterns community is flooded with new additions.

Regardless the value of the patterns, keeping up with all of the additions is very time-

consuming.

88

The benefits to be gained from patterns are significant (particularly for project teams or

organizations developing large-scale software); however, the costs and risks can significantly

reduce these benefits – possibly even negating them.

7.2 Available RTOO Patterns

Chapter 5 described design patterns dealing with a variety of issues relevant to developers of RTOO

software. By extracting and organizing the patterns, they were made easier to learn and use.

7.2.1 Current State of the Literature

The process of discovering, organizing, and presenting the patterns in Chapter 5 led to two

observations about the current state of the literature:

• Lack of Organization: Finding relevant patterns can be difficult, since there are no central

pattern listings. The patterns from Chapter 5 came from books, journal articles, conference

proceedings, and the Internet.

• Rapid Growth: The volume of available patterns is growing very rapidly; many are duplicates

of others, because it is difficult to keep up with all the published and work-in-progress patterns.

Tool support for patterns attempts to resolve these problems – by collecting patterns and logically

linking them together. Another effort that may help is Linda Rising’s forthcoming book The

Patterns Almanac 2000 [Ris00], which lists and describes all available software patterns as of fall

1999.

7.2.2 Pattern Quality

Quality varies considerably between patterns; though difficult to measure empirically, there are

characteristics that ‘good’ patterns should possess (determined subjectively):

• Should explicitly describe context, problem, solution, and resulting context: Although there

exist many pattern templates, the minimal set of information required to make something a

‘pattern’ is generally agreed (based on every available pattern definition and template) to be

89

context, problem, solution, and resulting context. These sections should be explicitly

documented.

• Should provide a good solution to the problem: The pattern should describe a good solution

to the problem described, and should describe the benefits and liabilities associated with

choosing to implement this solution.

• Should be clear and easy to understand: The context and problem should be described in

sufficient detail to make it easy to understand when the pattern is applicable and when it is not,

and the solution description sufficiently clear to implement.

• Should explicitly describe relationships with other patterns: Though useful individually, the

real strength of patterns comes when they are used together. These relationships should be

described explicitly.

• Should be the result of experience: Many pattern definitions include a rule of three clause -

that something should not be called a ‘pattern’ unless it has been seen three times, in three

different applications. This helps to ensure that the forces being resolved by the pattern are real

and that the solution is valid.

• Should provide examples: The pattern should describe implementation examples in detail,

including diagrams and source code.

The current model for achieving pattern quality is the shepherding process (matching the author of a

new pattern with a seasoned expert in the patterns field) coupled with pattern writers’ workshops

(borrowed from poetry, where groups of authors get together to discuss new works). These

processes work well, but are not applied consistently. A more sophisticated scheme has been

proposed by the Object Technology Group at Clemson University, who are examining ‘Pattern

Juries’ [Mil00] - which provide guidelines for selecting jurors, and for the subjective determination

of pattern quality.

7.3 Convergence of Tools for RTOO Modeling and Design Patterns

Chapter 6 discussed the potential for convergence between RTOO modeling tools (e.g. [Rat00c,

Obj00, iLo00a, iLo00b, Tel00) and Design Pattern tools (e.g. [KB95, Mei96, Bro96, Wik00, Pat00,

90

Blu00, BF+96]). As a concrete example, an extension to Rational Rose-RT was proposed to support

patterns.

Initially, the goal of the proposed tool was to extend pattern repository functionality to support

Rose-RT models (that can be used to capture both the structure and the underlying source code for

pattern implementations). However, as the research progressed it became increasingly apparent that

tool support can also be beneficial for describing the inter-relationships between patterns. The

proposal thus included repository functionality, and pattern grouping, organization and relationship

functionality. The result is a proposal for a tool that not only makes the application of individual

patterns easier and more explicit, but also encourages the systematic application of multiple related

patterns.

7.4 Future Research

Although the objectives of this thesis were met, the magnitude of the problem tackled means that

many issues remain outstanding.

7.4.1 Tool Implementation

This thesis has demonstrated the applicability of patterns to RTOO software design, and has

recommended extensions to Rational Rose-RT to support design patterns as an abstraction layer.

Though a significant challenge, the refinement and implementation of this proposal is the logical

next step.

7.4.2 Other Pattern Types

This thesis has focused on design patterns; however, there are other pattern types that can be equally

useful to the design of RTOO software. The foundations proposed are equally suitable for

organizational, analysis, process, and other pattern types.

91

7.4.3 Inter-pattern Relationships

Though useful individually, the real strength of patterns comes when multiple patterns are used

together to resolve forces in a problem space. This systematic application requires that authors

explicitly document the relationships between their patterns and other related patterns. Although

many authors document these relationships within their own pattern languages or collections – very

few consider the relationships with patterns outside their authorship. The explicit documentation of

inter-pattern relationships represents an open opportunity for the patterns community.

7.5 Concluding Remarks

This thesis has presented at least three significant contributions: First, the survey of experience

reports from the RT domain has shown the potential benefits, costs, and risks associated with

pattern use; Second, the survey of RTOO design patterns has demonstrated the breadth and depth of

available patterns, and has also exposed the disorganization in the current literature; Third, an

extension of Rational Rose-RT to support design patterns was proposed, describing how patterns

may be used as an abstraction layer in design models.

92

BIBLIOGRAPHY

[AC+96] Adams, M., J. Coplien, R. Gamoke, R. Hanmer, F. Keeve, and K. Nicodemus. “Fault-tolerant Telecommunications
Patterns” in Vlissides, J.M., J.O. Coplien, and N.L. Kerth. (eds.) Pattern Languages of Program Design 2.
Addison-Wesley, Reading, Mass. 1996.

