
SOFTWARE CONFIGURATION
MANAGEMENT GUIDEBOOK

NASA-GB-9503

AUGUST 1995

National Aeronautics and Space Administration
Washington, D.C. 20546

Office of
 Safety and
 Mission
 Assurance

NASA-GB-A501
Issued August 1995

NASA-GB-A501
Issued August 1995

PREFACE

The growth in cost and importance of software to NASA has caused NASA to
address the improvement of software development across the agency. One of the
products of this program is a series of guidebooks that define a NASA concept of the
assurance processes which are used in software development.

The Software Assurance Guidebook, SMAP-GB-A201, issued in September, 1989,
provides an overall picture of the concepts and practices of NASA in software
assurance. Lower level guidebooks focus on specific activities that fall within the
software assurance discipline, and provide more detailed information for the
manager and/or practitioner.

This is the Software Configuration Management Guidebook which describes
software configuration management in a way that is compatible with practices in
industry and at NASA Centers. Software configuration management is a key
software development process, and is essential for doing software assurance.

NASA-GB-A501
Issued August 1995

NASA-GB-A501
Issued August 1995

SOFTWARE CONFIGURATION MANAGEMENT GUIDEBOOK

Approvals

Lawrence E. Hyatt
Manager, Software Assurance Technology Center

Kathryn Kemp
Deputy Director, NASA Software Technology Division

NASA-GB-A501
Issued August 1995

NASA-GB-A501
Issued August 1995

i

TABLE OF CONTENTS

SECTION

PREFACE ... iii

TABLE OF CONTENTS.. i

I. GENERAL.. 1

II. CONCEPTS AND DEFINITIONS ... 3

III. THE SCM PROCESS.. 7

A. OVERVIEW .. 7
B. CONFIGURATION IDENTIFICATION ... 8

1. CSCI Selection .. 8
2. CSCI Designation.. 9
3. CSCI Description .. 9

C. CONFIGURATION CONTROL... 9
1. Change Initiation .. 11
2. Change Classification ... 12
3. Change Evaluation.. 12
4. Change Dispositioning .. 13
5. Change Implementation... 13
6. Change Verification .. 14
7. Baseline Change Control... 14

D. CONFIGURATION STATUS ACCOUNTING... 14
E. CONFIGURATION AUTHENTICATION... 15

1. Functional Configuration Audit... 15
2. Physical Configuration Audit .. 16
3. External Audits of the SCM Process .. 16

IV. SCM DURING THE SOFTWARE LIFE CYCLE ... 17

A. SOFTWARE CONCEPT AND INITIATION PHASE... 17
B. SOFTWARE REQUIREMENTS PHASE .. 19
C. SOFTWARE ARCHITECTURAL DESIGN PHASE.. 20
D. SOFTWARE DETAILED DESIGN PHASE.. 20
E. SOFTWARE IMPLEMENTATION PHASE... 21
F. SOFTWARE INTEGRATION AND TEST PHASE.. 21
G. SOFTWARE ACCEPTANCE AND DELIVERY PHASE .. 22
H. SOFTWARE SUSTAINING ENGINEERING AND OPERATIONS PHASE... 23

V. SCM IN OTHER LIFE CYCLES... 25

VI. SCM ORGANIZATION AND RELATIONSHIPS .. 27

A. SCM STRUCTURE .. 27
B. THE ROLE AND RESPONSIBILITIES OF THE CMO ... 27
C. THE ROLE OF THE PROGRAM LIBRARIAN.. 28
D. ROLE OF THE CONFIGURATION CONTROL BOARD... 28
E. SCM RELATIONSHIPS ... 29

VII. GUIDANCE IN ADAPTING SCM TO A PROJECT... 31

NASA-GB-A501
Issued August 1995

ii

A. PROJECT SIZE... 31
B. INFORMAL CONTROLS... 31
C. SCM RESOURCES... 32

VIII. TOOLS AND TECHNIQUES .. 35

APPENDIX A SUMMARY OF BASELINE CONTENTS ... 37

APPENDIX B EXAMPLE CHANGE REQUEST FORM ... 41

APPENDIX C ACRONYM AND ABBREVIATIONS ... 43

INDEX.. 45

NASA-GB-A501
Issued August 1995

1

I. GENERAL

This guidebook defines Software Configuration Management (SCM) and describes
its constituent functions, processes, and procedures. The guidebook also describes a
generic set of organizational elements and responsibilities for operation of SCM. It
defines the role of SCM, its interfaces and its functions throughout the software
development life cycle. This guidebook also provides a basis for tailoring SCM for
different projects with different life cycles and project specific requirements.

Proper application of software configuration management is a key component in the
development of quality software. Changes to the software under development are
usually a significant cause of changes to a project's schedule and budget;
unmanaged change is very possibly the largest single cause of failure to deliver
systems on time and within budget.

SCM is the process that has been developed to control and manage change. Change
is inevitable during the software development life cycle. Changes to the software
come from both external and internal sources. External changes originate from
users, from evolution of operational environments, and from improvements in
technology. Internal changes come from improved designs and methods, from
incremental development, and from correction of errors. A properly implemented
SCM process is the project manager's best friend and potential salvation in coping
with change.

This guidebook is written for software project managers who must plan for SCM for
their project, for SCM practitioners who will implement SCM, and for software
developers and acquirers who will be affected by it. The style of the guidebook is
intended to be tutorial rather than directive. It is hoped that the reader will find
the following sections an easily understood introduction to software configuration
management and a useful guide to planning and implementing SCM in a software
development project.

The guidebook describes SCM in terms of the concepts and definitions,
implementation, applicability in relation to the software life cycle phases,
organization and interfaces, discussions of tools, examples of forms, and references
to applicable documents.

NASA-GB-A501
Issued August 1995

2

NASA-GB-A501
Issued August 1995

3

II. CONCEPTS AND DEFINITIONS

Software configuration management is the process whose objective is the
identification of the configuration of software at discrete points in time and the
systematic control of changes to the identified configuration for the purpose of
maintaining software integrity and traceability throughout the software life cycle.

In order to accomplish the objective given in the above definition, there are four
identified SCM functions: 1) identification of the components that make up the
software system and that define its functional characteristics; 2) control of changes
to those components; 3) reporting of status of the processing of change requests and,
for approved requests, their implementation status; and 4) authentication that the
controlled items meet their requirements and are ready for delivery.

The components of a software system that are controlled by the SCM process
include project documentation, product documentation, code, data, and any other
items needed to meet a set of requirements or contractual obligations. All of these
items can be controlled by the same SCM process.

The term "configuration" is used repeatedly in this guidebook. Configuration
means the functional and/or physical characteristics of software as set forth in
technical documentation and realized in a product. Thus "configuration" includes
all of the characteristics of the software to be controlled - its content, the content of
documents that describe it, the versions of software and documents as these
contents are changed, data needed for operation of the software, and any other
essential elements or characteristics that make the software what it is.

The software under control is usually divided into "configuration items."
Configuration item (CI) is the term used for each of the logically related components
that make up some discrete element of software. For example, if a system contains
several programs, each program and its related documentation and data might be
designated a configuration item. The number of CIs in a system is a design
decision. Guidelines for division of software systems into CIs are given in Section
III, part B1. Note that if the system being developed has both hardware and
software components, then in a general sense a CI may have both hardware and
software components. A CI that is purely software is often called a Computer
Software Configuration Item, or CSCI. Generally in this guidebook we will use the
term CSCI, since we are talking about software systems and software configuration
management. The concepts for software CM are similar to hardware CM, but the
software CM process must be even more rigorous and deeply imbedded in the
engineering process since software is much more flexible and changeable than
hardware.

