
Software Configuration Management

SEI Curriculum Module SEI-CM-4-1.4

December 1990

James E. Tomayko
Software Engineering Institute

Software Engineering Institute
Carnegie Mellon University

This work was sponsored by the U.S. Department of Defense.
Approved for public release. Distribution unlimited.

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD position. It is
published in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

JOHN S. HERMAN, Capt, USAF
SEI Joint Program Office

This work was sponsored by the U.S. Department of Defense.

Copyright 1990 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of scientific and
technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government agency personnel and
their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron
Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering, please
contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademark in this document is not intended in any way to infringe on the rights of the trademark holder.

414122190

Software Configuration Management

Acknowledgements Contents

I would like to thank The Wichita State University, partic- Capsule Description 1
ularly my department head Mary Edgington, and my dean Philosophy 1
Phillip D. Thomas, for making it possible for me to pre-

Objectives 1pare the original version of this work at the Software
Engineering Institute. Norm Gibbs, the Director the Edu- Prerequisite Knowledge 2
cation Program at the SEI, made sure I had the resources Address of Author 2
and encouragement to complete the work, including spon-

Module Content 3soring a Configuration Management Workshop at the In-
stitute. Outline 3

Annotated Outline 3Mark Chweh, a Carnegie Mellon student assistant, did the
initial bibliographic search. Kate Harvey, another student Glossary 7
assistant, kept track of the bibliography, provided editorial

Teaching Considerations 8assistance, and wrote an excellent summary of the Config-
Textbooks 8uration Management Workshop. Allison Brunvand and

Oliver Martin helped prepare the slides and make the Teaching Techniques 8
Workshop run smoothly.

Teaching Support 8
My special thanks go to the participants in the Workshop. Software Support 8
Brad Brown, Ted Keller, Dick Parten, and Bill Tindall, all

Suggested Course Adaptations 8from the corporate world, generously contributed their
time and experiences. Jim Collofello and Bob Glass inter- Bibliographies 10
rupted work on their own curriculum modules to partic- Textbooks 10
ipate. Mary Shaw, then the Chief Scientist of the SEI,

Other Materials 10also contributed.

Finally, my thanks to the reviewers of draft and later
versions of this module, who generously contributed time
and talent: Anita Baker, Ellen Borison, Lionel Deimel,
Priscilla Fowler, Bob Glass, John Nestor, Joe Newcomer,
Jim Perry, and Linda Pesante.

A support materials package, SEI-SM-4,
is available for this module.

SEI-CM-4-1.4 iii

Software Configuration Management

Module Revision History

Version 1.4 (December 1990) Minor corrections and format changes
Approved for publication

Version 1.3 (July 1987) Format changes for title page and front matter
Version 1.2 (April 1987) Slight cosmetic changes
Version 1.1 (November 1986) Added material to outline sections III.1, III.2, and to “Software Support” section
Version 1.0 (September 1986) Original version

iv SEI-CM-4-1.4

Software Configuration Management

3. Explain how configuration control main-Capsule Description
tains the integrity of configuration items.

4. Explain that configuration items areSoftware configuration management encompasses
components of the total product.the disciplines and techniques of initiating, evaluat-

ing, and controlling change to software products dur- 5. Identify the configuration items of a typi-
ing and after the development process. It empha- cal product.
sizes the importance of configuration control in

6. Define the term baseline.managing software production.
7. Explain the importance and use of con-

figuration item nomenclature.

8. Differentiate between discrepancies and
requested changes.Philosophy

9. Differentiate between discrepancies
caused by requirements errors and thoseConfiguration management is an integral part of the
caused by development errors.software development process across all phases of

the life cycle. It functions as a controlling disci- 10. List the key items included in a dis-
pline, enabling changes to be made to existing docu- crepancy reporting form.
mentation and products in such a way as not to

11. List the key items included in a changedestroy the integrity of the software. Since configu-
request form.ration management extends over the life of the prod-

12. Show how discrepancy reports anduct, and since tools, techniques, and standards exist
change requests are tracked within a soft-solely aimed at its proper execution, configuration
ware development organization untilmanagement can stand alone as a module within a
closure is obtained.graduate curriculum.