[AC98] Agerbo, E. and A. Cornils. “How to Preserve the Benefits of Design Patterns.” In Object-Oriented Programming,
Systems, Languages, and Applications Conference Proceedings. 1998

[Ale99] Alexander, C.A. “The Origins of Pattern Theory: The Future of the Theory, and the Generation of a Living World.”
IEEE Software Special Issue on Architecture Design, 16(5): 71--82, September 1999.

[AS+75] Alexander, C., M. Silverstein, S. Angel, & D. Abrams. The Oregon Experiment. Oxford University Press, New
York, 1975.

[AIS77] Alexander, C., S. Ishikawa, and M. Silverstein. A Pattern Language. Oxford University Press, New York, 1977.

[Ale79] Alexander, Christopher. The Timeless Way of Building. Oxford University Press, New York, 1979.

[Amb00] Ambler, S.W. “The Process Patterns Resource Page.” http://www.ambysoft.com/processPatternsPage.html.
Available 2000.

[Amb98] Ambler, S.W. Process Patterns: Building Large-Scale Systems Using Object Technology. Cambridge University
Press/SIGS Books, 1998.

[Amb99] Ambler, S.W. More Process Patterns: Delivering Large-scale Systems Using Object Technology. Cambridge
University Press/SIGS Books, 1999.

[App89] Apple Computer, Inc. Macintosh Programmers Workshop Pascal 3.0 Reference. 1989.

[Bec96] Beck, K. Smalltalk Best Practice Patterns. Prentice Hall. 1996.

[BC87] Beck, K., and W. Cunningham. “Using Pattern Languages for Object-oriented Programs.” In Object-Oriented
Programming, Systems, Languages, and Applications Conference Proceedings. 1987.

[BC+96] Beck, K., R. Crocker, G. Meszaros, J. Vlissides, J.O. Coplien, L. Dominick and F. Paulisch. “Industrial experience
with design patterns,” In Proceedings of the 18th International Conference on Software Engineering. 103 – 114.
1996.

[Blu00] Blueprint Technologies Framework Studio Toolset. http://blueprint-technologies.com. Available 2000.

[Boo94] Booch, G. Object-oriented Analysis and Design with Applications (Second Edition). Benjamin/Cummings,
Redwood City, CA, 1994.

[BRJ99] Booch, G., J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide. Addison-Wesley, Reading,
Mass. 1999.

[Bot99] Bottomley, M. “A Pattern Language for Simple Embedded Systems”. In Proceedings of the Sixth Annual Pattern
Languages of Programming Conference. 1999.

[Bro87] Brooks, F.P. Jr. “No Silver Bullet: Essence and Accidents of Software Engineering.” IEEE Computer, 20, 10-19,
April 1987.

[Bro96] Brown, K.G. “Design Reverse-Engineering and Automated Design Pattern Detection in Smalltalk.” MSc. Thesis.
North Carolina State University, Department of Computer Science. 1996.

[BM+98] Brown, W. J., R. C. Malveau, H. W. McCormick III, and T. J. Mowbray. AntiPatterns: Refactoring Software,
Architectures, and Projects in Crisis. John Wiley & Sons, Inc. New York, 1998.

[BF+96] Budinsky, F.J., M.A. Finnie, J.M. Vlissides, and P.S. Yu. “Automatic code generation from design patterns.” IBM
Systems Journal. 35, 2, 1996.

93

[BM+96] Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Software Architecture: A
System Of Patterns. John Wiley & Sons Ltd. Sussex, England. 1996.

[Bus98] Buschmann, F. “Real-time Constraints as Strategies,” In Proceedings of the Third Annual European Pattern
Languages of Programming Conference. 1998.

[But97] Buttazzo, G.C. Hard Real-time Computing Systems, Predictable Scheduling Algorithms and Applications. Kluwer,
USA. 1997.

[Cen00] Center for Distributed Object Computing at Washington University Home Page. http://www.cs.wustl.edu/~schmidt/
doc-center.html. Available 2000.

[CHI00] CHILL Home Page. http://www1.informatik.uni-jena.de/languages/chill/chill.htm. Available 2000.

[Cli96] Cline, M.P. “The Pros and Cons of Adopting and Applying Design Patterns in the Real World.” Communications of
the ACM, October 1996, 39, 10, 47-49.

[CNM95] Coad, P., D. North and M. Mayfield. Object Models: strategies, patterns and applications, Prentice Hall,
Englewood Cliffs, 1995.

[Cop92] Coplien, J.O. Advanced C++ Programming Styles and Idioms. Addison-Wesley, Reading, Mass. 1992.

[Cop00] Coplien, J.O. “Organizational Patterns Home Page.” http://www.bell-labs.com/cgi-user/OrgPatterns/OrgPatterns?
OrganizationalPatterns. Available 2000.

[CS95] Coplien, J.O., D.C. Schmidt (eds.). Pattern Languages of Program Design. Addison-Wesley, Reading, Mass.
1995.

[DK96] Dagermo, P. and J. Knutsson. “Development of an Object-oriented Framework for Vessel Control Systems.”
Technical Report, ESPRIT III/ ESSI/ DOVER #10496. 1996.

[DeB00] DeBruler, D.L. “Telecommunications distributed processing patterns.” http://www.bell-labs.com/people/cope/
Patterns/DistributedProcessing/DeBruler/index.html. Available 2000.

[deC96] de Champlain, M. “Patterns to ease the port of micro-kernels in embedded systems.” In Proceedings of the Third
Annual Pattern Languages of Programming Conference. 1996.

[Dou97] Douglass, B.P. Real-Time UML: Efficient Objects for Embedded Systems. Addison-Wesley, Reading, Mass. 1997.

[Dou99] Douglass, B.P. Doing Hard Time: Developing Real-time Systems with UML, Objects, Frameworks, and Patterns.
Addison-Wesley, Reading, Mass. 1999.

[DSS00] DSSA ADAGE Home Page. http://www.owego.com/dssa. Available 2000.