As each software CI goes through its development process, more and more of its
components are developed until the final CSCI is available for use. Generally, the

NASA-GB-A501
Issued August 1995

4

life cycle process will first result in a set of requirements, then a design, then code
for individual elements of the CSCI, then integrated code with test cases and user
manuals, etc. The definition of SCM contains the concept of identifying the
configuration of each CSCI at discrete points in time during the life cycle process,
and then managing changes to those identified configurations. The configuration of
software at a discrete point in time is known as a baseline. Thus, a baseline is the
documentation and software that make up a CSCI at a given point in its life cycle.
Each baseline serves as a point of departure or reference for the next development
stage. In the NASA standard life cycle, baselines are established after each life
cycle phase at the completion of the formal review that ends the phase.

Each baseline is subject to configuration control and must be formally updated to
reflect approved changes to the CSCI as it goes through the next development
stage. At the end of a life cycle phase, the previous baseline plus all approved
changes to it becomes the new baseline for the next development stage. The term
"baseline management" is often used to describe this control process.

Normally, the first baseline consists of an approved software requirements
document, and is known as the requirements baseline. Through the process of
establishing a baseline, the functional and other requirements described in the
requirements document become the explicit point of departure for software
development, against which changes can be proposed, evaluated, implemented, and
controlled. The requirements document is also the basis against which the software
is authenticated. Subsequent baselines and their contents are described in Section
IV.

SCM requires that processes and procedures be put in place to identify the
baselines that are to be established and their contents, to control the CSCIs and
their individual elements to prevent unauthorized change, to process requests for
changes to those baselines and report on status of changes, and to authenticate that
a given configuration contains all of its required components and that it satisfies
the functional and performance requirements given in the requirement document.
That is, SCM consists of four basic processes:

• Configuration Identification

• Configuration Control

• Configuration Status Accounting

• Configuration Authentication

These processes, their relationships and implementation, are described in detail in
Section III.

NASA-GB-A501
Issued August 1995

5

There are some roles that are key to the SCM process. Someone must operate the
SCM process; that is, must establish detailed procedures, must make sure all
requests for changes are processed properly, must provide reports on the status of
all CSCIs and proposed changes, and must have control of all of the baselined
items. This role is named Configuration Management Officer or CMO. The
individual designated the CMO is critical to the successful operation of a SCM
system.

Actual storage and physical control of the contents of baselines is done by a
librarian in a location called a program library. The program library must contain
the official copies of all baselined items that make up the various CSCIs. It
contains all baselined items, including code and object modules, which are checked
out by the librarian for authorized changes to be made, and are checked back in
after change is complete. The program library is operated by the librarian and is
usually under the control of the CMO. Efficient operation of the library is enhanced
if automated tools are available. See section VIII for a discussion of tools.

Decision making authority, which must determine if a proposed change is to be
made, is vested in a Configuration Change Board (CCB). A CCB is chaired by a
senior manager (often the project manager) who can authorize the expenditure of
resources. Other members are chosen based on their ability to provide advice on
the costs and benefits of a change. Usually the CCB rules of operation are such
that the chair unilaterally decides the disposition of the proposed changes after
receiving the advice of the other members. The CCB process is operated by the
CMO, who provides to the CCB the requests for changes and the associated
analysis of impact and who records the decisions of the CCB and provides them to
the change requester and the individuals who will implement the change.

SCM is a key process in managing software development, operation, maintenance,
and enhancement. The remainder of this document explain in detail the component
processes and steps, and the organizational elements needed for the successful
implementation of SCM in a software development project.

NASA-GB-A501
Issued August 1995

6

NASA-GB-A501
Issued August 1995

7

III. THE SCM PROCESS

A. Overview

Software configuration management is composed of four functions:

• Configuration Identification

• Configuration Control

• Configuration Status Accounting

• Configuration Authentication

Configuration identification is the process of defining each baseline to be
established during the software life cycle and describing the software configuration
items and their documentation that make up each baseline. First, the software
must be grouped into configuration items. Once the CSCIs and their components
have been selected, some way of designating the items must be developed. This is
done by the development of a numbering and naming scheme that correlates the
code and data items with their associated documentation. Finally, the CSCIs must
be described by the documentation of their functional, performance, and physical
characteristics.

Configuration control is the process of evaluating, coordinating, and deciding on
the disposition of proposed changes to the configuration items, and for
implementing approved changes to baselined software and associated
documentation. The change control process ensures that changes which have been
initiated are classified and evaluated, approved or disapproved, and that those
approved are implemented, documented, and verified.

Configuration status accounting is the process used to trace changes to the
software. It ensures that status is recorded, monitored, and reported on both
pending and completed actions affecting software baselines. This process also
defines the current as-built status of the code and associated documentation.

Configuration authentication is the process of verifying that a deliverable
software baseline contains all of the items which are required for that delivery, and
that these items have themselves been verified, i.e., they satisfy their requirements.
The authentication function usually consists of two "audits": a functional
configuration audit (FCA) and a physical configuration audit (PCA). Functional
audits authenticate that the software has been tested to assure that it performs in
accordance with requirements in the baseline documentation. Physical audits
authenticate that the software to be delivered contains all of the required
components, documents, and data.

NASA-GB-A501
Issued August 1995

8

Each of the above functions is explained in more detail in the following sections.

B. Configuration Identification

Configuration identification is the basis for subsequent control of the software
configuration. The configuration identification process involves the selection,
designation, and description of the software configuration items. Selection involves
the grouping of software into configuration items that are subject to configuration
management. Designation is the development of a numbering and/or naming
scheme that correlates the software components and their associated
documentation. Description is the documentation of functional, performance, and
physical characteristics for each of the software components.

1. CSCI Selection

A software system is generally split into a number of CSCIs which are
independently developed and tested, and which are finally put
together at the software system integration level. Each CSCI becomes
essentially an independent entity as far as the CM system is
concerned, and the four processes defined at the beginning of Section
III are carried out on each CSCI.

The division of the software into CSCIs may be contractually specified,
or may be done during the requirements analysis or preliminary
design phase. As a general rule, a CSCI is established for a separable
piece of the software system that can be designed, implemented, and
tested independently. Other criteria that may go into the decision to
separate out a set of software and manage it as a CSCI are:

• The set of software is critical to the overall performance, or
there is a high level of risk involved, or system safety related
tasks are contained in the item.

• The set of software is highly complex, incorporates new
technologies, or has stringent performance requirements.

• The set of software encapsulates interfaces with other software
items that currently exist or are provided by other
organizations.

• The set of software is expected to have more than usual change
or modification after it becomes operational.

• The set of software contains all of a specific domain of
functionality such as application, operating system, etc.

NASA-GB-A501
Issued August 1995

9

• The set of software is installed on a different computer platform
from other parts of the system.

• The set of software is planned to be reused.

2. CSCI Designation

Each software component must be uniquely identified. The unique
identifier is used in tracking and reporting CSCI status. Normally,
each CSCI is assigned a CSCI identifier, and pieces of the CSCI are
given the identifier with an attached descriptor. Thus, a CSCI that
consists of the flight software for a spacecraft might be given the
designator FS. Components of the flight software, such as the flight
executive might be designated FS-EX, showing that it is a second level
component of the CSCI FS. Parts (subroutines) of the executive might
be numbered FS-EX-001, FS-EX-002, etc. This allows the unique
identification of system elements, both code and documents, as to the
CSCI of which they are parts. It facilitates the tracking of changes to
the component, the status of the changes and the component, and the
reporting of all the information relative to the component.