13. List and define the fundamental prin-The module presented here is intended to be an in-
ciples of implementing change controldepth consideration of configuration management,
boards.including configuration item identification, change

14. Define the scope of change controlreporting and evaluation, change execution, tool
boards of at least three levels of a prod-evaluation and use, version control, and management
uct development organization (system,principles related to configuration control.
subsystem, software).

15. Given the scope of a change control
board, determine its composition.

Objectives 16. List the most important considerations in
evaluating the repair of discrepancies.

Cognitive Domain. The student will be able to: 17. List the most important considerations in
1. Explain that software evolves throughout evaluating change requests.

the life cycle by means of requirements 18. List the most important considerations inchanges (including new product evaluating requests for new derivativesdefinition) and discrepancy correction. of a product.
2. Define the term configuration item.

SEI-CM-4-1.4 1

Software Configuration Management

19. Specify how the implementation of Address of Author
changes can be tracked.

20. Define the simultaneous update problem. Comments on this curriculum module are solicited,
and may be sent to the SEI Software Engineering21. Define the concept of version trees.
Curriculum Project or to the author:

22. Identify at least three necessary charac-
James E. Tomaykoteristics of good version control tools
Software Engineering Institute(automated documentation, locking, min-
Carnegie Mellon Universityimal use of storage).
Pittsburgh, PA 1521323. List at least three commercially available

version control tools, their similarities
and differences, and their suppliers.

24. Identify at least two standards for config-
uration management plans.

25. List the contents of an effective configu-
ration management plan.

26. List at least three personal characteristics
needed by effective configuration man-
agement personnel.

27. Describe the procedures of a configura-
tion audit.

28. Explain the relationship between config-
uration management, quality assurance,
and the customer.

29. Determine the impact of the granularity
of configuration control on cost and
schedule.

30. Explain the concept of system descrip-
tion languages.

Affective Domain. The student will:
1. Appreciate the role effective configura-

tion management plays in ensuring prod-
uct integrity.

2. Realize that configuration management
activity extends over the entire software
life cycle.

3. Be committed to implementing and de-
manding effective configuration manage-
ment of software products.

Prerequisite Knowledge

The student should understand software life cycle
models to the depth presented in a one semester un-
dergraduate introductory software engineering
course.

Prior experience in acting as a member of a team
doing software development is also necessary.

2 SEI-CM-4-1.4

Software Configuration Management

Module Content

Outline Annotated Outline

I. Introduction Most material directly supporting this module can be
found in [Bersoff80], [Babich86], and in “Summary1. Evolution in the Software Life Cycle
of the 1986 SEI Configuration Management

2. Configuration Management as a Controlling Workshop” (available in the support materials for
Tool this module, SEI-SM-4-1.0). Specific references are
a. Maintaining Integrity of Configuration Items made to other sources where appropriate.
b. Evaluating and Performing Change

3. Configuration Management Process as a
I. IntroductionVisibility Tool: Status Accounting and Audits

1. Evolution in the Software Life Cycle4. Configuration Management as a Cost Saving
Tool Software is evolutionary in nature. From the time a

software product is defined until it is no longer used,5. Requirements for the Success of Configuration
it changes. Each change results in a different ver-Management
sion of the product. Initiating, evaluating, and im-II. Maintaining Product Integrity plementing the changes while maintaining product

1. Identifying Configuration Items integrity is the purpose of configuration manage-
ment. It provides a rational framework with which2. Establishing Baselines
to deal with the irrational world of user demands and

3. Naming Configuration Items resource constraints. In terms of maintaining prod-
uct integrity, it works closely with quality assuranceIII. Change Management
and verification and validation teams.1. Types of Change

2. Configuration Management as a Controllinga. Discrepancies
Toolb. Requested Changes
a. Maintaining Integrity of Configuration Items2. Configuration Control Boards

Changes to one configuration item usually requirea. Fundamental Principles to Guide
changes in others. For instance, a requirementsConfiguration Control Boards
change means specification, design, code, and

b. Determining Configuration Control Board testing changes. Configuration management
Characteristics helps maintain the integrity of specific items in an

atmosphere of change.c. Configuration Control Board Activities

d. Executing Change b. Evaluating and Performing Change
IV. Version Control Configuration control boards, established under a

