The Secret Partner Pattern

Revision 3a by Bill Trudell, July 23, 2001

Submitted to the Pattern Languages of Programs

Shepherd: Neil Harrison PC Member: Kyle Brown

Thumbnail

This paper describes the Seaet Partner Pattern. A Seaet Partner is “a partner whose membershipin a
partnership is kept seaet from the public™. This pattern models the dose, yet seaetive association
between a Partner and a Seaet Partner. Clients or Customers can only interact with the original Partner
and they have no knowledge of the Seaet Partner. Whil e the Partner and Seaet Partner have a very close
relationship, the Seaet Partner also hasinformation that truly remains a seaet, even from the Partner.

Problem

In thereal world, thereisaneel for close relationships with some anourt of discretion. For example, the
relationship between two co-workers can be dose, but divulging salary information is not aways prudent.
Consider the @ase where 2 team members, a senior and junior developer, have shared responsibilities on a
projed. By chance the senior member leansthat the junior devel oper has ahigher salary. Unable to deal
with theinjustice, the relationship erodes, productivity suffers and tean moraleis adversely aff eded.
Divulging o acddentally discovering sensitive information can be dangerous and should be mitigated if
posshble. Software solutions model and perallel red world situations; therefore the problem can be
expressd in the foll owing question, “How can two software entities have a very close association while
allowing ane of them to keep some information seaet from the other party?’ This problem is lved by the
Seqet Partner Pattern.

Forces

There ae several challenges this pattern and its solution must address The co-worker example will be
taken a bit further. Suppose the senior devel oper serves as the point of contact for their shared projed. He
or she will mentor the junior developer, all owing that person to lean some new skill sin a safe
environment, where risks can be managed and visibility isminimal. The senior member interfaces with the
customer, attends medings, and helps resolve requirements.

Oneforceto beresolved is the desire of the senior member to shield the junior devel oper from the
customer, company politi cs, etc. Thejunior devel oper also wants to stay anonymousin order to focus on
leaning the new tedinology and implementing the solution without the worry of being unduy scrutinized.

Anocther forceisthenecessty for the senior and junior developer to communicate dficiently and
effedively. Sinceonly the senior devel oper is attending the austomer medings, he or she knows the
projed vision and motivations behind the requirements. Even though the requirements are documented,
they still must be explained and understood by the junior devel oper.

Finally, the junior developer has me idea the senior member is disgruntled about hiscurrent salary. If the
junior member shares hishigher salary with the more experienced senior developer, he might lose the
chancetolean anew skill, or affed the ddlivery schedule due to hard fedings. Therefore, the salary
information is best kept seaet in order to maintain the relationship.

Merriam-Webster On-line Dictionary, http://www.webster.com/

Copyright © 2001, Bill Trudell. Permisson is granted to copy for the PLoP 2001 conference All other
rightsreserved.

SecretPartnerPattern_v3a.doc Page 1 of 9 Created by Bill Trudell

Forces (continued):

The challenges presented are especially an issue in the C++ programming language because the constraints
are friendship and class accessibility. Friendship islimited to specific functions or the whole class; thereis
no middie ground. The forces are still the same even if Javais used to program the solution. However, the
congtraints are different because Java does not explicitly support friendship and it has different accessibility
rules. Featureslike package and interfaces could be used to resolve the forces described. This paper will
solve the problem with C++; a Java solution is beyond the scope of this paper but would neverthel ess be
interesting and possibly easier.

If friendship is only granted for certain functions, the nature of the friendship is restricted by public,
protected and private accessibility. For close associations, this can be too constraining, requiring more
over-head when accessing private data, etc. One object would incur the overhead of an artificial protocol
with the cooperating object and this seems unnecessary. Only using friend functions may also require more
maintenance as the classes mature; every time afunction is added, theissue of friendship must be
addressed.

The other extremeis granting friendship to awhole class. In this scenario, the grantor has no privacy. The
friend class has unrestricted access to the grantor because the accessibility levels of public, protected and
private are not enforced on friend classes. This seemstoo liberal for some situations. The classes could
have no secrets from each other and encapsulation is broken.

SecretPartnerPattern_v3a.doc Page2 of 9 Created by Bill Trudell

Solution

The dedaration of an inner classis the key to limiting the scope of friendship between two C++ classes and
will solvethe problem of kegping some data truly seaet. The Seaet Partner Pattern balances intimacy and
discretion by al owing one dassto expose al of it’s methods and only some of it’s datato a @llaborator or
delegate.