3. CSCI Description

Software components are described in specifications (i.e., software
requirements specifications, software architectural design
specifications, software detailed design specifications, interface control
documents, and software product specifications). The description of
the component becomes more detailed as the design and development
proceeds through the life cycle The description forms the basis for
configuration control and configuration status accounting. The
description is also the basis for the final authentication that the
software is complete and verified. The documents, or portions of
documents, that describe each CSCI must be identified and made part
of the CSCI.

Formats for the documents described above can be found in NASA-
STD-2100-91, "NASA Software Documentation Standard".

C. Configuration Control

Configuration control is the systematic process for evaluating, coordinating, and
deciding on the disposition of proposed changes and for tracking the
implementation of those approved changes to baselined code and associated
documentation and data. The change control process ensures that the changes are

NASA-GB-A501
Issued August 1995

10

Flow of the Configuration Control Process

ORIGINATOR

•IDENTIFY
 NEEDED
 CHANGE
•PREPARE

 CR

CMO

CMO

CMO

CMO

SOFTWARE
ENGINEERING

SOFTWARE
ENGIONEERING

SOFTWARE
QA

CCB
PROGRAM
LIBRARY

Figure 1.

•REVIEW
•ASSIGN ID
•LOG
•DISTRIBUTE

•REVIEW
•EVALUATE
IMPACT

•ASSEMBLE &
 LOG RESULTS
•ADD TO CCB
 AGENDA

•DISPOSITION
 ACCEPT
 REJECT
 DEFER

•PREPARE CCB
 MINUTES
•UPDATE
 RECORDS
•DISTRIBUTE

•DEVELOP &
 TEST
 AUTHORIZED
 CHANGES

•VERIFY
 CHANGES

•RECEIVE
 CHANGE
•REVISE
 BASELINE

•CLOSE
 ACTION
•UPDATE
 STATUS
•DISTRIBUTE
 REPORT

NASA-GB-A501
Issued August 1995

11

initiated, classified, evaluated, approved or disapproved, documented, implemented,
tested, and incorporated in a new baseline.

An orderly change process is necessary to ensure that only approved changes are
implemented into any baselined document or software. Figure 1 shows a simple
overview of the change process. The steps within the overall process can be
grouped into the following categories:

• Change Initiation

• Classification

• Change Evaluation

• Change Dispositioning

• Implementation

• Verification

• Baseline Change Control

These seven steps in change control are individually discussed below:

1. Change Initiation

Requests for change to software and documents come from many
sources. A Change Request (CR) may be submitted by a potential
user, by the system acquirer, by a reviewer, or by a member of the
provider's staff. Each project should set up a CR form for documenting
the proposed change and its disposition. See the NASA Software
Standards, DID-R005, for basic information that can be included on a
CR form, however, the actual form set up must correspond to the
planned SCM process. An example form, based on the DID, is
included as Appendix B. Note that electronic forms, containing the
same information, are being increasingly used as direct interfaces to
SCM support tools (Tools are discussed in Section VIII). Each project
should also name an individual (the Configuration Management
Officer, or CMO) to receive the change form, assign it a tracking
number and classification, and route it for processing.

The CMO receives the CR and reviews it for clarity and completeness.
If the CMO determines that the CR is not complete, it is returned to
the originator. Once complete, the CMO assigns the CR a unique
identifier for tracking purposes and records information about the CR
in the change request tracking data base or files.

NASA-GB-A501
Issued August 1995

12

2. Change Classification

Changes to software and associated documentation are classified
according to the impact of the change and the approval authority
needed. The top class is assigned to changes that would affect the
system level requirements, external interfaces, system cost, and/or
delivery schedule. These changes usually can only be approved by the
acquirer of the software. A second class of changes may be established
for changes that affect the interfaces between CSCIs and the allocation
of functions to CSCIs, or which affect component level cost and
schedule. These changes generally can only be approved by the project
level management of the provider. A third class of changes, those that
affect CSCI internal design and division of functionality, may be
approved by CSCI level management.

Generally, change classes are identified by numbers. For instance,
Level I is often assigned to that class that contains the highest class
and has to be routed to the acquirer; Level II to the next; etc. Class
names and classification rules should be spelled out in the agreement
(contract) between the acquirer and provider and the processes for
assignment of classes should be in the provider's SCM procedures. In
addition to defining the scope of changes that are allowed to be made
by the provider, the contract often will require that the acquirer be
provided copies of at least the next lower class to allow verification of
the classification process.

Classification of changes may be suggested by the individual who
proposes the change. The CMO reviews suggested classes and assigns
a working classification. After assessment of the impact of the CR, the
CCB will assign the final class.

3. Change Evaluation

One important aspect of the Configuration Control process is that it
provides adequate analysis of changes in terms of impact to system
functionality, interfaces, utility, cost, schedule, and contractual
requirements. Each change should also be analyzed for impact on
software safety, reliability, maintainability, transportability, and
efficiency. The project CMO routes the CR to the software engineering
staff for evaluation. In some cases, project procedures require that the
CR be screened by some board before it is analyzed. This approach
saves the cost of analysis for changes that do not have any chance of
approval.

NASA-GB-A501
Issued August 1995

13

The analysis produces documentation which describes the changes
that will have to be made to implement the CR, the CSCIs and
documents that will have to be changed, and the resources needed to
do the change. The documentation becomes part of the change
package, along with the CR. After completion of the analysis, the
change package is sent back to the CMO.

4. Change Dispositioning

Dispositions for changes to baselined items are done by a
Configuration Control Board (CCB). The CCB evaluates the
desirability of a change verses the cost of the change, as described in
the documentation of the analysis. The CCB may approve, disapprove,
or defer a change request. It may have to request more information
and additional analysis.

Dispositioned items are sent to the CMO for action. Rejected items are
sent to the originator along with the CCB's rationale for rejection. CRs
needing further analysis are sent back to the analysis group with the
CCB’s questions attached. Deferred CRs are filed, to be sent back to
the board at the proper time.

The CMO sends approved items to the development organization,
unless it is of a level that needs to be processed through higher level
CCBs. If additional levels of approval are needed, the CMO submits
the CR package to the next level CCB.

The CMO, acting as the secretariat of the CCB, prepares and
distributes the meeting minutes, and records the current status of the
CR. This information is added to the tracking data base or recorded in
files.

5. Change Implementation

Approved CRs are either directly used as a change authorization form
or result in a change directive being prepared by the CMO. In either
case, approval results in the issuance of instructions which authorize
and direct the implementation of the change in the software and
associated documentation.

The development organization schedules the resources to make the
change. It must get official copies of the baselined component to be
changed from the program library. For code changes, design has to be
developed, code has to be written, and testing has to be done and the
correctness of the change verified. Moreover, the associated

NASA-GB-A501
Issued August 1995

14

documentation has to be revised to reflect the change. Once the
change has been made and local testing completed, the revised
component and documents are returned to the control of the program
library. Upon verification, the new version takes its place in the
sequence of baselines.