[Emb00] Embedded C++ Home Page. http://www.caravan.net/ec2plus. Available 2000.

[FP88] Faulk, S.R., Parnas, D.L., “On Synchronization in Hard-Real-Time Systems”, Communications of the ACM, 31, 3,
March 1988, pp. 274-287.

[Fow97] Fowler, M. Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading, Mass. 1997.

[Fow99a] Fowler, M. “Is there such a thing as object-oriented analysis?” Distributed Computing, October 1999.

[Fow99b] Fowler, M. Refactoring: Improving the Design of Existing Code. Addison-Wesley, Reading, Mass. 1999.

[GH+95] Gamma, E., R. Helm, R. Johnson & J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, Mass., 1995.

[Gra97] Grasso, E. “Synchronizer: an Object Behavioural Pattern for Concurrent Programming.” In Proceedings of the
Second European Conference on Pattern Languages of Programming, Kloster Irsee, Germany, 10-12/07/1997.
1997.

[Gre00] Green Hills Software Home Page. http://www.ghs.com. Available 2000.

[Har87] Harel, D. “Statecharts: A visual formalism for complex systems.” Science of Computer Programming, 8, 231-274.
1987.

94

[HSP96] Harrison, T.H., D.C. Schmidt, and I. Pyarali. “Asynchronous Completion Token: An Object Behavioural Pattern for
Efficient Asynchronous Event Handling.” In Proceedings of the Third Annual Pattern Languages of
Programming Conference. 1996.

[HFR99] Harrison, N., B. Foote, H. Ronnert (eds.). Pattern Languages of Program Design 4. Addison Wesley, Reading,
Mass. 1999.

[Hay96] Hay, D. Data model patterns: conventions of thought. Dorset House, New York, NY, 1996.

[Hel95] Helm, R. “Patterns in Practice.” In Object-Oriented Programming, Systems, Languages, and Applications
Conference Proceedings. 1995.

[HHG90] Helm, R., I.M. Holland, and D. Gangopadhyay. “Contracts: Specifying Behavioural Compositions in Object-
oriented Software.” In Object-Oriented Programming, Systems, Languages, and Applications Conference
Proceedings. Ottawa, Canada, 1990.

[Hil00] Hillside Group. The Patterns Home Page. http://www.hillside.net/patterns. Available 2000.

[Hol92] Holland, I.M. “Specifying Reusable Components Using Contracts,” in Proceedings of ECOOP ’92, Lecture Notes
in Computer Science #615, Springer-Verlag, 1992.

[iLo00a] i-Logix Rhapsody Toolset.. http://www.i-Logix.com. Available 2000.

[iLo00b] i-Logix Statemate MAGNUM Toolset.. http://www.i-Logix.com. Available 2000.

[IEE96] IEEE/ANSI. Std 1003.1, Portable Operating System Interface (POSIX). 1996.

[IPS96] Islam, N., A. Prodromidis, and M.S. Squillante. Dynamic partitioning in different distributed-memory
environments. In Proceedings of the 2nd Workshop on Job Scheduling Strategies for Parallel Processing. April
1996. pp. 26-49.

[ID96] Islam, N., and M. Devarakonda. “An Essential Design Pattern for Fault-Tolerant Distributed State Sharing.”
Communications of the ACM, 39, 10 (October 1996), pp. 65-74.

[ISO87] ISO/IEC 8652 :1987. Ada Reference Manual : Language and Standard Libraries, Intermetrics, Inc. 1987.

[ISO95] ISO/IEC 8652 :1995. Ada Reference Manual : Language and Standard Libraries, Version 6.0, Intermetrics, Inc.
1995.

[ISO99] ISO/IEC 9899:1999. Programming Languages – C. 1999.

[ISO98] ISO/IEC 14882:1998. Programming Languages – C++. 1998.

[ITU93] ITU-T. Recommendation Z.100: Specification and Description Language (SDL), 3/93.

[ITU96] ITU-T. Recommendation Z.120: Message sequence chart (MSC), 10/96.

[JC+92] Jacobson, I., M. Christerson, P. Jonsson, and G. Overgaard. Object-oriented Software Engineering - A Use Case
Driven Approach. Addison-Wesley, Wokingham, England, 1992.

[JPA99] Jiménez-Peris, R. M. Patiño-Martínez, and S. Arévalo. “Multithreaded Rendezvous: A Design Pattern for
Distributed Rendezvous.” In Proceedings of the Symposium on Applied Computing. 1999.

[Joh94] Johnson, R.E. “Why a conference on pattern languages?” Software Engineering Notes, 19(1): 50-52, January 1994.

[Kar95] Karlsson, E.A. (ed.). Software Reuse - A Holistic Approach. John Wiley & Sons. 1995.

[KB95] Kim, J.J., and K.M. Benner. “A Design Patterns Experience: Lessons Learned and Tool Support.” In Proceedings
of ECOOP ‘95. 1995.

[LV97] Lai, J. and J. Vergo. “MedSpeak: Report Creation with Continuous Speech Recognition.” Proceedings of CHI ‘97,
ACM Press, New York, 1997, pp. 431-438.

[LS96] Lavender, R.G. and D.C. Schmidt. “Active Object: An Object Behavioural Pattern for Concurrent Programming.”
in Vlissides, J.M., J.O. Coplien, and N.L. Kerth. (eds.) Pattern Languages of Program Design 2. Addison-
Wesley, Reading, Mass. 1996.

[Lea00] Lea, D. “Design Patterns for Avionics Control Systems.” http://g.oswego.edu/dl/acs/acs/acs.html. Available 2000.

95

[LC+92] Linton, M.A., P. Calder, J. Interrante, S. Tang, and J. Vlissides. Interviews Reference Manual. CSL, Stanford
University, 3.1 Edition, 1992.

[LVC89] Linton, M.A., J.M. Vlissides, and P.R. Calder. “Composing User Interface with InterViews.” IEEE Computer,
22(2): 8-22, February 1989.