The Webster definition of a Seaet Partner is*“a parther whose membership in a partnership is kept seaet
from the public”. This pattern modelsthe dose, yet seaetive assciation between a Partner and a Seaet
Partner. Clients or Customers can only interact with the Partner and they have no knowledge of the Seaet
Partner. Whil e the Partner and Searet Partner have a very close relationship, the Seaet Partner al'so has
information that truly remains aseaet, even from the Partner.

The Partner isimplemented as a mncrete base dass. The Seaet Partner derives from the Partner. The
Seaet Partner dso dedares an Inner classand contains an Inner classinstanceas siown in Figure1. The
example used in the solution is different than the one used to explain the problem. Here, a venture
capitalig in therole of a Seaet Partner is funding a company run by the Partner. This example conveysthe
pattern’ sintent but isnot a solution that would be programmed in the real world.

| Figure 1 — Seaet Partner Pattern ClassDiagram |

Partner
- m_fStartingCapital: float
+ ~Partner() Aninstance of a Partner will have g
+ Partner() pointer to another Partner instance (a
+ RaiseMoney(float) : float SecretFartner).
+ StantBusiness{float)
A Special Requests
Type of Funding
Fartner
SecretParther
SecretPartner()
~SecretPartner()
RaiseMoney(float) : float
SecretPartner()
StartBusiness{float)
The SecretPartner has the Partner as a
Inner friend. The SecretPartner:inner class
o fowissAccourt float has the SecretPartner as a friend. The
- B : - ; : ;
. m fcastToParmer float L ﬁﬁgeggjgrggerwul have an instance of an

2 Merriam-Webster On-line Dictionary, http://www.webster.com/

SeaetPartnerPattern_v3a.doc Page3 of 9 Creaed by Bill Trudell

Solution (continued):

The header files for the Partner and Seaet Partner classes are shown in Listings 1 and 2 respedively. Note
that the Partner classheader makes no mention of a Seaet Partner instance A typical software
development kit would only include the Partner.h file and the compil ed library with the appropriately
exported functions. Thekit would not include the SeaetPartner.h snceit’snot necessry. Therefore,
Applicaion developers would not have immediate accessor knowledge of the SeaetPartner class

Listing 1 — Partner Classheader (Partner.h)

/! Declarations for the Partner Cl ass, Partner.h
#i f ndef | NCLUDED_PARTNER_H
#defi ne | NCLUDED _PARTNER_H

/1 Users or Application Devel opers only interact
/1 with the Partner. (Apart fromthis coment,
// there is no mention of a SecretPartner, just a
/1 vague reference to another partner.)

class Partner

public:
Partner();
virtual ~Partner();
virtual void StartBusiness(float ventureCapital);
virtual float Rai seMoney(float anmount Needed);

pr ot ect ed:
/1 none
private:
float mfStartingCapital;
Part ner* m pRef; /] pointer to another partner

b

#endi f // | NCLUDED_PARTNER H

SeaetPartnerPattern_v3a.doc Page4 of 9 Creaed by Bill Trudell

Solution (continued):

The SeaetPartner classdedares an Inner classwith private accesshility. The Inner classis now hidden
from the Partner classeven thoughit’safriend. However, the Inner classis aso hidden from the
SeaetPartner; therefore the Inner classneeds to make the SeaetPartner its' friend. The Inner classdedares
its data as private. Now, the SeaetPartner accessits SwissBank acoount and kego it hidden from the
Partner!

Listing 2 — Seaet Partner header (SeaetPartner.h)

/I Declarations for the SecretPartner Classes
#ifndef INCLUDED_SECRETPARTNER_H
#define INCLUDED_SECRETPARTNER_H

#include "Partner.h"

/I The SecretPartner is a special kind of Partner
/I (it's hidden from the public and it has secret bank accounts)
class SecretPartner : public Partner
{
public:
/I Declare Base Class Partner as a friend of the
/I SecretPartner so it can call the protected
/I constructor, or any other future methods, which
/[are hidden from users.
friend class Partner;
protected:
SecretPartner();
virtual float RaiseMoney(float amountRequested);
virtual ~SecretPartner();
virtual void StartBusiness(float ventureCapital);
private:
/I No copying or assigning allowed for now
SecretPartner(const SecretPartner&);
const SecretPartner& operator=(const SecretPartner&);

/I Declare an Inner class in which the Secret Partner's
/I personal Data is hidden, even from the Partner who is
/l a friend and expecially from Users.
1
/I The Inner Class must extend friendship to the outer,
/Il so the outer has full access to the Inner.
class Inner
{
friend class SecretPartner;
private:
float m_fCashToPartner;
float m_fSwissAccount;

J

/I Allocation of storage for the Inner
Inner mylnner;

J

#endif // INCLUDED_SECRETPARTNER_H

SeaetPartnerPattern_v3a.doc Page5of 9 Creaed by Bill Trudell

Solution (continued):