1. The Simultaneous Update Problem configuration management plan, evaluate pro-
posed changes and discrepancy reports, authorize2. Version Trees
or do not authorize change, and track the imple-

3. Tools for Version Control mentation of the decision either way.
4. System Description Languages 3. Configuration Management Process as a

V. Metrics Visibility Tool: Status Accounting and Audits
VI. Configuration Management Planning By defining baselines and placing documents and

1. Content of Configuration Management Plans other items under configuration control, configura-
tion management provides project leaders and highera. Scope
management with concrete evidence that a product

b. Standards is being created. Audits establish what the status of
the project is at particular points in time.2. Characteristics of Personnel

SEI-CM-4-1.4 3

Software Configuration Management

naming of configuration items. Software products4. Configuration Management as a Cost Saving
should be given unambiguous names and/or partTool
numbers. Some guidance in naming conventions is

By helping to maintain product integrity, configu- given in military standards. Documentation pre-
ration management reduces overall software devel- pared for a product is also numbered using the same
opment costs. Cost savings during a particular scheme as the eventual product. (See [Gunther78].)
phase of the life cycle depend on the depth of appli-

III. Change Managementcation of configuration management. For instance,
controlling individual source code modules costs 1. Types of Change
more than only controlling the fully integrated prod- a. Discrepanciesuct, but should result in overall savings due to reduc-
tion in side effects from individual changes. At this Discrepancy reports may be filed by anyone in
time, however, there are no quantitative measures the development organization, marketing, or by
sufficiently well developed to document the cost customers after delivery of the software product.
savings. This is largely because the losses due to Discrepancy reports are tracked by the configu-
lack of configuration management do not occur, and ration management organization through initial
thus cannot be measured. logging, scheduled evaluation by the configura-

tion control board, and through the disposition5. Requirements for the Success of Configuration process. Some companies have developed propri-
Management etary tools which prohibit linking modules with

identified errors, thus preventing incomplete orThe key requirement for success of configuration
erroneous software from becoming part of amanagement is the commitment of all levels of man-
shipped product.agement to enforcing its use throughout the project

lifetime. Configuration management, like other There are three kinds of discrepancies that may be
parts of software engineering perceived as being identified in reports.
tedious, may require some coercion for success. A
further requirement is the availability of a clearly (i) Requirements Errors
stated configuration management plan.

This type of discrepancy is an error in the re-
II. Maintaining Product Integrity quirements. Either the customer or marketing

did not fully or clearly express the require-1. Identifying Configuration Items
ments, or incorrect information was given. (In

A configuration item is a document or artifact ex- the support materials package for this module,
plicitly placed under configuration control. The see the configuration management example’s
minimum number of controlled items in a software first discrepancy report for a requirements
project is whatever may be needed to effectively error.)
maintain and enhance the product. These may in-

(ii) Development Errorsclude requirements, specification, and design docu-
ments, source code, test plans, user and maintenance Another type of discrepancy is an error done
manuals, interface control documents, memory during development. This means that a correct
maps, and others such as procedural or policy docu- requirement was improperly implemented. De-
ments. The actual items under control vary with the velopment errors occur between the time the
needs of the project, and certain items may be requirements are baselined and the time the
waived at specific points in the life cycle. Remem- product is turned over to the customer or to
ber that there are time and cost tradeoffs associated marketing.
with the number and level of items under control.

(iii) Violations of Standards2. Establishing Baselines
Yet another type of discrepancy is a violation

In cooperation with the developing organization (or of development standards, either the company
in small projects within the developing organiza- standard or a customer standard in effect due to
tion), configuration management helps to establish contract.
baselines by placing items under configuration con-
trol. Often the only discrete indication that a project b. Requested Changes
has moved from one phase of the software devel-

Change requests are treated largely like dis-opment cycle to another is a controlled document
crepancy reports.signaling the end of the previous phase.

There are three kinds of changes that may be re-3. Naming Configuration Items
quested.