[Mad00] Madapusi, Bhadrinarayanan. “Automated Identification of Design Patterns”, MSc. Thesis. Department of
Computing & Information Sciences, Queen’s University. To Appear 2000.

[MRB97] Martin, R.C., D. Riehle, and F. Buschmann (eds.). Pattern Languages of Program Design 3. Addison-Wesley,
Reading, Mass. 1997.

[Mei96] Meijers, M. “Tool Support for Object-oriented Design Patterns.” M.Sc. Thesis. Department of Computer Science,
Ultrecht University, The Netherlands. 1996.

[Mes96] Meszaros, G. “A Pattern Language for Improving the Capacity of Reactive Systems” in Vlissides, J.M., J.O.
Coplien, and N.L. Kerth. (eds.) Pattern Languages of Program Design 2. Addison-Wesley, USA, 1996.

[Mic00] Microsoft Corporation Home Page. http://www.microsoft.com. Available 2000.

[Mil00] Miller, T. “Juries for Design Pattern Validation Home Page”. http://www.cs.clemson.edu/~tmiller/jury. Available
2000.

[MDK91] Mohindra, A., M. Devarakonda, and B. Kish. “Recovery in the Calypso file system.” ACM Transactions on
Computing Systems. 14, 3 (August 1991), 52-60.

[Mol96] Molin, P. and L. Ohlsson. “Points & Deviations - A pattern language for fire alarm systems.” In Proceedings of the
Third Annual Pattern Languages of Programming Conference. 1996.

[NW98] Noble, J., & C. Weir. “Proceedings of the Memory Preservation Society.” In Proceedings of the Third Annual
European Pattern Languages of Programming Conference. 1998.

[Obj00] Objectime Developer 5.2 Toolset. http://www.objectime.com. Available 2000.

[Opd92] Opdyke, W.F. “Refactoring Object-oriented Frameworks.” Ph.D. Thesis. Department of Computer Science,
University of Illinois, Urbana, Illinois, 1992.

[Par90] ParcPlace Systems, Mountain View, CA. ObjectWorks/Smalltalk Release 4 Users Guide, 1990.

[PJA98] Patiño-Martínez, M., R. Jiménez-Peris, and S. Arévalo. “Integrating Groups and Transactions: A Fault-Tolerant
Extension of Ada.” In Asplund, L. (ed.), Proceedings of the International Conference on Reliable Software
Technologies, Ada-Europe ’98, volume LNCS 1411, pp 78-89. Springer, June 1998.

[Pat00] Pattern Depot. http://www.patterndepot.com. Available 2000.

[Por00] Portland Pattern Repository. http://c2.com/ppr. Available 2000.

[Pra00a] Praxis Critical Systems Ltd. “SPARK Home Page.” http://www.praxis-cs.co.uk/products/sparkhome.html.
Available 2000.

[Pra00b] Praxis Critical Systems Ltd. “SPARK Examiner Home Page.” http://www.praxis-cs.co.uk/products/examiner.html.
Available 2000.

[Pre95] Pree, W. Design Patterns for Object-Oriented Software Development. Addison-Wesley, Reading, Mass. 1995.

[PS97] Petriu, D. & G. Somadder. “A Pattern Language for Improving the Capacity of Layered Client/Server Systems with
Multi-Threaded Servers.” In Proceedings of the Second Annual European Pattern Languages of Programming
Conference. 1997.

[Poo87] Pooley, R.J. An Introduction to Programming in SIMULA. Blackwell Scientific Publications, Oxford, 1987.

[PH+97] Pyarali, I., T. Harrison, D.C. Schmidt, T.D. Jordan. “Proactor: An Object Behavioural Pattern for Demultiplexing
and Dispatching Handlers for Asynchronous Events.” In Proceedings of the Fourth Annual Pattern Languages of
Programming Conference. 1997.

[Rat00a] Rational RequisitePro Toolset. http://www.rational.com/products/reqpro. Available 2000.

[Rat00b] Rational Rose Toolset. http://www.rational.com/products/rose. Available 2000.

96

[Rat00c] Rational Rose-Realtime Toolset. http://www.rational.com/products/rosert. Available 2000.

[RTJ00] Real-time Java Specification Home Page. http://www.rtj.org. Available 2000.

[Ref00] Refactoring Browser. http://st-www.cs.uiuc.edu/users/brant/Refactory/RefactoringBrowser.html. Available 2000.

[Ris00] Rising, L. The Patterns Almanac 2000. Addison-Wesley, Reading, Mass. To Appear 2000.

[RB+91] Rumbaugh, J. “The Life of an object model: How the object model changes during development.” Journal of
Object-oriented Programming, 7(1): 24-32, March/April 1994.

[Sch00] Schmidt, D.C. “Patterns for Concurrent, Parallel, and Distributed Systems Home Page”. http://www.cs.wustl.edu/
~schmidt/patterns-ace.html. Available 2000.

[Sch95a] Schmidt, D.C. “An Object Behavioural Pattern for Concurrent Event Demultiplexing and Event Handler
Dispatching.” In Coplien, J.O. and D.C. Schmidt (eds.) Pattern Languages of Program Design. Addison-Wesley,
Reading, Mass. 1995.

[Sch95b] Schmidt, D.C. “Using Design Patterns to Develop Reusable Object-oriented Communication Software.”
Communications of the ACM, October 1995, 38, 10, 65-74.

[Sch95c] Schmidt, D.C. “Acceptor and Connector: Design patterns for active and passive establishment of network
connections.” In Proceedings of ECOOP ’95, (Aarhus, Denmark), August 1995.

[Sch99a] Schmidt, D.C. “Object Lifetime Manager – A Complementary Pattern for Controlling Object Creation and
Destruction.” In Proceedings of the Fifth Pattern Languages of Programming Conference, Allerton Park,
Illinois, USA, August 1999.

