
Abstraction and Reuse Mechanisms in Web Application Models

Gustavo Rossi*, Daniel Schwabe** and Fernando Lyardet *
*LIFIA Facultad de Informática. UNLP.

La Plata, Argentina
E-mail: {gustavo, fer}@sol.info.unlp.edu.ar

**Departamento de Informática, PUC-Rio, Brazil
E-mail: schwabe@inf.puc-rio.br

Abstract
In this paper we analyze different abstraction and reuse mechanisms that should be

used in Web applications to improve their evolution and maintenance. We first review the
OOHDM approach for defining a Web application model, in particular the separation of the
navigational model from the conceptual model. We next focus on abstraction and composition
mechanisms in both models showing how to combine OOHDM’s views with the concept of
node aggregation. We introduce navigation and interface patterns and show the way in which
patterns generate the architecture of Web design frameworks. We strongly argue that in the
currently state of the art of Web applications we can build models of families of similar
applications to improve design reuse. Next, we present our notation for specifying Web
frameworks, giving some examples in the field of E-commerce. Some further work is finally
discussed

1. Introduction
Building complex Web applications is a time consuming task as they must provide

navigational access to critical information resources, not only allowing the user to browse
through the potentially large universe of information but also to operate on it. In some areas
such as electronic commerce, customers’ actions trigger sophisticated workflows that must be
integrated with the core business software. This integration must go in the other way too; for
example marketing software in electronic stores should monitor customer’s behavior while
navigating the store in order to be more effective. The first obvious consequence is that we
must not only design the navigational architecture carefully but also integrate it effectively
with the underlying business model.

To complicate matters, Web applications should be developed with zero defects, with
short deployment and maintenance times. In this context, we should use not only systematic
engineering techniques but also be able to improve reuse during the whole development cycle.

The key for obtaining reusable designs or components is to be able to express
variability in an abstract way; i.e. we need to improve our modeling techniques and practices
to build extensible and reusable conceptual models. However, while reuse techniques have
been widely explored for conventional applications [Meyer94], the very nature of Web
applications seems to prevent designers from being able to cope with design and
implementation reuse.

We have been exploring abstraction, composition and reuse techniques in Web
applications using the Object Oriented Hypermedia Design Method (OOHDM) for some
years [Schwabe98]. OOHDM considers Web applications as navigational views over an
object model [Rossi99b] and provides some basic constructs for navigation (contexts, indexes,
etc) and for user interface design. We have been looking at ways to maximize reuse in the
development process, since we, as well as others, have observed an important degree of
commonality among solutions in similar application domains.

The purpose of this paper is to present different design reuse mechanisms that should
be used while building Web application models. We present each mechanism with a simple

example and compare it with existing techniques in the field of (object-oriented) conceptual
modeling. We stress novel mechanisms (like navigation patterns and Web frameworks) and
those that apply particularly to Web applications (such as contexts).

Though we use OOHDM as the base design method, the ideas in this paper can be
easily applied to other modeling approaches; the reader can find a good description on
theOOHDM primitives in [Schwabe98, Rossi99b, OOHDM00].

The structure of the paper is as follows: In section 2 we characterize Web application
models as the combination of conceptual and navigational models. In section 3 we show how
different abstraction and composition mechanisms in OOHDM work together to achieve
elegant and reusable design models. In section 4, we briefly address abstract design reuse by
reviewing navigation patterns. Since patterns generate architectures. we go further in section 5
and present Web design frameworks as a way to achieve reuse of entire domain models. In
section 6 we present OOHDM-Frame, a notation for specifying Web design frameworks.
Some further work is finally discussed.

2. Web application models: Conceptual + Navigation models

The key concept in OOHDM is that Web application models involve a Conceptual and
a Navigational model [Rossi99b]. The conceptual model aims at capturing the domain
semantics using well-known object-oriented primitives such as classes and relationships, and
abstraction mechanisms such as aggregation and generalization/specialization. In an
electronic store for example, the conceptual model will contain core classes such as Product,
Order, Customer, etc. with their corresponding behaviors. We use UML [UML97] as the
notation to specify the conceptual model. Since the conceptual model is an object-oriented
model, we can use existing reuse approaches in object-orientation [Johnson88].