One aspect of configuration management is the

4 SEI-CM-4-1.4

Software Configuration Management

control system would have a configuration(i) Unimplementable Requirements
control board responsible for controlling

One reason for a change request is that a re- change to the entire aircraft, a subordinate
quirement turns out to be unimplementable board for the avionics subsystem, a further sub-
through resource constraints identified by the ordinate board for avionics hardware and soft-
requester. Another reason is that a “bad” im- ware, and even further down the tree, boards
plementation makes meeting all requirements for reused and new software. (See the
impossible. viewgraph “Hierarchies of Configuration Con-

trol Boards” in the support materials package(ii) Enhancements
for this module.) The concept of hierarchies

Enhancements are change requests that involve implements the Principle of Specificity.
additional requirements.

It is also important to establish appeal routes
(iii) Improvements for each level of the hierarchy, making the

checks and balances explicit.
Improvements are change requests that will im-
prove the product, though not in terms of func- (ii) Scope
tionality or performance. An example would

To implement the Principle of Authority, thebe a request to rewrite a block of code to in-
scope of items that a particular configurationcrease understandability.
control board will consider must be specifically

2. Configuration Control Boards delineated. Boards are interdependent. A
change to the software may result in a furthera. Fundamental Principles to Guide
change to the hardware, thus a higher-levelConfiguration Control Boards
board must approve. Changes to software that

(i) Principle of Authority have no effects outside the software portion of
the system may be considered by the softwareA configuration control board must have the
board alone. Documentation of the scope ofauthority to evaluate and direct the implemen-
the authority of the boards must be part of thetation of change to the part of the product
Configuration Management Plan.within its scope of activity.

(iii) Composition(ii) Principle of Solitary Responsibility
To implement the Principle of Solitary Respon-Many large development organizations have
sibility, each board must have on it the personfound that each board must have on it one per-
who is in a position to make and enforce theson who makes decisions based on the advice
decisions of the board. The highest level boardof the other members. This is not a democratic
will always have the project manager on it.process.
The software control board must have the prin-

(iii) Principle of Specificity cipal software architect on it, assuming that
person has the power to enforce changes. Ad-

The scope of responsibility of a control board ditional members include those who can most
must be limited to a predefined area of product effectively contribute advice to the sole
development. decision-making person. The configuration

manager responsible for the level of the project(iv) Principle of Responsiveness
that the board controls should also be a mem-

Tardy consideration of items by a configura- ber, and should have responsibility for tracking
tion control board undermines its operation. If and implementing decisions.
the developers or customers feel that their re-

c. Configuration Control Board Activitiesports are not taken into consideration promptly,
they may try to circumvent the board or find The most important activity of a Configuration
another company to do business with. Simple Control Board is the evaluation of discrepancy re-
acknowledgement of the receipt of reports is ports and requests for changes. Key factors con-
also important. sidered by a board in making decisions are:

b. Determining Configuration Control Board • Size of the change
Characteristics • Complexity in reference to related sys-

tems(i) Hierarchies of Control Boards
• Date when it is neededControl boards are established for the total sys-
• Impact on current and subsequent worktem, subsystems, and components of products.

For example, an airplane with a digital flight • Cost

SEI-CM-4-1.4 5

Software Configuration Management

clude incremental releases of limited products and• Criticality of the area involved
forked development paths.• Approved changes already in process

3. Tools for Version Control• Test requirements

• Resources (skills, hardware, system) Several automated tools for version control exist and
are documented: SCCS, RCS, CMS, Cedar, Domain.• Central processing unit and memory im-
These are described in [Rochkind75], [Tichy85],pact
[DEC85], and [Leblang85]. Recently the Polytron• Politics (customer/marketing desires)
Corporation released an adaptation of RCS for the

• Maturity of the change MS-DOS microcomputer market.
• Is there an alternative?

4. System Description Languages
Which of these factors to consider depends on

Current research [Borison86] is being conducted intowhether the item being considered is a dis-
System Description Languages. In some way, this iscrepancy or a request for a change or an enhance-
an extension of the make tool. Apollo’s Domainment.
system includes this concept. Basically, it is a way

(i) Evaluating Discrepancies to accurately repeat the builds of a particular version
of software.

