NOoHauU

Designing a Home Alarm using the UML

And implementing it using C++ and VxWorks

M.W.Richardson I-Logix UK Ltd. markr@ilogix.com

This article describes how a simple home alarm can be designed using the UML (Unified Modeling
Language) and targeting the VxWorks OS. The articleisin two parts, the first describes how amodel of the
home alarm can be designed and validated using the UML, so that it is independent of the actual hardware
and OS used. The second part details how this model can then be specialized to use the VxWorks operating
system running on a 486 target. The design described is modeled, developed and validated using the Visual
Programming environment “Rhapsody” from I-Logix.

Being that the UML is avery visual Programming Language, this article is aso very visual.

Part I: Designing a HomeAlarm that is OS independent

A good Object Oriented design tries to separate the things that change from the things that don’t change. In
ahome alarm, one thing that is likely to change, is the actua hardware platform. This article describes how
the model can be designed in UML so that different hardware architectures can be easily accommodated.
This article also shows how by using “Rhapsody”, full production quality code can be generated from the
model and also validated by using “Design level debugging”. Design level Debugging will alow usto
debug using the very same diagrams that we have used to describe the model, basically the Statecharts and
Message Sequence Diagrams will cometo life or “animate”. Thiswill alow usto rapidly validate the
model.

The Requirements

We want to design an alarm system for a home that has the following requirements:

Can be armed / disarmed either via a remote control unit or viaasimple

keypad. When using a keypad to arm the alarm, a four-digit code must be Kepad
entered followed by the on key. To disarm the alarm, a four-digit code must be o @
entered followed by the off key. It should be possible to change the code. Ll _il _il
When the alarm is armed and a presence is detected, the alarm will sound

immediately. When arming the alarm, there is an exit delay to alow the .il _5| _EI

homeowner to exit. When opening the door when the alarm is armed, thereis
an entry delay during which the homeowner can disarm the alarm, failing to do 7 g q
so will result in the alarm going off. —l——l ——l

OM| 0] QOFF
The aarm will have two LED’s, one green and one red. The red LED will ~—i —I —I
indicate the alarm is active, and will flash either when the alarm is being

activated or if the alarm is activated and the door is opened. The green LED will indicate that the alarmis
powered up and will flash four times when the code has been correctly changed.

A future requirement is that the home alarm system should also be capable of switching lights on/off to
simulate presence in the house.

Page 1 of 13

NOoHauU

Designing the UML model

Use Case Diagram

Thefirst step isto build a use case diagram from the requirements. The following Use case diagram, shows
two things: Firstly it shows the main uses (or use cases) of what we are trying to model “Home Alarm”.
Secondly it shows who uses the home alarm; we have two principal actors or users, the homeowner and an
intruder. A use case is a system function that returns an observable result to an actor without revealing

internal system structure.
occupation simulation

Zzpxtend==

detect intrusions
[

zzinclude=>

)
sound alarm
arming and disarming

home alarm

intruder

homeownear
<<includes> \
<] use case
5]
actor :
“<includes=

changing code

In the above diagram we can see that the principal use of the home alarm is the use case “ detect intrusions”,
in which both the homeowner and the intruder participate. The use case “ occupation simulation” extends
“detect intrusions” by effectively switching lights on and off to simulate occupation when the alarm is
armed. Two other use cases that the homeowner participatesin are “arming and disarming” and “ changing
code”; both of which use or include the services of another use case “code entry”. For each use case we can
add atextual description and if needed, the use case can be decomposed into further use cases on another
diagram.

The use cases do not imply any internal structure and are a functional view.