6. Change Verification

The implemented changes, which have been tested at the unit level,
must be verified at the CSCI level. This may require the rerun of tests
specified in the test plan or the development of an addition to the test
plan. Regression testing will usually have to be included in the test to
assure that errors have not been introduced in existing functions by
the change. Once the verification is complete, the development
organization submits evidence of it to the program library, which will
then accept the changed items for inclusion in the SCM controlled files
that make up the new version of the baseline. This CSCI or system
level of verification may not occur until the next release of the system
is being tested.

After the successful implementation and testing of the change
described in the CR, the CMO will record the occurrence of this process
into the change request tracking data base or files.

7. Baseline Change Control

Changes to software are not complete until the code and data changes
have been implemented and tested and the changes to associated
documentation have been made and all of the changes verified. In
order to minimize the number of versions and the frequency of delivery
of software components, changes to software are usually grouped into
releases. Each release contains software and documentation that has
been tested and controlled as a total software system.

D. Configuration Status Accounting

The objective of software configuration status accounting is to record and report the
status of the evolving software throughout the life cycle. It provides traceability of
changes to the baselined requirements, code and data components, and associated
documentation. It documents what is in each version of software and the changes
that lead up to the version. It accounts for all changes to the baselined items
whether they are incorporated in accordance with the change control process or in
accordance with the nonconformance reporting and corrective action process. This
function keeps track of the changes and the contents of versions and releases.

NASA-GB-A501
Issued August 1995

15

Status accounting begins when the first specification (i.e., software requirements
specification) is baselined and continues throughout the life cycle. The accounting
information is a key element used during the functional configuration audits and
physical configuration audits that are done in the authentication process. Status
accounting provides a list of the contents of each delivery of the software and
associated documents.

Software configuration status accounting is a record keeping and reporting activity.
The records contain the identification of the initial software and associated
documents and their current status, status of evolving baselines, status of proposed
and approved changes, and the implementation status of approved changes.
Reports document the information contained in the records and are the means for
disseminating the information. Examples of routine reports furnished by the status
accounting function are: status of change requests (CRs), specification change
notices (SCNs), and version description documents (VDDs).

E. Configuration Authentication

Configuration authentication is the process of assuring that the baselined
configuration has been tested to demonstrate that it meets its functional
requirements and that it contains all deliverable entities. As the principal means of
configuration authentication, audits are scheduled before each delivery of the
software system. Configuration audits ensure that the CSCIs conform to the
specifications that are part of the baseline. A functional configuration audit (FCA)
authenticates that the software performs in accordance with the requirements and
as stated in the baselined documentation. A physical configuration audit (PCA)
authenticates that the components to be delivered actually exist and that they
contain all of the required items, such as the proper versions of source and object
code, documentation, installation instructions, etc.

1. Functional Configuration Audit

The functional configuration audit authenticates that the actual
performance of the CSCI complies with the requirements stated in the
baselined design documentation. This is accomplished by evaluating
the test methods, procedures, reports, and other engineering and
design documentation. It may not be possible to completely
authenticate a CSCI until higher level integration is accomplished.
Audit reports are prepared to document the results of the FCA. These
audit reports are generally used as part of the documentation provided
to the acquirer of the software as part of a phase ending review, such
as the Acceptance Test Readiness Review.

NASA-GB-A501
Issued August 1995

16

2. Physical Configuration Audit

The physical configuration audit is the formal examination of the as-
built version of the component against the baselined technical
documentation defining the component. The PCA assures that
changes to be included in the version of software to be delivered are
really included, that all required items of software, data, procedures,
and documentation are included. Audit reports are prepared to
document the results of the PCA and are used in the same reviews as
the reports of the FCA.

3. External Audits of the SCM Process

Other types of audits of SCM are also conducted during the
development process. These audits are done by the Quality Assurance
(QA) organization to assure that the SCM process is being conducted
according to approved procedures. The role of the CMO and the
program librarian during these audits is to make their records
available to QA and to respond to any problems noted in the audit
reports. These types of QA audits are described in the Guidebook
"Software Quality Assurance Audits", SMAP-GB-A301.

NASA-GB-A501
Issued August 1995

17

IV. SCM DURING THE SOFTWARE LIFE CYCLE

There are phase-specific SCM activities that should be conducted during the
software acquisition life cycle and specific baselines that are established at the end
of each phase. In a complete waterfall model life cycle, the recommended baselines
are (see Figure 2):

• Software Requirements Baseline

• Software Allocated Baseline

• Software Design Baseline

• Software Code Baseline

• Software Product Baseline

• Software Accepted (As-Built) Baseline

Figure 2 is an adaptation of the NASA Software Acquisition Life Cycle chart,
version 4.0, dated 1988. The figure focuses on the relationships between the
baselines and life-cycle phases. If the life cycle to be used is modified by either the
acquirer or the provider, some of the baselines may be eliminated. In other
situations, such as where development by builds is done, some baselines may be
struck repeatedly as parts of the life cycle are repeated. The important point is that
baselines need to be established and changes thereto be documented and
authorized.

In the remainder of this section the development activities of each phase of the life
cycle are briefly described, along with the SCM activities during the phase and the
contents of the baseline that is established at the end of the phase.

A. Software Concept and Initiation Phase

During the software concept and initiation phase, the software concept is developed
and the feasibility of building the software system is evaluated. The acquirer's
software management plan is then written and approved and an acquisition
strategy is developed. If a contract is to be used to acquire the software,
procurement is initiated and a contract is awarded.

The acquirer CMO is responsible for developing the SCM portion of the project
software management plan, and is responsible for developing a compatible set of
provider SCM requirements that are included in the Request for Proposal (RFP).

During the proposal reviews, the CMO provides expertise in the evaluation of the
proposed SCM activities by each potential provider. The provider's SCM activities

NASA-GB-A501
Issued August 1995

18

NASA-GB-A501
Issued August 1995

19

may be presented in the SCM portion of their proposal or as an initial draft of the
SCM plan or section of a software management plan provided as part of the
proposal. The acquirer CMO assesses whether or not the potential provider has
proposed an adequate plan that meets all of the SCM requirements in the RFP.

During the Concept and Initiation Phase, the acquirer should place under SCM the
project software management plan, procedures developed to carry out sections of
the plan, and the system level requirements passed to the provider.

B. Software Requirements Phase

During the software requirements phase, the software concept and allocated system
requirements are analyzed and documented as software requirements. Test
planning begins, with a method for verifying each requirement identified and
included in a preliminary test plan. Risks are identified and risk management
control mechanisms are established. The size and scope of the remainder of the
project is reevaluated, and changes in resources and schedules are made. Methods,
standards, and procedures are detailed and put in place.

During this phase, the provider CMO should complete the final SCM Plan and
submit it to the acquirer for review. The acquirer CMO will evaluate the provider's
SCM Plan to ascertain that all of the SCM requirements are satisfied, and that the
plan is complete and the procedures to be used are clearly stated. As part of the
SCM planning, the staff required to perform SCM will have been determined and
the assignment of the SCM staff will begin in this phase. Upon agreement between
the acquirer and the provider, the Provider SCM Plan is placed under provider
configuration management.

The software requirements baseline is struck after the completion of this phase and
the satisfactory resolution of issues raised at the phase ending Software
Requirements Review (SRR). The major component of the requirements baseline is
the approved software requirements specification and interface requirements
documents. However, it should also contain other relevant provider management
documentation such as development plans, assurance and SCM plans, test plans,
etc. These management and development documents detail the approach to
managing, developing, testing, assuring, and controlling the software. They include
or refer to applicable standards and procedures that will be adhered to during the
development of the software.