All reported discrepancies need not be fixed.
Evaluating key factors may indicate that a par- V. Metrics
ticular error may not be economically repaired,

An important metric for configuration control boardso it is tracked as a waived item. (Also see
purposes is a trend analysis of discrepancy and changeviewgraph “Discrepancy Report Evaluation
requests. Even simple counts of change requests andProcess Flowchart” in the support materials
discrepancy reports will give an indication of whetherpackage for this module.)
side effects from fixes or changes are occurring. Also,

(ii) Evaluating Change Requests some differentiation in terms of the severity of the er-
rors should be exercised.

Consideration of this type of change almost al-
ways requires additional time and cost evalu- VI. Configuration Management Planning
ation. Enhancements need nearly the same 1. Content of Configuration Management Plans
evaluation criteria as those used in the initial

a. Scopedecision to build the product.

Configuration management plans need to be com-d. Executing Change
plete in all phases where configuration manage-

Executing change involves delivering the au- ment is to be used in the project. Therefore, such
thorized change document to the appropriate de- plans are usually project-specific.
velopment organization, inspecting the change

b. Standardsand its verification, modifying the affected con-
figuration items, and recording the completion of Many organizations have an existing standard for
the change by the configuration management or- configuration management plans. The IEEE stan-
ganization. dard ANSI/IEEE Std 828-1983 [IEEE83] is an ex-

ample of a generic standard.IV. Version Control
1. The Simultaneous Update Problem 2. Characteristics of Personnel

One of the most serious configuration management Configuration management personnel should ideally
problems is that of simultaneous update, when two have software development experience, be conscien-
or more programmers are modifying the same por- tious, and be willing to inspire others to be conscien-
tion of code. There is a distinct possibility that one tious!
person’s changes will cancel or distort another
person’s, thus causing a software failure. Checking
out code and other documents for modification must
be handled by mutual exclusion, either manually
(using a physical librarian) or automatically (using
version control software).

2. Version Trees

Modifications to software create different versions,
some of which must coexist. Reasons for this in-

6 SEI-CM-4-1.4

Software Configuration Management

Glossary

baseline
The point at which a document or other object
becomes a configuration item.

configuration control
The process of managing change to a configu-
ration item.

configuration item
A document or other object placed under config-
uration control.

discrepancy
An error in software caused either by improperly
implementing a correct requirement or failing to
implement it.

enhancement
A change to a product designed to improve or
augment its performance.

SEI-CM-4-1.4 7

Software Configuration Management

Teaching Considerations

Textbooks Software Support

There are two book-length treatments of software Use of RCS, SCCS (both on UNIX), or CMS (on
configuration management. [Bersoff80] is the more DEC VMS) is encouraged, as these are easily avail-
complete, in that it provides a rationale for each con- able. If no tools currently exist on your local sys-
cept of the subject. [Babich86] is slightly easier to tem, use a software engineering project course to de-
understand and use, but is less complete. velop them. Kernighan and Pike, in their book The

UNIX Programming Environment (Prentice-Hall,
1984), discuss the construction of a simple version
control tool (pp. 165-170).

Teaching Techniques

The following activities, when integrated with the
Suggested Course Adaptationssyllabus for illustrative purposes, are effective in

providing active experiences to complement the pas-
sive experiences in lectures: Government/Industrial Short Courses. Based on

actual experience teaching the content of this mod-• Review of case studies in class.
ule in the fall of 1986, a one-day short course on this

• Hands-on use of automated version con- subject can be constructed. The audience could be
trol tools. any combination of software engineers, project

• Role-playing in simulated meetings of leaders, and technical managers. It is important to
configuration control boards. Using an stress when presenting this material that the instruc-
existing software product with which the tor is not acting as a consultant or a trainer, but
students are familiar (such as the local rather surveying the current best practice of configu-
operating system), have them write ration management. The task for the class members,
change requests and discrepancy reports then, is to translate this knowledge into specific ac-
and evaluate them according to the crite- tions that can be taken to improve configuration
ria presented in the module. management in their project/division/company.