Page 2 of 13

NOoHauU

Black Box Scenarios

Having created a use case diagram, the next step isto look at some black box scenarios. The idea of these
scenariosis to show the interaction between the system that we are trying to model, and the actors. We
regard the system as being a black box. For example: for the use case “ Arming and disarming” we could
imagine the following scenario:

AarmElg:: HomeAlarm
homeowner
2 message
§ /
The hemeowner amms the alam by § key(1) /
entering the comect code then by]
presting heonthey: ; key (2} Once 3 key has been pressed, the homeowner
In the code is comect, then after a E key(E) 48 sen ¥ hra:S:p;thoefllj\;ekzeconds 1o enterthercodsiand
delay [EXIT_TIME Jthe alamm wil H P Vi
be anmmed. E
; by ()
H
% heey 0Ny
T_ Once 3 code has been entered, the on key must
; © 3 seek I_— be pressed within three seconds.
:
During the exit time delay, the Red LED EL prlLegtne sy
will flash on and off. : redLed 0FFC) -
Dwring this time, detection of doors opening - . .
and of movement in rooms will be ignored. ;_ redLed Ong) Relative Time
; red Led O
System iz now ammed and will react to the ; red Led On()
door opening or to 3 detection of movement
in @ room. E v

The above scenario has been captured using a Message Sequence Diagram and shows the interaction
between the homeowner and the home alarm over time. When creating such diagrams, many more details
about the system are discovered. For example in the above scenario, timing information has needed to be
defined between key presses.

These scenarios help us get a better understanding of how the users use the system and also help us
understand exactly what needs to be done.

Generally for each use case there would be several interesting scenarios that need to be captured. Each
scenario is effectively an instance of a use case.

Page 3 of 13

NOoHauU

Domain Diagram

The next step is to see how we can break the model down into smaller sub-systems or domains. A domain
can be shown in the UML as a package, which is basically a collection of classes. The following domain
diagram shows how the home alarm has been divided into two basic packages; an alarm domain
(AlarmPkg) and a hardware domain (HardwarePkg). The idea here being that the alarm domain is
completely independent of the actual hardware and any hardware domain that realizes the IHardware
interface can be used in conjunction with the alarm domain. The interface class IHardware describes al the
operations that are necessary for the alarm domain. The set operations are operations that the alarm domain
can invoke on the hardware, whereas the on operations can be invoked by the hardware.

HardwarePkg |
AlarmPkg
IHardware
setLed(tLed ident,tOnOff state)
setSiren(tOnOff state)
setLight(tLights aLight,tOnOff s 1 AlarmController &
onArm() -
onDisarm()
onKeyOff()
onKeyOn()
onKey(int n)
onMovement()
onDoor() \
<<Interface>>
class
relation package

Once this interface has been defined between the alarm domain and the hardware domain, more detailed
analysis can now be undertaken simultaneously and independently on each relevant domain, each domain
knowing the interface between itself and the other domain(s). For example we can now start to analyze the
alarm domain without knowing anything more about the hardware that will be used.

Page 4 of 13

NOoHauU

Object Model Diagrams

For the alarm domain (AlarmPkg), we can imagine that we have an AlarmController class that contains
Keypad, Led and LightController classes. These classes can be shown as follows:

=
. = AlarmController
thekevpad kKevaad
2 newCode : int
R oldCode © int 1theLightCuntruller:LightCDntrDllerE

count : int

setSirentOnOf state) theHardware :

setlight(tLights aLight tOnOf 1 isCodeCarract() 1 =

setLeditled ident tOnOff stat isCodeEntered() SRR e
changeCode()

=zInterface=» Keypad()

evkey(int nj 1 =
evkey Offf) theRedLed:Led
evkeyOn()

This diagram shows the AlarmController as a composite class containing instances of the other classes. We
can also see that we have chosen to display various operations and attributes of the Keypad class. A
composite classis an effective way of showing strong aggregation. In the above example if an instanceis
created of the AlarmController class, then it will create an instance of the Keypad called theKeypad, two
instances of the Led class called theRedLed and theGreenLed as well as one instance of the LightController
class called theLightController. If the instance of the AlarmController is deleted then the contained
instances will also be deleted.

The IHardware class has some pure virtual operations, so in order to test the AlarmController, we must
override these operations. The following diagram shows that a HomeAlarm contains one instance of the
AlarmController class and one instance of a Hw class that inherits from and overrides operations in the
IHardware class.