The contents of the software requirements baseline become a permanent part of all
succeeding baselines and are the basis against which the remaining development
effort is authenticated. Any proposed change to this baseline will follow the change
control process described in the Software Configuration Control within the SCM
Process, Section III.

NASA-GB-A501
Issued August 1995

20

C. Software Architectural Design Phase

The objective of the software architectural design phase is to develop an overall
design for the software, allocating all of the requirements to software components.
The software requirements are controlled and managed, and the contents of the
requirements baseline are changed only by a formal process. The phase ends with
the preliminary design review, during which the acquirer and provider agree on the
architecture of the system that is to be produced. Rework and action items
resulting from the review are tracked and completed.

The software allocated baseline contains the architectural design of the system and
documents showing how the requirements are allocated to the design. This
baseline is struck after the completion of this phase and the resolution of any
problems raised at the Software Preliminary (Architectural) Design Review (PDR).
The baseline contains all the updated documents from the Requirements baseline,
along with the architectural design specification. The baseline may also contain a
software build (or release) plan and test plans. If present, these plans are usually
still at a high level, with general functions assigned to the proposed builds or
releases.

The contents of the software allocated baseline become a permanent part of all later
baselines and a part of the basis against which the remaining development effort is
authenticated. Any proposed change to this baseline will follow the change control
process described in the Software Configuration Control within the SSCM Process,
Section III.

D. Software Detailed Design Phase

During the software detailed design phase, the architectural design is expanded to
the unit level. Interface control documents are completed and test plans revised.
Constraints and object system resource limits are re-estimated and analyzed, and
staffing and test resources are validated. The phase ends with the Critical Design
Review. During this phase, both the requirements and the architectural design are
under configuration management control of the provider CMO as part of the
allocated baseline, and can only be changed by a formal process.

The software design baseline is struck after the completion of this phase and the
resolution of problems raised at the phase ending Software Critical Design Review
(CDR). The software design baseline contains the detailed (code to) design for the
software. The major new addition in this baseline is the software detailed design
specification. It details the design of the CSCIs that will provide all the capabilities
and meet the deign constraints specified in the software allocated baseline.
Software specifications include designs at a level and in a form such that unit
design, coding, and testing can be performed. This specification identifies the
modules that make up the CSCIs, the architecture of each module to the unit level,

NASA-GB-A501
Issued August 1995

21

the module and unit interfaces, the data files to be used during the execution of the
software, and the user interface. The updated contents of the allocated baseline are
part of this baseline, in addition to more complete test and build plans.

The content of the software detailed design specification becomes a permanent part
of following baselines. Many of the components of this baseline will be deliverable
products. Any proposed change to this baseline will follow the change control
process described in the Software Configuration Control within the SCM Process,
Section III.

E. Software Implementation Phase

During the software implementation phase, the software is coded and unit tested.
All documentation is produced in quasi-final form, including internal code
documentation. At the end of the phase, all required products should be ready for
delivery, subject to modification during integration and testing.

After the software components (units) have been coded and successfully passed unit
test, they are transferred from the developers control to the provider CMO control
and placed under configuration management in a program library.

At the end of this phase, the Code Baseline is struck. This is the first time that the
code itself becomes part of a baseline. This baseline is normally an internal
baseline, without delivery and review of products by the acquirer. This baseline is
not created at a single event, but rather the code baselining occurs repeatedly
throughout the coding process as each unit of code is inspected and unit tested. As
each unit successfully passes its unit tests, it is placed under configuration control.
When implementation of all units is complete, the baselined unit code is the basis
for CSCI and system integration testing in the next phase.

F. Software Integration and Test Phase

The objectives of the software integration and test phase are to integrate the
software units into a completed system, discover and correct any nonconformances,
and prepare for the formal acceptance of the system. The phase ending review is
the test readiness review, during which the developer provides to the acquirer
evidence that the software system is ready for acceptance testing. During this
phase, the test plan is executed, the documentation is updated and completed, and
the products are finalized for delivery. The provider CMO will begin to prepare the
Version Description Document (VDD).

The provider's testing organization uses the code baseline, which should include
baselined test plans, to test and integrate the CSCIs and then to integrate them
into a deliverable system.

NASA-GB-A501
Issued August 1995

22

After the controlled software components have been integrated and tested, the
integrated software is placed under configuration management control in the
program library. Once under control, the tested software can only be changed by an
approved CR or as the result of a nonconformance (discrepancy) report that
requires corrective action.

After the system testing has been completed and put under formal control, an FCA
is performed to authenticate that the actual performance of the CSCIs complies
with the requirements stated in the baselined software requirements document.
This is accomplished by evaluating the test methods, procedures, reports, and other
engineering and design documentation.

After the FCA has been successfully completed, a PCA is conducted to examine the
as-built CSCIs against required deliverables, usually as defined in a contract
deliverables requirements list (CDRL). The provider performs the PCA to ensure
that all deliverable items are present and complete, and the system is ready to be
turned over for acceptance testing by the acquirer or designated representative.

The phase ends with the Test Readiness Review (TRR). After resolution of any
problems found during the TRR, the software product (or integrated) baseline is
struck. This baseline contains the deliverable software and documents, updated to
show as-built design. Along with the software, all other deliverable items, such as
populated data bases and tables, computer installation procedures, and test beds
are part of this baseline. The software is ready for system level integration testing
and acceptance testing.

G. Software Acceptance and Delivery Phase

During the software acceptance and delivery phase, the formal acceptance
procedures are carried out. As a minimum, there is a requirements-driven
demonstration of the software to show that it meets those requirements. The
process also may include acquirer tests, field usage, or other arrangements that are
intended to assure that the software will function correctly in its intended
environment. At the end of the phase, an FCA and PCA are completed and a
software acceptance review is conducted. Their successful completion results in the
establishment of the accepted or as-built baseline. Now the software is ready to be
used for the purpose for which it was acquired.

During this phase, the software is still under configuration management control of
the provider. The software and all documents that have been placed under
configuration management can only be changed by the change request process and
an approved CR.

NASA-GB-A501
Issued August 1995

23

At the successful completion of the acceptance process, the software and all
associated data and documentation are turned over to the acquirer and are placed
under acquirer’s CM control.

The software that is delivered is known as the accepted or as-built baseline.

H. Software Sustaining Engineering and Operations Phase

During this phase of the software life cycle, the software is used to achieve the
intended objectives for which it was acquired. Corrections and modifications are
made to the software to sustain its operational capabilities and to upgrade its
capacity to support its users. Software changes may range in scope from simple
corrective action up to major modifications that require a full life cycle process.

During this phase, the baselined operational software and all baselined documents
are under strict configuration management control of the acquirer CMO. No
baselined software and applicable documents can be changed without following the
change request process, including CCB approval.

In the event that a major modification using the full life cycle process is necessary
to implement an approved change, the same configuration management control
processes as are applicable to a new development are applied by the acquirer and
provider CMOs throughout the life cycle of the modification.