[Sch95d] Schmidt, D.C. “Reactor: An Object Behavioural Pattern for Concurrent Event Demultiplexing and Event Handler
Dispatching.” In Coplien, J.O., D.C. Schmidt (eds.). Pattern Languages of Program Design. Addison-Wesley,
Reading, Mass. 1995.

[Sch99b] Schmidt, D.C. “Strategized Locking, Thread-Safe Decorator, and Scoped Locking: Patterns and Idioms for
Simplifying Multi-Threaded C++ Components”, C++ Report, SIGS, 11, 9, September 1999.

[SC95] Schmidt, D.C., and C.D. Cranor. “Half-Sync/Half-Async: An architectural pattern for efficient and well-structured
concurrent I/O.” In Proceedings of the Second Annual Conference on the Pattern Languages of Programs,
(Monticello, Illinois, Sept. 1995), pp. 1-10.

[SH96] Schmidt, D.C. and T. Harrison. “Double-checked Locking – An Optimization Pattern for Efficiently Initializing and
Accessing Thread-safe Objects.” In Proceedings of the Third Annual Pattern Languages of Programming
Conference, Allerton Park, Illinois, September 4-6, 1996.

[SHP97] Schmidt, D.C., T. Harrison, and N. Pryce. “Thread-Specific Storage – An Object Behavioural Pattern for Accessing
per-Thread State Efficiently.” In Proceedings of the Fourth Annual Pattern Languages of Programming
Conference, Allerton Park, Illinois, September 2-5, 1997.

[SJ97] Schmidt, D.C. and P. Jain. “A Pattern for Dynamic Configuration of Services.” C++ Report, SIGS, 9, 6, June 1997.

[SS95] Schmidt, D.C., and P. Stephenson. “Experience Using Design Patterns to Evolve Communication Software Across
Diverse OS Platforms.” Proceedings of the Ninth European Conference on Object-oriented Programming,
Aarhus, Denmark, 1995.

[Sch97] Schuderer, C. “REFORM Entwurfsdokumentation.” Siemens in-house design document. 1997.

[Sel96] Selic, B. “An Architectural Pattern for Real-time Control Software.” In Vlissides, J.M., J.O. Coplien, and N.L.
Kerth. (eds.) Pattern Languages of Program Design 2. Addison-Wesley, USA, 1996.

[SGW94] Selic, B., G. Gullekson, and P.T. Ward. Real-time Object-oriented Modeling. John Wiley & Sons Inc., USA, 1994.

[SR98] Selic, B., and J. Rumbaugh. “Using UML for Modeling Complex Real-Time Systems.” http://www.objectime.com/
otl/technical/umlrt.pdf. 1998. (Available 2000).

[Sri99] Srinivasan, S. “Design Patterns in Object-Oriented Frameworks.” IEEE Computer. Feb. 1999, pp.24-32.

[Str91] Stroustroup, B. The C++ Programming Language: 2nd Edition. Addison-Wesley. 1991.

97

[SHH91] Stoyenko, A.D., C. Hamacher, and R.C. Holt. “Analyzing Hard-Real-Time Programs For Guaranteed
Schedulability.” IEEE Transactions on Software Engineering, 17, 8 (Aug 1991), 737-750.

[Sun95] Sun Microsystems Inc. “The Java Language Environment: A White Paper.” 1995.

[Sym93] Symantec Corporation. Bedrock Developer’s Architecture Kit. 1993.

[Sys00] Systems and Software Research Center Home Page at Bell Laboratories. http://www.bell-labs.com/org/1135.
Available 2000.

[Tel00] Telelogic Tao Toolset. http://www.telelogic.com. Available 2000.

[VCK96] Vlissides, J.M., J.O. Coplien, N.L. Kerth (eds.). Pattern Languages of Program Design 2. Addison Wesley,
Reading, Mass. 1996.

[Wal98] Walls, C. “Java’s Role in the Embedded World”. Real-Time Magazine, 1, 1998.

[Web00] Web ProForum. Specification and Description Language (SDL) Tutorial. http://www.webproforum.com/sdl/.
Available 2000.

[WGM88] Weinard, A., E. Gamma, and R. Marty. “ET++ - An object-oriented application framework in C++”. In Object-
Oriented Programming, Systems, Languages, and Applications Conference Proceedings, pp. 46-57, San Diego,
CA, Sept. 1988.

[Wik00] Wiki Wiki Web. http://c2.com/cgi/wiki?WikiWikiWeb. Available 2000.

[Win97] Winston, P.H. On to Smalltalk. Addison-Wesley. Reading, Mass. 1997.

[Woo96] Woodward, K.G. “Heading off Tragedy: Using Design Patterns Against a Moving Target.” Proceedings of the
Second World Conference on Integrated Design and Process Technology, 1996.

98

A p p e n d i x A

APPENDIX A: ALEXANDER’S WINDOW PLACE PATTERN

The full text of Christopher Alexander’s Window Place pattern is provided below (from [AIS77]):

180 WINDOW PLACE **

This pattern helps complete the arrangement of the windows given by ENTRANCE
ROOM (130), ZEN VIEW (134), LIGHT ON TWO SIDES OF EVERY ROOM (159),
STREET WINDOWS (164). According to the pattern, at least one of the windows in each
room needs to be shaped in such a way as to increase its usefulness as a space.

Everybody loves window seats, bay windows, and big windows with low sills and
comfortable chairs drawn up to them.

It is easy to think of these kinds of places as luxuries, which can no longer be built, and
which we are no longer lucky enough to be able to afford.

In fact, the matter is more urgent. These kinds of windows which create “places” next to
them are not simply luxuries; they are necessary. A room which does not have a place like
this seldom allows you to feel fully comfortable or perfectly at ease. Indeed, a room
without a window place may keep you in a state of perpetual unresolved conflict and
tension – slightly, perhaps, but definite.