(Note that training and consulting activities can also
be supported by this module, but the module was not
written with either of those activities specifically in
mind.)Teaching Support
Several days prior to the short course, it is helpful to

The support materials package SEI-SM-4-1.0 con- distribute [Bersoff79], [Bersoff84], something on ad-
tains a variety of materials to help in teaching a con- vanced configuration management environments and
figuration management course. tools, such as [Leblang85], the elevator control ex-

ample from the support materials package for thisIt is also a good idea to contact the configuration
module, and copies of your viewgraphs. You mightmanagement team (or person!) in a nearby software
also want to construct a pre-test and post-test fordevelopment organization, and visit with them about
evaluation purposes. Remember to inform the testhow they do their job. They will often loan copies
subjects that their performance on the exams doesof configuration management plans and other docu-
not in any way affect their job ratings!ments if you promise to black out the company

name. Needless to say, these make great examples, A schedule for the one-day workshop is as follows:
even if they are terrible and have to be used as coun- • First hour: Introductory material and
terexamples. That configuration manager might also Section I.
be coerced into leading one of your fake board meet-

• Second hour: Sections II and III.1.ings as the decision maker to add a touch of realism.
• Third Hour: Section III.2.

• Fourth Hour: Sections IV, V, and VI.

8 SEI-CM-4-1.4

Software Configuration Management

After the formal presentation of the material, the stu- entation of the fundamental concepts (using ex-
dents should be divided into small (≤6 persons) amples of the differences between discrepancies and
groups in some logical fashion (by division, manag- changes, and a sample configuration management
ers, etc.) and asked to consider the following ques- plan) is usually sufficient for an understanding good
tions. (If non-technical managers have sat in on the enough to incorporate configuration management
course, it is a good idea to ask them to leave if you into the student project. The sample configuration
feel that their presence would inhibit the management plan in the support materials package
discussion.) Instruct the groups that they will be ex- for this module was developed by students during
pected to report their findings. such a course after the presentation outlined here.

Where do you go from here? A Software Engineering Seminar. The content out-
lined in this module is clearly insufficient in and ofBrainstorm the following questions:
itself for a full quarter or semester course. As mate-

• What are your goals re configuration rial regarding system description languages, addi-
management? tional tools, and large case studies is developed, this

may change. For now, however, its use at the grad-• What do you need to do to accomplish
uate level is probably limited to a few weeks presen-them?
tation during a topics in software engineering semi-• tools
nar. The presentation in a seminar should be accom-

• money panied by case studies, or by a graduated example
• time taught through the use of real software.

• What do you need to do first? Next? If A Graduate Course on the Controlling Disci-
you are a manager? If you are an engi- plines. The most effective use of this configuration
neer? management module is in concert with modules

• How will you know when you have met treating the accompanying controlling disciplines of
your goals? software development: quality assurance and verifi-

cation and validation. These topics are difficult toAfter about 30-45 minutes of brainstorming, the
present in isolation from their partners. An inte-groups should reconvene and make their public re-
grated course consisting of the content of configu-ports. If you plan to be working with the organi-
ration management, quality assurance, and portionszation to do follow-up, suggest that each group send
of testing that closely relate would fill a quarter oryou a one page summary of the results of their dis-
semester if actual experiences using tools andcussions. These can later be used to trace whether
manual techniques on real software are included.the groups implemented their own suggestions.

Before leaving the short course, each participant
should be asked to fill out an evaluation of the
course and of the instructor. Fundamental questions
for the form include:

1. Did the course meet your expectations?
Explain.

2. Please comment on the instructor.

3. Please comment on the handouts and
readings.

4. What further information/help do you
need?

One-Term Introduction to Software Engineering
Course. Using part of the course materials in a one
semester or quarter introduction to software engi-
neering is highly recommended, especially if the
course contains a project component. It is important
that awareness of configuration management be es-
tablished early in the course, certainly before any
configuration items are produced. A one-hour pres-

SEI-CM-4-1.4 9

Software Configuration Management

Bibliographies

There is only a very small body of literature on soft- Samaras71
ware configuration management. Configuration Samaras, T. T., and F. L. Czerwinski. Fundamentals
management of hardware systems such as aircraft of Configuration Management. New York: Wiley
has long been in effect and has a wider set of Interscience, 1971.
sources. In essence, much that has been written for

This book is now out of print. A bound,hardware applies to software, and the reader is urged
photocopied reprint may be obtained from Univer-to look at sources outside the software field if time sity Microfilms International of Ann Arbor, Mich.

permits. (An excellent example is Samaras and
Czerwinski [Samaras71]. Its Chapter 21 deals with
software.)