NASA-GB-A501
Issued August 1995

24

NASA-GB-A501
Issued August 1995

25

V. SCM IN OTHER LIFE CYCLES

In the previous parts of this guidebook, we have defined Software Configuration
Management, defined the processes that make up SCM, and defined the baselines
that are produced in the standard waterfall life cycle. In the real world, few
software systems are produced by going once through the waterfall. Most systems
are large enough that they have to be done piece by piece, with each piece being
integrated and tested and then used as a basis for the next development phase.
This is called phased development. There are a number of phased development
variations on the basic waterfall life cycle. For example, development by builds
usually involves completing the requirements analysis and the architectural design
phases of the waterfall and the completing the PDR. The software is then divided
into sections that contain groups of functions or sections of the architecture (usually
the former). The detailed design, implementation, and integration and test of each
functional section is then built sequentially. Development by builds allows each
tested build to be used as a basis and test bed for the next set of builds.
Development by builds is probably the most frequently used development life cycle.
Please note that builds may be delivered to the acquirer for acceptance and use. If
so, the process is termed "phased delivery", but differs in no fundamental way from
the process where the builds are retained by the provider until the system is
complete.

If less is known about the real world requirements for the delivered system, other
phased development life cycles may be used. For example, an evolutionary model
can be used when only a portion of the requirements can be defined well enough to
justify developing software to meet them. In this case, it is known that other
requirements exist, and work in gathering and understanding them may be
ongoing, for example by development of prototypes. The inability to define the total
set of requirements means that the total development life cycle must be repeated
several times, with each pass through involving an additional set of requirements
that have been defined sufficiently well that development can take place. In each
requirements analysis phase and review, the new and changed requirements must
be addressed and baselined. The subsequent phases of the development process
must accommodate both the development of new designs and code and the
modification of (potentially) significant parts of the existing code. The spiral model
is an example of an evolutionary development process.

Once a software system enters operation, the SCM problem becomes much like the
one described above. That is, there will be in existence a current version of the
software that is being used for operations, previous versions that were used to
produce products that may have been distributed, and versions under development
that fix problems and/or incorporate new capabilities.

From the SCM point of view, the use of these multiple pass development life cycles
does not change the fundamental SCM processes as discussed in this guidebook.

NASA-GB-A501
Issued August 1995

26

The four functions of configuration identification, configuration control,
configuration status accounting, and configuration authentication still must be
done. However, the actual application of SCM becomes both more important and
more difficult. Many versions of design and code, for example, may exist at the
same time and be used in different builds or versions of the software system. Each
version of the system and the changes incorporated in it will have to be controlled
and its configuration clearly known.

At each delivery of the system it is especially important to do a PCA, to ensure that
the contents of the delivered code, data, and documentation is the correct set that
includes all of the items that are intended. It is likely that revision of the contents
of a version of the software system will be made late in the development cycle, as
lower priority functions (or those that have been difficult to add) are postponed to
later releases or builds, and changes or fixes that have risen in priority are rushed
into the release.

SCM on a large project with multiple releases does not change in nature, but
becomes more difficult to do correctly and consumes more resources. The rush to
deliver a version must not cause Configuration Management Control to be lost, or
the confusion that will result will cost a lot more to rectify that it would have cost to
do it right.

NASA-GB-A501
Issued August 1995

27

VI. SCM ORGANIZATION AND RELATIONSHIPS

A. SCM Structure

A software project's configuration management structure has three major
components.

First, there is a Configuration Management Officer (CMO), who is responsible for
the operation of the configuration management process and the maintenance of
configuration control over the evolving products. Second, there is a program library
and librarian, who has control and custody of all of the software products, both
electronic and hard copy. Third, there is a Configuration Control Board (CCB),
which decides which suggested changes will actually be made.

The roles and responsibilities of each of these components of the CM system are
discussed below.

B. The Role and Responsibilities of the CMO

The Configuration Management Officer is the key individual in a project's SCM
system. The CMO's role begins with the development of a SCM plan for the project
and the establishment of a procedure that details each step in the SCM process.
The CMO has to set up the program library in a manner compatible with the
project's size and resources and establish the project's Change Request (CR)
tracking data base. After these procedures and resources are in place, the CMO
manages and operates the CM system.

Each CR initiated is sent to the CMO as the first step in the SCM process. The
CMO receives the CR and reviews it for clarity and completeness. If the CMO
determines that the CR is not complete, it is returned to the originator. The CMO
reviews the suggested class of the change and assigns a working classification. The
CMO then assigns the CR a unique identifier for tracking purposes and records
information about the CR into the change request data base.

At this point, an official, complete CR exists and begins its process through the
SCM system according to the procedures established by the CMO. After each step
in the process, the CR is returned to the CMO, who ensures that the actions have
been completed and records its new status in the data base. For example, the CR
has to be routed to the proper individuals for assessment of its impact. After the
assessment is complete, the CR is routed back to the CMO with the assessment
report attached. The CMO will then change the status in the data base to
assessment complete, and add the CR to the agenda for a CCB meeting.

The CMO is the secretary for the project's CCB, and is responsible for preparing
and distributing its agendas and minutes and recording status of CRs that have

NASA-GB-A501
Issued August 1995

28

been dispositioned by the CCB. The dispositioned items are acted upon by the
CMO. The CMO sends rejected items back to the originator along with the CCB
rationale for rejection. If the CCB feels that a CR needs further analysis, then the
CMO sends it back to the analysts with the CCB's questions attached. If the CCB
deferred a CR, it must be filed, to be sent back to the board at the proper time. If
an approved CR needs to be processed through higher level CCBs, the CMO is
responsible for submitting the CR package to the next level CCB. Each of these
actions requires the CMO to update the tracking database.

The CMO sends approved CRs to the development organization for action. After
the change has been implemented (and tested, if the change was to code), the CMO
updates the tracking data base to show the status of the CR as closed.

The CMO is responsible for producing and distributing periodic CR data base and
individual product CR status reports. These reports keep everyone concerned
informed as to the status of the proposed changes. The CMO is also responsible for
management of the SCM library and for conducting functional and physical
configuration audits.

C. The Role of the Program Librarian

The program librarian operates the program library to manage the baseline
software, data, and documents. The librarian accepts documents, code, data files,
and other components of baselines and puts them in secure storage. The librarian
issues working copies to developers for authorized changes, and keeps records and
historical copies of all versions of the components of baselines. He or she makes
copies of baselined software for testing and distribution, and prepares version
description documents.

The role of the program library and librarian includes the storage and control of
both software and associated documentation. The program library must control
hard copy documents, computer files, and the physical media on which the latter is
stored. It will have to have a procedure for archiving old versions of the system, of
controlling the current version, and of accepting from developers potential new
versions which have to be verified. In addition, the program librarian often
supports the CMO in the maintenance of records and the production of reports.

D. Role of the Configuration Control Board

The CCB provides a forum for the review and disposition of the proposed changes to
baselined requirements, documentation, and software. The CCB is responsible for
discussion of proposed changes and for voting or otherwise recommending to the
CCB chair the disposition of those changes.

NASA-GB-A501
Issued August 1995

29

The CCB is a working group consisting of representatives from the various
disciplines and organizations of the developing project. The exact number, skills,
and level of management of the CCB participants will vary, depending upon the
change request to be reviewed. The project manager or the senior manager of the
organization is usually the CCB chairperson. The CMO prepares a review package
for each CR, containing the change proposal, relevant documents, and the analysis
by the developers, and sends it to the CCB members. The CMO, who is normally
the CCB Secretary, prepares the meeting agendas and records the meeting minutes.