The dassdefinitionsfor the Partner and SeaetPartner are shown in Listings 3 and 4. Sincethe
SeaetPartner derives from the Partner and an instance of a Partner all ocates a SeaetPartner, the
construction processis messy. The Partner constructor initializes m_pRef to zero. Sincethe SeaetPartner
will aso exeaute this constructor, an instance of the SeaetPartner will have azero for m_pRef. Thisis
important later for safe destruction. The Partner instantiates anew SeaetPartner in its StartBusiness
function, setting the m_pRef variable. If the Partner had attempted to create the SeaetPartner in its
constructor, arace of exeating the derived and base @nstructors would have occurred. (Thisisagood
reason not to call virtual functionsin a base dass constructor, and a good reason not to perform heap
alocation in a cnstructor.)

The destruction processis equaly messy. When the Partner destructor is cdled for a Partner ingtance the
m_pRef will be non-zero. A delete isdone on the pointer, which calls the destructor of the SeaetPartner
instance Sincethe SeaetPartner derived from the Partner and the destructors were dedared virtual, the
Partner destructor is cdled. Thistime, them_pRef is zero and the function returns, allowing the
SeaetPartners destructor to complete and finally all owing the Partner instanceto be destructed. Foll owing
thisin the debugger was tedious.

Having said al that, implementing the SeaetPartner as a singleton could simplify this confusion. The
Partner would only call the _instance method, the SeaetPartner would be responsible for the dl ocation and
de-all ocation of itsdlf. However, it imposes an unnecessary restriction on the multipli city between it and the
Partner. It'satrade-off and the choice was made to minimize the restrictions on multipli city.

Listing 3 — Partner Class Definitions (Partner.cpp)

/1 Definitions for the Partner C ass

#i ncl ude "Partner.h"
#i ncl ude "SecretPartner.h"
#i ncl ude <i ostreanp

usi ng nanespace std;
Partner:: Partner ()
m pRef = 0;

m fStartingCapital = O;
}

voi d Partner::StartBusiness(float ventureCapital)

{
m fStartingCapital = ventureCapital;
m pRef = new Secret Partner;
m pRef - >St art Busi ness(ventureCapital);

}
float Partner::Rai seMney(float anpunt Needed)

return (m_pRef->Rai seMoney(anount Needed));
}

Partner:: ~Partner ()

del ete m pRef;
}

// End of Partner.cpp

SeaetPartnerPattern_v3a.doc Page 6 of 9 Creaed by Bill Trudell

Solution (continued):

The Partner is unable to accessthe SeaetPartners SwissAcoount data. 1t doesn’t even know it’ s there
redly. Had the SeaetPartner not wrapped that datain theinner class the Partner would have been able to
exeaute the statement (static_cast< SecretPartner*>(m_pRef))->m_fSnissAccount; to get that information.
If the Partner exeautes the statement (static_cast< SecretPartner* >(m_pRef))->mylnner.m _fSaissAccount ,
the compil er generates an error indicating that Partner cannot accessa private member dedared in the dass
‘SeaetPartner::Inner’, misgon accompli shed.

There' snot much to be said about the SeaetPartner implementation. The syntax for accessng the Inner
classinstancedatais straightforward.

{
}

{

}

{

}

}

}

Listing 4 — SeaetPartner Class Definitions (SeaetPartner.cpp)

/I Definitions for the SecretPartner Classes
#include "SecretPartner.h"

SecretPartner::SecretPartner() : Partner()

void SecretPartner::StartBusiness(float cashToPartner)

mylnner.m_fCashToPartner = cashToPartner;
mylnner.m_fCashToPartner = cashToPartner;

/I Secret Partner has 100 times the cash given to the

/l partner and it's stored in a Swiss account.

mylnner.m_fSwissAccount = 100.0F*cashToPartner;
float SecretPartner::RaiseMoney(float amountRequested)

float amountGiven = 0.0F;

/I Don't give it all away, make sure to keep 10 Million,

/I it's not easy to live on less.
if ((amountRequested <= mylnner.m_fSwissAccount) &&

(mylnner.m_fSwissAccount >= 10000000.0F))

/I You'll never get what you asked for from
/I a Venture Capitalist

amountGiven = amountRequested * 0.9F;
mylnner.m_fSwissAccount -= amountGiven;

return amountGiven;

SecretPartner::~SecretPartner()

/I Nothing to do

/I End of SecretPartner.cpp

SeaetPartnerPattern_v3a.doc Page 7 of 9

Creded by Bill Trudell

Solution (continued):

A sample program for using this pattern is shown in Listing 5.