This conflict takes the following form. If the room contains no window which is a “place”,
a person in the room will be torn between two forces:

1. He wants to sit down and be comfortable.

2. He is drawn toward the light.

99

Obviously, if the comfortable places – those places in the room where you most want to sit
– are away from the windows, there is no way of overcoming this conflict. You see, then,
that our love for window “places” is not a luxury but an organic intuition, based on the
natural desire a person has to let the forces he experiences run free. A room where you feel
truly comfortable will always contain some kind of window place.

Now, of course, it is hard to give an exact definition of a “place”. Essentially a “place” is
partly enclosed, distinctly identifiable spot within a room. All of the following can function
as “places” in this sense: bay windows, window seats, a low window sill where there is an
obvious position for a comfortable armchair, and deep alcoves with windows all around
them. To make the concept of a window place more precise, here are some examples of
each of these types, together with discussion of the critical features which make each of
them work.

A bay window. A shallow bulge at one end of a room, with windows wrapped around it. It
works as a window place because of the greater intensity of light, the views through the
side windows, and the fact that you can pull chairs or a sofa up to the bay.

Bay window

A window seat. More modest. A niche, just deep enough for the seat. It works best for one
person, sitting parallel to the window, back to the window frame, or for two people facing
each other in this position.

Window Seat

100

A low sill. The most modest of all. The right sill height for a window place, with
acomfortable chair, is very low: 12 to 14 inches. The feeling of enclosure comes from the
armchair – best of all, one with a high back and sides.

Low Sill

A glazed alcove. The most elaborate kind of window place: almost like a gazebo or a
conservatory, windows all around it, a small room, almost part of the garden.

Glazed alcove

And, of course, there are other possible versions too. In principle, any window with a
reasonably pleasant view can be a window place, provided that it is taken seriously as a
space, a volume, not merely treated as a hole in the wall. Any room that people use often
should have a window place. And window places should even be considered for waiting
rooms or as special places along the length of hallways. Therefore:

In every room where you spend any length of time during the day, make at least one
window into a “window place”.

101

Make it low and self-contained if there is room for that – ALCOVES (179); keep the sill
low- LOW SILL (222); put in the exact positions of frames, and mullions, and seats after
the window place is framed, according to the view outside – BUILT-IN SEATS (202),
NATURAL DOORS AND WINDOWS (221). And set the window deep into the wall to
soften light around the edges – DEEP REVEALS (223). Under a sloping roof, use
DORMER WINDOWS (231).

102

A p p e n d i x B

APPENDIX B: GANG OF FOUR DECORATOR PATTERN

The full text of the Gang of Four Decorator pattern is provided below (from [GH+95]):

DECORATOR (Object Structural)

Intent

Attach additional responsibilities to an object dynamically. Decorators provide a flexible
alternative to subclassing for extending functionality.

Also Known As

Wrapper

Motivation

Sometimes we want to add responsibilities to individual objects, not to an entire class. A
graphical user interface toolkit, for example, should let you add properties like borders or
behaviours like scrolling to any user interface component.

One way to add responsibilities is with inheritance. Inheriting a border from another class
puts a border around every subclass instance. This is inflexible, however, because the
choice of border is made statically. A client can’t control how and when to decorate the
component with a border.

A more flexible approach is to enclose the component in another object that adds the
border. The enclosing object is called a decorator. The decorator conforms to the interface
of the component it decorates so that its presence is transparent to the component’s clients.
The decorator forwards requests to the component and may perform additional actions
(such as drawing a border) before or after forwarding. Transparency lets you nest
decorators recursively, thereby allowing an unlimited number of added responsibilities.

103

For example, suppose we have a TextView object that displays text in a window. TextView
has no scroll bars by default, because we might not always need them. When we do, we can
use a ScrollDecorator to add them. Suppose we also want to add a thick black border
around the TextView. We can use a BorderDecorator to add this as well. We simply
compose the decorators with the TextView to produce the desired result.

The following object diagram shows how to compose a TextView object with
BorderDecorator and ScrollDecorator objects to produce a bordered, scrollable text view:

The ScrollDecorator and BorderDecorator classes are subclasses of Decorator, an abstract
class for visual components that decorate other visual components.

VisualComponent is the abstract class for visual objects. It defines their drawing and event
handling interface. Note how the Decorator class simply forwards draw requests to its
component, and how Decorator subclasses can extend this operation.

Decorator subclasses are free to add operations for specific functionality. For example,
ScrollDecorator’s ScrollTo operation lets other objects scroll the interface if they know
there happens to be a ScrollDecorator object in the interface. The important aspect of this
pattern is that it lets decorators appear anywhere a VisualComponent can. That way clients
generally can’t tell the difference between a decorated component and an undecorated one,
and so they don’t depend at all on the decoration.

104

Applicability

Use decorator

• To add responsibilities to individual objects dynamically and transparently, that is, without
affecting other objects.

• For responsibilities that can be withdrawn.
• When extension by subclassing is impractical. Sometimes a large number of independent

extensions are possible and would produce an explosion of subclasses to support every
combination. Or a class definition may be hidden or otherwise unavailable for subclassing.

Structure

Participants

• Component (VisualComponent): Defines the interface for objects that can have
responsibilities added to them dynamically.

• ConcreteComponent (TextView): Defines an object to which additional responsibilities
can be attached.

• Decorator: Maintains a reference to a Component object and defines an interface that
conforms to the Component’s interface.

• ConcreteDecorator (BorderDecorator, ScrollDecorator): Adds responsibilities to the
component.

Collaborations

Decorator forwards requests to its Component object. It may optionally perform additional
operations before and after forwarding the request.