HomeAlarm

@

theAlarmController:AlarmPkg::AlarmController

HardwarePkg::IHardware

theHardware:Hw

<<Interface>>

Page 5 of 13

NOoHauU

White box Scenarios

Now that we have found a few classes, we can start to expand on each of the black box scenarios to
produce white box scenarios. Again Message Sequence Diagrams will be used thistime to capture the
interaction between instances of the above classes during various scenarios. For example the following
seguence diagram describes the scenario where the homeowner arms the alarm and |eaves the house.

horneowrer Keypad AlarmControllar theRedlLed:Led

Harme owner arms the
systerm by entering the
correct code through
the keypad

eviey(1)

]isCudeCorrectO

evTemparisel)

AR AR AR R AR AR R R R AR AR AR R AR AR R

evFlashin)
j—ITm(EXIT_TIME)

4

L4
The homeowner leaves the
building through the door and ovDonil
after a delay the alarm is
active

eviong)

alarm is active

AR B RR AR R AR AR Y

Theinclination of the messages indicates whether or not the message is synchronous (horizontal) or
asynchronous (diagonal). From the above diagram we can see that many of these classes have behavior,
they are handling timeouts, calling operations on other classes and also receiving events. In UML, this
behavior can be specified with a statechart.

Page 6 of 13

Statechart of Keypad

NOoHauU

The following statechart describes the behavior of the keypad: Often when the problem is complex, the
problem is divided into several simpler problems. This is exactly what has been done here with the keypad.
Concurrent states have been used so that the “code entry” can be handled with one concurrent state and the
higher level functions of “arming, disarming and reprogramming” can be handled with another concurrent
state. We can see that on the statechart we can enter as actions C++ code, we can also call various
operations such as isCodeEntered() , changeCode(), ... We are also using various attributes such as count

and newCode.

active

/

Page 7 of 13

)) . . evKey/ \
armingDisarmingReprogramming codeEntry newCode = (10 * newCode) + params->n;
evKeyOff[IS_IN(correct))/ evKey/ count++;
] itsController->GEN(evDisarm); newCode = params->n; tm(5000)
_ count=1; enteringCode VKeyOff
idle
[IS_IN(correct)])/ isCodeEntered
evkeyon itsControllerf->GEN(evTemporisg); lisCodeEntered()] -
actions
C++ code
evKeyOn[IS_IN(different)]/
changeode(): [IS_IN(notEntered)]
' 1 [else] [isCodeCorrect()]
// reprogramming \ / \
waitOldCode currentCode
evKeyOn diff
[else] ifferent correct
[IS_IN(correct)] tm(3000) tm(3000)
waitNewCode
evKeyOff notEntered
(1 /oL /)
Statechart of LED
active
The following statechart describes the behavior of / mode fIashMode\
the LED class. Again, in this statechart composite
states have been used. In the on and off states, the ot e stable
symbol > indicates that there are entry/exit actions.
For example in the on state there are the following evToggle[1S_IN(flashing)] [count==0]
5 . evFlash/
actions. evToggle[IS_|N(flashing)] count = params->n;
Action on entry count = count*2 +1;
itsHardware->zetled(ident, ON): :! [evon on> flashing
Action on exit : tm(500)/
= --count;
—! \ GEN(evToggle); /
<

Operations and Attributes

NOoHauU

We have seen that many classes have attributes and operations, these can be specified as follows, note that

the actual C++ code is contained in the model.

E’j_] Browser !E[E
=- AlarmPkg - -
B % Achars Tepe: IF'rimitive Dperationj IF'uinc ;] [Virtual
£ Classes I Static
- AlamContraller Name: |changeCods I Canstant
=B Hardware i Tore
HE’ Kevpad ¥ Type is typedefed [predefined or user defined bpe]
- Atributes
----- = count e O =
e |void x| | Edit Tppe.
----- = rewCode 2H I —I 4|
""" = old.Eode Arguments:
= Operations
..... changeCode(] Mame | Tupe | walue | Add |
----- ; evtey(int) Modifyl
----- extlep0ff{]
..... / evkeyln(] Deletel
----- & isCodeCorect() _ﬂ‘ﬂ
----- & isCodeErterad() -
..... W, Keypad() Description:
-2 Relations Set the old code ta the new code ;l
L ke and flash the green led to indicate success.
B Led ﬂ
[3'"5, LightContraller
H- # Events Bady: {
----- 21 Globals oldCode = newCode; =]
#-E3 Object Model Diagrams itaController-»>flashGreenled() ;
#-E1 Sequence Diagrams
Bl Types bz
-2 Usge Cazes ;I J
LJ--@ AnalyzizPlkg }
. Bl GhiPkn fd]

/

A tool such as Rhapsody can generate code automatically from a UML model, but of course often some
lines of code have to be written by hand such as class operations and statechart actions, this can be done

within the tool as shown above.