Listing 5 — Sample Program (Main.cpp)

/I Main Program to Demonstrate the Secret Partner Pattern
#include "Partner.h"
#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

/I A Partner is given 1 Million Dollars of Venture Capital
/I to start a New Company

float startingCapital = 1000000.0F;

Partner myPartner;

myPartner.StartBusiness(startingCapital);

cout << "Starting cash is " << startingCapital << endl;

/I At some point later, the company get's tight

/I for cash and needs another million dollars.

/I However, the public does not know about the Secret

/I Partner or where the money is going to come from. The
/I employees can only hope and trust the Partner.

float amtRequested = 1000000.0F;
float amtReceived = 0.0F;

cout << "We need more money!" << endl;

amtReceived = myPartner.RaiseMoney(amtRequested);
if (amtReceived < amtRequested)

{
}

return O;

cout << "We're a little short, cut resources." << endl;

}

/I end of Main.cpp

Discussion

The solution presented addressed all stated challenges. The Partner, in its private sedion contained a
pointer to another Partner, which was really the SeaetPartner. Sincethe pointer is private, clientsare not
abletointeract with it. Therefore, the Seaet Partner istruly anonymous from the “public”. The Seaet
Partner granted the Partner classfull friendship so there aeno limitations on accessng the Seaet Partners
methods, most of which are proteded, another safe-guard againgt acddental use by clients. The use of
friendship is desirable for such a dose asociation between 2 classes. Lastly, the Seaet Partner was able to
keep its SwissBank acoount hidden, even from the Partner.

The implementation actually has very few adverse side affects. Oneisaeistheinheritance and
aggregation of the Partner and SeaetPartner that makes objed construction and deanstruction dfficult.
An dternative implementation using the singleton was suggested. Another nuisanceisthe extra syntax
required by the Seaet Partner to accessits Inner classinstance data, which seans worth it in exchange for
the safeguarding of confidential information.

SeaetPartnerPattern_v3a.doc Page 8 of 9 Creaed by Bill Trudell

Contraindications

The Seaet Partner Pattern should not be used when friendship is not required; it would be better to use the
public, proteded and private accesshility levels to restrict access

Related Patterns

There ae several existing petterns related to the Searet Partner. It resembles the facade® pattern because
clientsinteract with the Partner. In the example used for the solution, the Partner acted as the managing
partner, yet the Seaet Partner behaved like a Venture Capitalist who funded the company. It issimilar to
the evelope-letter idiom* where the Partner isthe envelope and the Seaet Partner istheletter insde. Itis
also similar to the adapter since dients interact with the Partner, but the SeaetPartner does the red work.

Example | nstances

In programming C++, streaming classes typically require friendship in order to fully implement the various
operatorslike << and >>. Nevertheless the dassgranting friendship may still want to guard certain
attributes and behavior; after all it only needsto share its dreaming nature. Another example might be the
moddling of atreenode where the dient interacts with anode in therole of the Partner, but the redl
implementation and node details are contained in the SeaetPartner.

Inredl life, there ae many similar examples. A puppet government, being sponsored and dreded by a
foreign super power might be an example.

References

The Author would like to recognize Ray Heath for suggesting the ideaof limiting friendship and Hs
encouragement for pursuing theideasfor this paper. Speda thanksare extended to Neil Harrison for
shepherding and heping to refine this paper. Finaly, the Author would li ke to thank his wife Suzanne for
her encouragement to pursue writing and sharing these ideas with the software community.

Authors Background:
The author has 18 years of diverse software development experiencewith a Bachelor of Science degree
in Eledricd Engineaing. He has gent thelast 9 years programming in C and C++ andis currently
developing middieware for Capital One, aleading credit card issuer and financial Services Company.
He has had papers publi shed in Embedded Systems Programming® and the Journal of Object Oriented
Programming’.

3 “Design Patterns’, by Erich Gamma, et al., Addison-Wesley, 1995

“ Coplien, J.O. “Advanced C++ Programming Styles and Idioms.” Reading, MA. Addison-Wesley, 199,
pp. 316-323.

In addition, Cope recast the idioms as patterns in the foll owing reference

Coplien, J. O. “C++ Idioms Patterns.” In Harrison, Neil B., Brian Foate, and Hans Rohnert, eds., Pattern
Languages of Program Design, Volume 4. Reading MA. Addison-Wedey, 200Q pp. 167-198.

®> Embedded Systems Programming, Keys to Writing Efficient Embedded Code, October 1997,CMP Media
Inc. and A Better Way To Process Messages, May 200L,CMP MediaInc.

® JOOP, The Access Proxy Pattern, January 2001, 101 Communications

SeaetPartnerPattern_v3a.doc Page 9 of 9 Creaed by Bill Trudell