Consequences

The Decorator pattern has at least two key benefits and two liabilities:

1. More flexibility than static inheritance. The Decorator pattern provides a more flexible way
to add responsibilities to objects than can be had with static (multiple) inheritance. With
decorators, responsibilities can be added and removed at run-time simply by attaching and

105

detaching them. In contrast, inheritance requires creating a new class for each additional
responsibility (e.g., BorderedScrollableTextView, BorderedTextView). This gives rise to
many classes and increases the complexity of a system. Furthermore, providing different
Decorator classes for a specific Component class lets you mix and match responsibilities.
Decorators also make it easy to add a property twice. For example, to give a TextView a
double border, simply attach two BorderDecorators. Inheriting from a Border class twice is
error-prone at best.

2. Avoids feature-laden classes high up in the hierarchy. Decorator offers a pay-as-you-go
approach to adding responsibilities. Instead of trying to support all foreseeable features in a
complex, customizable class, you can define a simple class and add functionality
incrementally with Decorator objects. Functionality can be composed from simple pieces.
As a result, an application needn’t pay for features it doesn’t use. It’s also easy to define
new kinds of Decorators independently from the classes of objects they extend, even for
unforeseen extensions. Extending a complex class tends to expose details unrelated to the
responsibilities you’re adding.

3. A decorator and its components aren’t identical. A decorator acts as a transparent
enclosure. But from an object identity point of view, a decorated component is not identical
to the component itself. Hence you shouldn’t rely on object identity when you use
decorators.

4. Lots of little objects. A design that uses Decorator often results in systems composed of lots
of little objects that all look alike. The objects differ only in the way they are
interconnected, not in their class or in the value of their variables. Although these systems
are easy to customize by those who understand them, they can be hard to learn and debug.

Implementation

Several issues should be considered when applying the Decorator pattern:

1. Interface conformance. A decorator object’s interface must conform to the interface of the
component it decorates. ConcreteDecorator classes must therefore inherit from a common
class (at least in C++).

2. Omitting the abstract Decorator class. There’s no need to define an abstract Decorator
class when you only need to add one responsibility. That’s often the case when you’re
dealing with an existing class hierarchy rather than designing a new one. In that case, you
can merge Decorator’s responsibility for forwarding requests to the component into the
ConcreteDecorator.

3. Keeping Component classes lightweight. To ensure a conforming interface, components
and decorators must descend from a common Component class. It’s important to keep this
common class lightweight; that is, it should focus on defining an interface, not on storing
data. The definition of the data representation should be deferred to subclasses; otherwise
the complexity of the Component class might make the decorators too heavyweight to use
in quantity. Putting a lot of functionality into Component also increases the probability that
concrete subclasses will pay for features they don’t need.

106

4. Changing the skin of an object versus changing its guts. We can think of a decorator as a
skin over an object that changes its behaviour. An alternative is to change the object’s guts.
The Strategy pattern is a good example of a pattern for changing the guts. Strategies are a
better choice in situations where the Component class is intrinsically Heavyweight, thereby
making the Decorator pattern too costly to apply. In the Strategy pattern, the component
forwards some of its behaviour to a separate strategy object. The Strategy pattern lets us
alter or extend the component’s functionality by replacing the strategy object.

Strategies are a better choice in situations where the Component class is intrinsically
heavyweight, thereby making the Decorator pattern too costly to apply. In the Strategy
pattern, the component forwards some of its behavior to a separate strategy object. The
Strategy pattern lets us alter or extend the component’s functionality by replacing the
Strategy object.

For example, we can support different border styles by having the component defer border-
drawing to a separate Border object. The Border object is a Strategy object that
encapsulates a border-drawing strategy. By extending the number of strategies from just
one to an open-ended list, we achieve the same effect as nesting decorators recursively.

In MacApp 3.0 [App89] and Bedrock [Sym93], for example, graphical components (called
“views”) maintain a list of “adorner” objects that can attach additional adornments like
borders to a view component. If a view has any adorners attached, then it gives them a
chance to draw additional embellishments. MacApp and Bedrock must use this approach
because the View class is heavyweight. It would be too expensive to use a full-fledged
View just to add a border.

Since the Decorator pattern only changes a component from the outside, the component
doesn’t have to know anything about its decorators; that is, the decorators are transparent to
the component:

With strategies, the component itself knows about possible extensions. So it has to
reference and maintain the corresponding strategies:

The Strategy-based approach might require modifying the component to accommodate new
extensions. On the other hand, a strategy can have its own specialized interface, whereas a
decorator’s interface must conform to the component’s. A strategy for rendering a border,
for example, need only define the interface for rendering a border (DrawBorder, GetWidth,
etc.), which means that the strategy can be lightweight even if the Component class is
heavyweight.

107

MacApp and Bedrock use this approach for more than just adorning views. They also use it
to augment the event-handling behavior of objects. In both systems, a view maintains a list
of “behavior” objects that can modify and intercept events. The view gives each of the
registered behavior a chance to handle the event before nonregistered behaviors, effectively
overriding them. You can decorate a view with special keyboard-handling support, for
example, by registering a behavior object that intercepts and handles key events.

Sample Code

The following code shows how to implement user interface decorators in C++. We’ll
assume there’s a Component class called VisualComponent.

 class VisualComponent {
 public:
 VisualComponent();

 virtual void Draw;
 virtual void Resize();
 //…

 };

We define a subclass of VisualComponent called Decorator, which we’ll subclass to
obtain different decorations.

 class Decorator : public VisualComponent {
 public:
 Decorator(VisualComponent*);

 virtual void Draw();
 virtual void Resize();
 //…

 private:
 VisualComponent* _component;

 };

Decorator decorates the VisualComponent referenced by the _component instance
variable, which is initialized in the constructor. For each operation in VisualComponent’s
interface, Decorator defines a default implementation that passes the request on to
_component:

 Void Decorator::Draw() {
 _component->Draw();

 }
 void Decorator::Resize() {
 _component->Resize();

 }

Subclasses of Decorator define specific decorations. For example, the class
BorderDecorator adds a border to its enclosing component. BorderDecorator is a
subclass of Decorator that overrides the Draw operation to draw the border.