Page 8 of 13

NOoHauU

Generating code

The UML isrigorously enough defined to permit automatic generation of code from the Statecharts and the
Object Model Diagrams. Every time when doing an Object Oriented project, some kind of framework has
to be created. This framework will perhaps implement a mechanism for handling statecharts, perhaps a
mechanism for interfacing to an OS. It will aso describe how to implement relations, how to communicate
between classes on different threads, how to handle timeouts, ... This framework can provide around 60 to
90% of the total code required to implement the application. Imagine writing a Windows program without
using the MFC framework, Rhapsody provides a framework (designed and optimized for embedded real-
time projects) which allows the embedded real-time programmer to concentrate on the application and not
on the low-level implementation. When such a framework is used, automatic code generation becomes
efficient and relatively straightforward. The Rhapsody framework also contains an abstract operating
system interface allowing the model to be independent of the actual OS used.

Once the remaining diagrams have been drawn and the bodies of various operations completed, we can
proceed to generate code and test the model. Within Rhapsody we need to setup a component and
configuration to tell Rhapsody what classes to generate code from and what environment to use, normally
to start with, we use the Microsoft environment (Windows OS and Visual C++ compiler). Then code can
be generated and compiled within Rhapsody to generate an executable. The following is an extract of the
code generated for the AlarmController class:

i AlarmController.h

cla==s AlarmController : public OMEeactive { El
EJ Note how the framework
ok ; is used here. OMReactive
el Uzer explicit entries A —| isaclassthat basically
ublic .
& _! waltson a message queue
Lo httribute accessors and nutators: to receive events.
SRR operation configurel IHardware*)

wvold configure(lHardware* aHardware);
SRR opEration initi)

wvold init():

<« flash Green led on and off 4 times
SRR operation flashGresnled()

vold flashGreenled();

i AlarmController cpp

-ﬂtdi!ﬂ!{dﬁlﬂjid Line: 74 !IJJ AlarmController: (AlarmController{OMThread* p thread) {
theHardware = HULL: —
=zt Thread(p_thread):

initRelations(); I
initStatechart():

SR operation AlarmController()
theRedled-:setIdent{ EED
theGreenled-r=etIdent{ GEFEEN }:

Automatically generated code.

srE]

-

AlarmController: :~AlarmControlleri() 1
cleanlUpRelation=(]);

Code entered in model by T
programmer for the body of ;
configure{ IHardware* sHardware) {

. . void AlarmController:
theconﬂgumaopaanon. SoR[operation configurellHardware*)
az=zert {aHardwvare) ;

==t TheHardware(aHardware)

theRedled-:r=etlt=Hardware({ aHardware)

theGreenled-r=etItsHardware({ aHardware):

thelightController—:setTheHardware(asHardware)

aHardware—rsetlt=Owner(this)

SR] |
[0 m B[dy] Line137 4] | Hl 2

Page 9 of 13

NOoHauU

Validating the UML model

Rhapsody can instrument the generated code so that when the actual code is executed it feeds information
back to the tool, allowing Rhapsody to animate the model. This allows the programmer to debug at the
design-level. This can be done at any time during the devel opment, even from day one without asingle line
of code being written by the programmer. Design-Level debugging allows problems to be detected very
early on in the design cycle and put right immediately, thus resulting in a faster time to market.