This bibliography contains only those items judged Other Materials
to be of direct use to an instructor. A longer listing
of version control and configuration management

Bersoff79sources appeared in the July 1986 issue of Software
Bersoff, E. H., V. D. Henderson, and S. G. Siegel.Engineering Notes and is included in the support
“Software Configuration Management: A Tutorial.”materials package.
Computer 12, 1 (Jan. 1979), 6-14.

This article contains the conceptual essence of the
later book by the same authors.

Textbooks
Bersoff84
Bersoff, E. H. “Elements of Software ConfigurationBabich86
Management.” IEEE Trans. Software Eng. 10, 1Babich, W. Software Configuration Management.
(Jan. 1984), 79-87.Reading, Mass.: Addison-Wesley, 1986.

Abstract: Software configuration managementThough newer than [Bersoff80], this book is much
(SCM) is one of the disciplines of the 1980’s whichmore limited in scope. It does have sections using
grew in response to the many failures of the soft-UNIX tools and ALS as examples. ware industry throughout the 1970’s. Over the last
ten years, computers have been applied to the solu-

Bersoff80 tions of so many complex problems that our ability
to manage these applications has all too frequentlyBersoff, E. H., V. D. Henderson, and S. G. Siegel.
failed. This has resulted in the development of aSoftware Configuration Management. Englewood
series of “new” disciplines intended to help controlCliffs, N.J.: Prentice-Hall, 1980.
the software process.

This book contains the most complete description of
This paper will focus on the discipline of SCM bysoftware configuration management available. It
first placing it in its proper context with respect toprovides a fairly complete rationale for what to do
the rest of the software development process, asand why to do it. The authors have their own con-
well as the goals of that process. It will examine theceptual breakdown of the subject that does not map
constituent components of SCM, dwelling at someone-for-one with the organization of this module.
length on one of those components, configurationThe book also is weak in clearly explaining how to
control. It will conclude with a look at what thedo the tasks of configuration management.
1980’s might have in store.

Gunther78 Borison86
Gunther, R. C. Management Technology for Soft- Borison, Ellen. “A Model of Software Manu-
ware Product Engineering. New York: John Wiley, facture.” In Advanced Programming Environments:1978. Proc. of an Intl. Workshop, Trondheim, Norway,

June 16-18, 1986, Reidar Conradi, TorPages 321-333 are useful, in that they contain a de-
scription of version numbering and naming M. Didriksen, and Dag H. Wanvik, eds. Lecture
schemes. Notes in Computer Science, vol. 244. Berlin:

Springer-Verlag, 1986, 197-220.

10 SEI-CM-4-1.4

Software Configuration Management

Abstract: Software manufacture is the process by IEEE83
which a software product is derived, through an IEEE. IEEE Standard for Software Configuration
often complex sequence of steps, from the primitive Management Plans. New York: IEEE, 1983.
components of a system. This paper presents a ANSI/IEEE Std 828-1983.
model of software manufacture that addresses the
amount of work that has to be done, after a given This is a cryptic standard listing recommended sec-
set of changes has been made, to consistently incor- tion headings without being a tutorial on content.
porate those changes in a given product.

IEEE88Based on a formal definition of a software configu-
ration that characterizes a software product in IEEE. IEEE Guide to Software Configuration
terms of how it was manufactured, the model uses Management. New York: IEEE, 1988. ANSI/IEEE
difference predicates to discriminate between Std 1042-1987.
changes that are significant and those that are not.
A difference predicate is an assertion about the re-

Leblang85lationship between two sets of components. Dif-
Leblang, D. B., and G. D. McLean, Jr. “Configu-ference predicates determine when one set of com-
ration Management for Large-Scale Software Devel-ponents can be substituted for another. By predict-

ing when existing components can be substituted for opment Efforts.” Proc. GTE Conf. on Software En-
the output of a manufacturing step, difference predi- gineering Environments for Programming-in-the-
cates determine which steps in the manufacturing Large. Waltham, Mass.: GTE Laboratories, 1985,
process can be omitted when incorporating a given 122-127.
set of changes.