At a CCB meeting, each CR on the agenda is covered in turn. Each member
discusses the pros and cons of accepting the CR from her/his point of view and
within his/her area of expertise. However, the CCB chairperson is responsible for
making the final decision. CCB members do not have "voting rights" and CCB
decisions are not made by majority rule. CCB decisions are management decisions
that include the expenditure of resources, and the decisions must be made by the
responsible manager. However, the CCB chairperson should carefully weigh the
advice of each member before making the decision.

E. SCM Relationships

The SCM structure has to interface with all of the other entities that make up the
development project and with potential users of the system under development.

The SCM organization interfaces with project management to provide information
and reports on the number and status of changes proposed to the software. The
CMO will provide both routine reports and answer special requests for data. The
CMO acts as the secretary for the CCB, which is made up of senior project
managers. Most importantly, the CMO and the program librarian develop the
Version Description Document (VDD) and the deliverable system, and certify to
management, via the results of FCAs and PCAs, that the system is ready for
delivery to the customer.

The SCM organization interfaces with the development organization both to accept
CSCI components to become part of a new baseline or version and to provide to the
developers authorized copies of existing products for updating in accordance with
approved changes.

The testing organization is dependent on the SCM organization to provide copies of
the proper version of all code and documents for the development of test plans and
procedures and to use in executing tests.

The SCM organization interacts with QA both as an entity that is audited by QA,
and as a participant with QA in the conduct of FCAs and PCAs. In many
organizations, QA must be the final signoff before a product can be accepted from
the development organization and included in the program library.

NASA-GB-A501
Issued August 1995

30

NASA-GB-A501
Issued August 1995

31

VII. GUIDANCE IN ADAPTING SCM TO A PROJECT

Plans for software configuration management and the structure and size of the
organization needed to implement it should be influenced by the complexity of the
software to be developed, the size of the project, and on the specific responsibilities
assigned to the SCM organization. Resource needs will be influenced by the tools
and computer resources available.

A. Project Size

A small project with a reasonable tool environment may well be able to assign all of
the duties of the CMO and the program library to one individual. It may be able to
use less formal procedures than a large project. The program library may be a
series of files - a set of individual developer controlled files for writing and
documenting software, a set of files that contains developed code that has been unit
tested but is not yet integrated or baselined, the current baseline, and archive
versions. The last three sets should not be able to be written to by anyone other
than the program librarian.

Larger projects must have more formal procedures, especially for the CCB. There
will be many changes suggested, and the burden of tracking all of them can be quite
heavy. Large projects may set up a screening board, which recommends to the CCB
the disposition of certain types of proposed changes. For example, a screening
board might be set up to handle all user interface changes. For the type of changes
delegated to the screening board, the procedure could be that the CCB will
automatically accept the disposition of the screening board unless some CCB
member wants a full discussion.

Another approach used by large projects is to set up sub-boards for a subset of the
total project, for example, for one or more CSCIs. The CSCI board may have
authority to accept changes, within certain resource limits, that do not affect the
interfaces between CSCIs controlled by other sub-boards. The full CCB should
review the dispositions of the sub-boards only if a CCB member feels the review is
warranted.

B. Informal Controls

As the CM system is set up and operated, care needs to be taken not to impede
development and testing while changes to the software system are being proposed,
processed, and implemented. It is especially important that managers have an
informal adaptation of the CM process to control changes to interim products while
they are in development and use, but before they are part of a formal baseline.
During this period, software developers can use the same types of baseline
management to manage the new or changed products. For example, as the design
at each level is documented, each informally proposed expansion, enhancement, or

NASA-GB-A501
Issued August 1995

32

other change should be examined for its impact. Working documents are modified
to reflect all approved changes and the current status of approved design is made
available to all participants. Informal records are kept to provide an audit trail as
the design evolves. This sequence is likely to occur on an active and continuing
basis as the design of the software is developed incrementally through more
detailed levels. No formal paperwork is used, but adequate management control is
exerted.

As another example, as units of code are unit tested, the development manager may
need to control the changes made to those units that have completed unit testing so
that related modules can use the tested modules in their own testing. No formal
paperwork is needed at this stage, but lack of control will yield confusion and
duplication of effort. Many managers put in place a multi-file program library
system like that described above, with units progressing through the sets of files as
testing progresses.

Use of the term "configuration management" to describe techniques for this type of
informal control during development is common. This is often a source of confusion
to software managers involved in a system development effort, since they may not
distinguish between their need to control the changes made to products they are
developing and the formal SCM that responds only to the official CCB. However,
this type of informal control cannot substitute for the formal process needed to
manage approved or completed products. It is a recommended augmentation to the
more formal process.

C. SCM Resources

The level of SCM resource support required by the development project will vary
dependent upon the life cycle phase. The Software Concept and Initiation Phase is
usually the function of the acquirer, and begins with minimal SCM resources whose
role is to develop an acquirer SCM plan and to develop provider SCM requirements.
After selection of a provider, the provider’s resource needs will increase in
successive life cycle phases as the requirement for SCM activities increases with the
greatest needs occurring during system integration and test. The acquirer's needs
will also grow in order to process level one changes and to review level two changes,
but will be much less than that of the provider. The acquirer's greatest SCM
resource needs will occur after acceptance of the software system.

The maximum need for provider and acquirer SCM resources will occur in a project
that is using a phased delivery process (See section V). During delivery, there will
be some versions of the software delivered and being maintained, some being
tested, and others in development. These resource needs are critical - lack of
adequate resources will result in an unacceptable situation. Either the project will
relax its rules and allow changes to be made with no change control, or progress
will be slowed by an inability to process changes in a timely manner. Adequacy of

NASA-GB-A501
Issued August 1995

33

the SCM resources commensurate with the size and phasing of the development
process is essential to the development of quality software and its delivery.

NASA-GB-A501
Issued August 1995

34

NASA-GB-A501
Issued August 1995

35

VIII. TOOLS AND TECHNIQUES

Many of the processes in SCM are labor intensive and involve considerable
paperwork. Tools can be used to help alleviate some of the paperwork and to
reduce the cost of SCM. Many tools are available from commercial and shareware
developers, and some tools can be easily developed using software normally
available on personal computers or as part of the development environment.

A set of tools that is simple to implement are those the program library uses as part
of the configuration management function to stage the sets of products. Baselined
products can be kept in a library (set of disk files) that only the librarian can write
into. This allows the developers and testers to get a copy of baselined documents,
data, and code for modification and testing, but does not allow them to change the
baselined products. Often the library will be set up with several stages of each
product under control. There will be the current delivered version, the version
under test for the next delivery, a development version that includes tested units of
the version two steps away from delivery, and developer libraries of components not
yet unit tested. The version staging diagram, Figure 3, shows these libraries and
the flow among them.

Another set of tools that are readily available or easily developed support the
configuration status accounting function. A simple data base will allow the entry of
change requests (or at least change request summary data), and the updating of the
status of the change request as it flows through the system. Informational reports
can be generated from the data base to allow submittors and project staff to know
the status of a report at any time. The data base can be used to record the version
of the system to which a change is assigned and this information will support the
PCA/FCA activity.

High end tools are available that will record each version of each product, using a
transaction based scheme to note exactly what part of each product was changed by
a CR. These tools record the reason for each change, and may automatically
generate CM reports and other such features.

It is important to provide a set of tools to support the SCM function on a project.
Because SCM must keep track of very detailed information, it is easy to make
errors that can cause the project rework and time lost due to confusion. The tool set
chosen should be appropriate to the size and structure of the development project.
The same CM tools that are used by the provider should be considered for use by
the acquirer for the purpose of continuity and consistency throughout the
sustaining engineering and operations phase.