108

BorderDecorator also defines a private DrawBorder helper operation that does the
drawing. The subclass inherits all other operation implementations from Decorator.

 class BorderDecorator : public Decorator {
 public:
 BorderDecorator(VisualComponent*, int borderWidth);
 virtual void Draw();

 private:
 void BrawBorder(int);

 private:
 int _width;

 };

 void BorderDecorator::Draw() {
 Decorator::Draw();
 DrawBorder(_width);

 }

A similar implementation would follow for ScrollDecorator and DropShadowDecorator,
which would add scrolling and drop shadow capabilities to a visual component.

Now we can compose instances of these classes to provide different decorations. The
following code illustrates how we can use decorators to create a bordered scrollable
TextView.

First, we need a way to put a visual component into a window object. We’ll assume our
Window class provides a SetContents operation for this purpose:

 Void Window::SetContents (VisualComponent* contents) {
 //…
 }

Now we can create the text view and a window to put it in:

 Window* window = new Window;
 TextView* textView = new TextView;

TextView is a VisualComponent, which lets us put it into the window:

 Window->SetContents(textView);

But we want a bordered and scrollable TextView. So we decorate it accordingly before
putting it in the window.

 Window->SetContents(
 new BorderDecorator(
 new ScrollDecorator(textView), 1
)
);

109

Because Window accesses its contents through the VisualComponent interface, it’s unaware
of the decorator’s presence. You, as the client, can still keep track of the text view if you
have to interact with it directly, for example, when you need to invoke operations that
aren’t part of the VisualComponent interface. Clients that rely on the component’s identity
should refer to it directly as well.

Known Uses

Many object-oriented user interface toolkits use decorators to add graphical embellishments
to widgets. Examples include Interviews [LVC89, LC+92], ET++ [WGM88], and the
ObjectWorks\Smalltalk class library [Par90]. More exotic applications of Decorator are the
DebuggingGlyph from InterViews and the PassivityWrapper from ParcPlace Smalltalk. A
DebuggingGlyph prints out debugging information before and after it forwards a layout
request to its component. This trace information can be used to analyze and debug the
layout behaviour of objects in a complex composition. The PassivityWrapper can enable or
disable user interactions with the component.

But the Decorator pattern is by no means limited to graphical user interfaces, as the
following example (based on the ET++ streaming classes [WGM88]) illustrates.

Streams are a fundamental abstraction in most I/O facilities. A stream can provide an
interface for converting objects into a sequence of bytes or characters. That lets us
transcribe an object to a file or to a string in memory for retrieval later. A straightforward
way to do this is to define an abstract Stream class with subclasses MemoryStream and
FileStream. But suppose we also want to be able to do the following:

• Compress the stream data using different compression algorithms (run-length encoding,

Lempel-Ziv, etc.).

• Reduce the stream data to 7-bit ASCII characters so that it can be transmitted over an

ASCII communication channel.

The Decorator pattern gives us an elegant way to add these responsibilities to streams. The
diagram below shows one solution to the problem:

110

The Stream abstract class maintains an internal buffer and provides operations for storing
data onto the stream (PutInt, PutString). Whenever the buffer is full, Stream calls the
abstract operation HandleBufferFull, which does the actual data transfer. The FileStream
version of this operation overrides this operation to transfer the buffer to a file.

The key class here is StreamDecorator, which maintains a reference to a component stream
and forwards requests to it. StreamDecorator subclasses override HandleBufferFull and
perform additional actions before calling StreamDecorator’s HandleBufferFull operation.

For example, the CompressingStream subclass compresses the data, and the ASCII7Stream
converts the data into 7-bit ASCII. Now, to create a FileStream that compresses its data and
converts the compressed binary data to 7-bit ASCII, we decorate a FileStream with a
CompressingStream and an ASCII7Stream:

 Stream* aStream = new CompressingStream(
 new ASCII7Stream(
 new FileStream(“aFileName”)
)
);
 aStream->PutInt(12);
 aStream->PutString(“aString”);

Related Patterns

Adapter: A decorator is different from an adapter in that a decorator only changes an
object’s responsibilities, not its interface; an adapter will give an object a completely new
interface.

Composite: A decorator can be viewed as a degenerate composite with only one
component. However, a decorator adds additional responsibilities – it isn’t intended for
object aggregation.

Strategy: A decorator lets you change the skin of an object; a strategy lets you change the
guts. These are two alternative ways of changing an object.

111

VITA

Name: Ross Albert McKegney

Place and Year

of Birth:

Regina, Saskatchewan, Canada, 1976

Education: Fredericton High School, 1991-1994

High School Diploma (with Honours), 1994

University of New Brunswick, 1994-1999

Bachelor of Arts with Distinction (Majors in History and Sociology), 1999

Bachelor of Computer Science 1st Division, 1999

Experience: Research Assistant, Queen’s University, Summer 1999 and Summer 2000

Teaching Assistant, Queen’s University, Fall and Winter 1999/2000

Computer Programmer, NBTel Inc., 05/1998-04/1999

Marker, University of New Brunswick, Fall and Winter 1998-1999

Software Developer, Formal Systems Inc., 09/1996-08/1997

Respiratory Technician’s Assistant, Dr. Everett Chalmers Hospital, 08/1993-
04/1997

Awards: Ontario Graduate Scholarship in Science and Technology, 1999

UNB Dean’s Scholar, 1999

St. George Prize in History, 1999

N. Myles Brown Undergraduate Scholarship, 1998

UNB Awards Office Bursary, 1997

NBAAC Scholarship, 1997

UNB Undergraduate scholarship, 1996

Chester Martin Prize for History, 1996

Beaverbrook Scholarship, 1995