Abstract: Teams working on very large software
This is a formal presentation of the concepts of sys- development efforts encounter equally large admin-
tem description languages. istrative problems maintaining and supporting their

software, design, tests, and documentation. The
DOMAIN Software Engineering EnvironmentDEC85
(DSEE) solves many of these problems. It is aDigital Equipment Corp. VAX DEC-CMS Code
distributed computer-aided software engineeringManagement System, Version 2.2. Maynard, Mass.:
environment that runs on Apollo engineeringDigital Equipment Corp., 1985.
workstations. A previous paper [by Leblang] de-
scribed management of source code, documents,

Huff81 tasks, inter-project dependencies, and a basic con-
Huff, K. “A Database Model for Effective Configu- figuration management system. This paper de-

scribes work that has occurred since that time. Inration Management in the Programming Environ-
particular, the full DSEE Configuration Manage-ment.” Proc. 5th Intl. Conf. Software Eng. New
ment System (CM) is described. The DSEE CM isYork: IEEE, 1981, 54-61.
capable of building systems for multiple target

Abstract: The effective management of configura- machines while maintaining several concurrent
tions by programmers requires automatic tech- configurations. It can distinguish between derived
niques which are operative in the program devel- object modules based on the versions of the sources
opment environment. In this paper, an abstract that were used to build them and the translator op-
model is developed to cover the significant aspects tions used. The DSEE CM can track software
of a typical programming environment pertinent to releases in the field and relate released software
configuration management, using a database to back to the home office database.
capture configuration knowledge. The two aspects

This paper, and others by Leblang in the sup-of the model deal with configuration identification
plemental bibliography, describe the Apolloand configuration control. In considering configu-
DOMAIN software engineering environment and itsration identification, it is shown that the tools in the
built-in configuration management tools. Most ofprogramming environment determine which config-
the advanced workstations in the immediate futureuration items need to be identified and also deter-
will probably have configuration control toolsmine what the interesting and useful relations are
similar to those reviewed here.among those items. In considering configuration

control, the notion of a workspace, consisting of
certain modification rights and certain visibility Rochkind75
into the database, is developed to prevent conflict Rochkind, M. J. “The Source Code Control System.”
and to promote cooperation among programmers. IEEE Trans. Software Eng. 1, 4 (Dec. 1975), 364-The entire model can be used to evaluate the effec-

370.tiveness of configuration management within a par-
ticular programming environment or as the basis of Abstract: The Source Code Control System (SCCS)
a programming environment design.

SEI-CM-4-1.4 11

Software Configuration Management

is a software tool designed to help programming
projects control changes to source code. It pro-
vides facilities for storing, updating, and retrieving
all versions of modules, for controlling updating
privileges, for identifying load modules by version
number, and for recording who made each software
change, when and where it was made, and why.
This paper discusses the SCCS approach to source
code control, shows how it is used, and explains
how it is implemented.

A description of the SCCS version control system
packaged with UNIX.

Tichy85
Tichy, W. F. “RCS—A System for Version
Control.” Software—Practice and Experience 15, 7
(July 1985), 637-654.

Abstract: An important problem in program devel-
opment and maintenance is version control, i.e. the
task of keeping a software system consisting of
many versions and configurations well organized.
The Revison Control System (RCS) is a software
tool that assists with that task. RCS manages revi-
sions of text documents, in particular source pro-
grams, documentation, and test data. It automates
the storing, retrieval, logging and identification of
revisions, and it provides selection mechanisms for
composing configurations. This paper introduces
basic version control concepts and discusses the
practice of version control using RCS. For con-
serving space, RCS stores deltas, i.e. differences
between successive revisions. Several delta storage
methods are discussed. Usage statistics show that
RCS’s delta method is space and time efficient. The
paper concludes with a detailed survey of version
control tools.

A description of RCS, an improvement over SCCS.

12 SEI-CM-4-1.4