NASA-GB-A501
Issued August 1995

36

PROGRAMMER
 LIBRARY

Version of Software
under Development

or Change

CMO
 LIBRARY

Version
to Release for

Acceptance Test

ARCHIVE

All Previous
Versions (N-2..n)

FALL-BACK
 LIBRARY

Previous
Operational

Version (N-1)

CMO
 LIBRARY

Integration
and Test
Version

OPERATIONAL
 LIBRARY

Current
Operational
Version (N)

B
U

G
 F

O
U

N
D

INTEGRATION &
TEST COMPLETED

C
H

A
N

G
E

 A
U

TH
O

R
IZ

E
D

UNIT TEST
COMPLETE

RETIRED
VERSIONS

OLD
VERSION

ACCEPTANCE

TEST PASSED

Staging of Product Versions

Figure 3.

NASA-GB-A501
Issued August 1995

A-37

APPENDIX A
SUMMARY OF BASELINE CONTENTS

This appendix briefly lists the contents of each baseline established during the
standard waterfall life cycle. It summarizes information found in Section IV. In
using this section it must be remembered that the development of baselines is
cumulative, that is, all of the contents of each baseline are part of the next baseline,
with updates as needed. Generally this appendix only lists the additions to the
baseline at the end of each phase.

Initial Acquirer Baseline

At the end of the software Concept and Initiation Phase, the Acquirer should
establish an Initial Acquirer's Baseline that contains:

• The project Software Management Plan (SMP)

• Procedures developed to carry out the SMP

• System level requirements passed to the provider

After a software provider is selected, selected provider plans may be added to this
baseline (provider SCM plan, for example). Alternately, these plans may be under
provider control.

Software Requirements Baseline

This baseline is established after the completion of the requirements analysis phase
and the satisfactory resolution of issues raised at the phase ending Software
Requirements Review (SRR). It should contain:

• The software requirements specification

• Interface requirements documents

In addition the following should be baselined at this time if not done at the time of
agreement between the acquirer and provider:

• Software development plan

• Software assurance plan

• Software SCM plan

NASA-GB-A501
Issued August 1995

A-38

Software Allocated Baseline

This baseline is struck after the completion of this phase and the resolution of any
problems raised at the Software Preliminary (Architectural) Design Review (PDR).
The baseline contains all the updated documents from the Requirements baseline,
along with the following:

• The architectural design specification

• Documents showing how the requirements are allocated to the design

• Also baselined at this time should be:

• Software build (or release) plan

• Software test plan (high level)

Software Design Baseline

This baseline is established at the completion of the CDR. It must contain all
updated documents from the previous baselines and the software detailed design
specification. In addition, the build and test plans begun during the requirements
phase and included (at a high level) in the previous baseline should be completed
and baselined at this time.

Software Code Baseline

This baseline is established at the end of the software implementation phase. It
should include, in addition to the updated contents of the previous baseline, the
following:

• The code itself

• Code level documentation

• Users Manuals

• Test Procedures for the I&T Phase

• Data needed for operation of the software

Software Product Baseline

This baseline is established at the completion of the Integration and Test Phase.
The software is to be ready for acquirer acceptance testing and delivery. It should
include, in addition to the updated contents of the previous baseline, the following:

NASA-GB-A501
Issued August 1995

A-39

• The tested code

• Final versions of all products and documents

Software Accepted (As-Built) Baseline

This baseline is established after the software has been accepted by the acquirer. It
should contain updated versions of the items in the product baseline, with
corrections for nonconformances found during the acceptance process.

NASA-GB-A501
Issued August 1995

A-40

NASA-GB-A501
Issued August 1995

B-41

APPENDIX B
EXAMPLE CHANGE REQUEST FORM

SOFTWARE CHANGE REQUEST
NO.

TITLE/SUBJECT

PAGE
OF

REASON FOR CHANGE:

CLASSIFICATION

SYSTEM/CSCI/CSU

ORIGINATOR: DATE SUBMITTED: DATE NEEDED:

DESCRIPTION OF CHANGE:

TYPE OF CHANGE:

REQUIREMENT

DESIGN

CODE

PROCEDURE

DOCUMENTATION

IMPACT OF CHANGE:

DOCUMENTS AFFECTED: INTERFACES AFFECTED: COMPONENTS AFFECTED:

CHANGE IMPACT ASSESSED BY: ASSESSMENT APPROVED BY:

CCB DISPOSITION APPROVED REJECTED DEFERRED
MEETING DATE:

CCB CHAIR:

NASA-GB-A501
Issued August 1995

B-42

NASA-GB-A501
Issued August 1995

D-43

APPENDIX C
ACRONYM AND ABBREVIATIONS

CCB Configuration Control Board
CDR Critical Design Review
CDRL Contract Documentation Requirements List
CI Configuration Item
CM Configuration Management
CMO Configuration Management Officer
CR Change Request
CSCI Computer Software Configuration item
DID Data Item Description
FCA Functional Configuration Audit
NASA National Aeronautics and Space Administration
PCA Physical Configuration Audit
PDR Preliminary Design Review
QA Quality Assurance
RFP Request For Proposal
SCM Software Configuration Management
SCN Software Change Notice
SRR Software Requirements Review
TRR Test Readiness Review
VDD Version Description Document

NASA-GB-A501
Issued August 1995

44

NASA-GB-A501
Issued August 1995

D-45

INDEX

B

Baseline Change Control, 11, 14
Baseline Contents, 37

C

CCB, 5, 12, 13, 23, 27, 28, 29, 31, 32, 43
Change Classification, 12
Change Dispositioning, 11, 13
Change Evaluation, 11, 12
Change Implementation, 13
Change Initiation, 11
Change Verification, 14
CI, 3, 43
CM, 3, 8, 27, 31, 43
CM Resources, 32
CMO, 5
Concepts and Definitions, 1
Configuration Authentication, 4, 7, 15, 26
Configuration Change Board, 5
Configuration Control, 4, 7, 9, 12, 13, 19, 20, 21, 26, 27,

28, 43
Configuration Control Board, 13, 27, 28, 43
Configuration Identification, 4, 7, 8, 26
Configuration Item, 3, 7, 8, 43
Configuration Management Officer, 5, 11, 27, 43
Configuration Status Accounting, 4, 7, 9, 14, 15, 26
CSCI, 3, 4, 8, 9, 12, 14, 15, 21, 29, 31, 43
CSCI Designation, 9
CSCI Selection, 8

E

External Audits, 16

F

Functional Configuration Audit, 7, 15, 43

P

Physical Configuration Audit, 7, 15, 16, 28, 43
Program Librarian, 16, 28, 29, 31
Project Size, 31

S

SCM, 1, 3, 4, 5, 7, 11, 12, 14, 16, 17, 19, 21, 25, 26, 27,
28, 29, 31, 32, 37

SCM Relationships, 29
SCM Structure, 27, 29
Software Acceptance and Delivery Phase, 22
Software Configuration Management, iii, 1, 3, 7, 25, 31
Software Detailed Design Phase, 20
Software Implementation Phase, 21, 38
Software Integration and Test Phase, 21
Software Requirements Phase, 19
Software Sustaining Engineering and Operations Phase,

23
Structure, 27, 29, 31

V

VDD, 21, 29
Version Description Document, 15, 21, 28, 29

NASA-GB-A501
Issued August 1995

I-2