[aeve]
. i . i deEnt evKey/
armingDisarmingReprogramming codeentry newCode = (10 * newCode) + params->n;
evKey Off[IS_IN(correct)]/ evKey/ count++;
itsController->GEN(evDisarm); newCode = params->n tm(5000)
e count=1; enteringCode evKey Of f
/*\/
/ evKey Ol [IS_IN(cor = [isCodeEntered()]
tollgr->GEN(evTen|porise);
A _——
. 1 J—
Active states evKey dn[is_IN(different)]/
changeode(); [IS_IN(notEntered)])
[else] [isCodeCorrect()]
/ reprogramming \ /1 N
currentCode
evkeyon else] ‘ different [correct]
[IS_IN(correct)] tm(3000)} tm(3000)
waitNewCode
vKey Off *——1 notEntered
1 tm(lOOOO)\ S . J/
7
Heppad Hairaslar {0} = HomaAlaml}-» Hame Sbarm{ll}-=
In the above diagram we can see an i il Lo L
animated statechart of aninstance £
of the Keypad class showing that Gty | N IS N
thisinstanceisintheidle stateand ~ #*=“** R
the enteringCode state. The active flumw =0, slaie =) '
N . foarl L [@l = 1, shadie = 1Y
states are highlighted. ; L ‘
- ; ln‘:_:l_lu‘
Events can be manually injected, A e e 1«;
. . A e
and animated sequence diagrams O i i
such as this one, can be used to 7 —]

: poariLad [id eari = 1, shaie =1
f'automapcally capture the it puledidan s L aues b,
interaction between instances as I e
they occur pflenhin 2 100

T al ROOT actisa Tashpada feshing

This animated sequence diagram
can then be examined or even
compared to a sequence diagram
drawn by hand during analysis to
ensure that the model is correct.
This comparison, can of course be
done automatically by Rhapsody.

Tag e

flz(denl= 1 stzie =0
S0 al ROOT activa Tachpiaia 1ashing

T T T '\I‘!"\.\\.

allz[ent = 1, stain =13 |

Page 10 of 13

NOoHauU

Testing the UML model with a simple GUI

MFCgui | Once the Alarm domain has been tested by manually injecting events and
observing what happens, a simple GUI (Graphical User Interface) can be

created using for example Visual C++ from Microsoft. The class used to

create this GUI could inherit from the IHardware class, specializing the
(O "set” operations, and calling the “on” operations whenever a button is

Ll i‘ i‘ pressed. The GUI can then be used to drive the model that can again be

debugged at the design-level.
(1] il

K.eppad

Using a GUI like this aso enables both Customers and Marketing to

7 | 8 | = | verify that the product behaves as they expected. Any necessary
modifications can be easily made to the model and a new executable
0 EIFFl generated with a simple press of a button.
code I 1234 |
am | Movement
dizarm | Door |

Page 11 of 13

Part Il: Targeting VxWorks

NOoHauU

Once the home alarm has been designed and validated, it can then be specialized to target the VxWorks
operating system running on say a ns486 board to which a keypad, two LED’s, a siren, a movement
detector and a door switch are connected viaan 1/0O board. The hardware is such that the keypad,
movement detector and door switch all generate an interrupt.

HardwarePky: AlarmHwd86FP kg |

IHardware

Huwlry Ea
setleditled ident tOnOff state)
pvantflag setSirentOnOf state)
Hulrf) setlightitLights alight tOnOff
~Huelrgf) onAm)
read() ry onDisarm()
isr) onkey Offi)
setSirentOnOff state) onEequO
setLightitLights alight 10n0f st Ezmi{gnme?to
setled(tLed ident tOnOff state)
onDoor)

==|nterface==>

A new class called Hwirq can be created that inherits from the interface class IHardware and that
specializes the “ set” operations. The body of these operations can be written within Rhapsody. To write to
the 1/0O board, the VxWorks operation sysOutByte() has been used.

:# Hwlrg.cpp

COHOSEventFlag* Hwlrg: :eventFlag = HULL; E;
Hulrg: Hwlrg{OHThread* p thread) : portd{0=zff).portB{0}.
=etThread{thi=. TRUE): —

i
wold Hwlrg: :setSiren(tOnOff

e

initStatechart():

o8] operation Hwlrg()
#define INPUTS IHT_HUM
#define INPUTS _INT_VEC

{ INT_NUM_IRQO + 3)
{ INUM_TO_IVEC(INPOTS INT_HNUM)

eventFlag = the(OSFactorvi()-rcreatelM0SEventFlag();
int ®x = intLock();

intConnect (INPUTS INT_VEC, (VOIDFUNCETR)(isr). 0):
intUnlocki=x);

=y=0utByte (PORT_COHTROL.
zy=CutByte (PORT_A, portd):
sysCutByte (PORTZ_CONTROL, 0=8BE):
so#]

0x8EB):

=tate) {
<7/#[operation s=etSiren(tOndff) -J
if { =tate == OH)

porthd &= ~SIREN:
else

portd |= SIREN:
=zy=CutByte (PORT_A, portd):
SoR]

volid Hwlrqg: isr() {

bt

S##] operation isr()
eventFlag—r=ignal():
So8]

woid Hwlrqg: read() {

SA[operation readi)
while (1) {
eventFlag—>waiti):

<+ read all inputs
int newPortB = 0xff - sy=InBvte (PORT_B):
int newPortC = 0xff{ - sy=InByte (PORT_C):

if { newPortB != portB) {
if {{ portB & KEY_0)
if {{ portB & KEY_1)}

KEY 0) onKew(0):
KEY 1) onKew(l):

-

ERERCR Y

Line 80 [4] | AW

Page 12 of 13

The constructor sets up one port as an output and
two ports asinputs. It also uses the VxWorks
operation intConnect() so that the routineisr() is
called whenever IRQ3 occurs. Finaly it creates
an event flag that will be signaled from theisr
routine.

Theisr() routine is a static operation that simply
signals the eventFlag on which the read
operation iswaiting. This read operation uses
another VxWorks operation sysinByte() to read
the inputs.

Within Rhapsody we need to setup a new
component and configuration to tell Rhapsody
what classes to generate code from and what
environment to use, in this case, we use the
VxWorks486 environment, (VxWorks OS for
the 486 and the gnu compiler).

Then code can be generated and compiled within
Rhapsody to generate an executable that can be
downloaded to the Tornado debugger and
executed.

If the code was generated with “Instrumentation”
then Rhapsody will alow the model to be
debugged at the design level in exactly the same
way as described previously. Tornado can be
used to debug at the source level at the same
time as Rhapsody debugs the model at the
design-level.

The Hwlrg class has been set as an active class and
so will run on its own thread, the parameters for this
thread can be easily configured within Rhapsody as
shown to set the thread name to “tRhpHw”, the
stack size to 4096 bytes and the priority to 180.

Finally, code can be generated from the model with
no instrumentation that can then be debugged in the
classic way using Tornado and perhaps WindView
to check system performance before delivery.
Documentation can be also generated from the
model with a single button press, after all who likes
to spend time (or indeed has time) to document a
project.

Conclusion

This article has shown the following:

1. How Rhapsody can be used to model using the UML

2. How the model can be debugged at the design-level.

3. How the model can be debugged with an external GUI.

4. How the model can be targeted to a specific hardware platform running VxWorks.
References

NOoHauU

X! Mame

I Walue -

ActiveldeszagelueusSize

% AchveStackSize

% ActveT hreadh ame

% ActiveT hreadPriarity
AdditionalMumber0flnstances
BazeMumberlflinstances
CarmplexityF orlnlining

% Concurrency
DeleteGloballnstance
Destructor
ErmptytdemoryFoclCallback,
EmptytdemonyFPoolkeszage
FileM ame
Friend

% Implncludes
ImplementationEpilog

% ImplementationPralog

4036
"tRhpHw"
1a0

0

-1

3

active
False

auta

True

widfork 2. b ztdio.h,stdlib.h..

Hinclude "intLib k' s
| ;FI

Author Reference

1 Bruce Powel Douglass “Doing Hard Time” ISBN 0-201-49837-5
2 Bruce Powel Douglass “Real-Time UML” ISBN 0-201-32579-9
3 I-LOGIX Inc http://www.ilogix.com
Nohau Elektronik AB
Derbyvagen 4, SE-212 35 Malmoé - SWEDEN
Int tel: +46(0)40 59 22 00, Int fax: +46 (0)40 59 22 29, www.nohau.se
Page 13 of 13

Nohau Danmark A/S

Naverland 2, DK-2600 Glostrup - DENMARK
Int tel: +45 43 46 63 93, Int fax: +45 43 46 63 94, www.nohau.dk