In the OOHDM approach the user does not navigate conceptual objects but navigation
objects (nodes). Nodes are defined as views on conceptual objects, using a language that is
similar to OODB view-definition approaches [Wim90]. Nodes are complemented with links
that are themselves specified as views on conceptual relationships. The navigational schema
shows the node and link classes that comprise the navigational structure of the application.
For each particular user profile we build a navigational model as a view of the shared
conceptual model. In this way, we can reuse the conceptual model in a family of similar
applications. Moreover, as shown in section 3, we can define different views in the context of
a single application.

In Figure 1 we show part of the conceptual model of an electronic store. Notice that
some classes in the model will be mapped onto the navigational model (i.e. they will be
explored as nodes) while others such as Order will not.

Order

Order_Date:date
Payment_Form:string

CD

Name:string
Description: [string+,

photo]
Keywords:{string}
Price:real
Size:string
Section: {Section}
InPromotion:boolean
Addit_Info:string
DeliveryTime:string

Comment

Author: String

Text: String

1 1..* 1 1..*has

Performer

Name:String 1..* 1..*

performs

Figure 1: Conceptual Model of CD store

If we are designing the customer view of the electronic store, we will specify node
classes for products. As shown in Figure 2, these nodes may combine attributes of conceptual
class CD with attributes from conceptual class Comments and Performer. Notice that in good
object-oriented software specifications (such as the one in Figure 1), products, comments and
performers belong to different classes -. Nodes meanwhile implement opportunistic views of
conceptual classes (following the Observer design pattern [Gamma95]) . The precise syntax
for defining views can be found in [Rossi99].

Node CD FROM CD:C
name: String
description: Photo
price: Number
performer: String SELECT name FROM Performer: P WHERE C isPerformed by P
comments: Array[Text] SELECT text FROM Comment: R WHERE C hasComment R
....
other attributes and anchors

Figure 2: CDs including comments in Amazon.com and the OOHDM definition

The Navigational Schema is complemented in OOHDM with a Context Schema that
shows the navigational contexts and access structures (indexes) in the application. A
navigational context is a set of objects that are usually explored sequentially; for example:
Books of an author, CDs by a rock band, etc. There are different kinds of navigational
contexts: class derived, link derived, arbitrary, etc [Rossi99b]. In Figure 3 we show part of the
context schema for the electronic store. The notation in Figure 3 shows in a compact way,
which sets the user will explore and how they are related with each other. Navigational
contexts are a novel design primitive for specifying sets in a concise way, specifically
developped for exploring hyperspaces.

Main Menu
CD STORE

Subject: Topic

Author

Subject

Related

Search

CD

By Author

Comment

By book

Order Form

Shopping Cart

In Order

By Subject

By Related

Figure 3: Context Schema for the CD store

Dashed boxes in Figure 3 show access structures (indexes) while boxes inside Class
CD (and comment) indicate possible contexts in which a CD (respectively a comment) can be
accessed. A node may appear in different contexts, showing different information according
to the context within which it is reached. In this situation, we use Decorators [Gamma95] to
decouple the base information in the node from the different “faces” this node exhibits.
Consequently, navigational contexts combine two navigational patterns, Set-based navigation
and Nodes in Context [Rossi99a].

The navigational and the context schemas play an important role when reusing
application models in a family of applications in the same domain. We will discuss this kind
of reuse in section 6.

3. Combining views with agregate nodes

Complex Web applications provide multiple ways of reaching the information they
contain. In e-commerce applications for example customers receive different kinds of
advising such as hot-lists, recommendations, new releases, etc. In Figure 4 we show an
example of a home page that contains different kind of links to products in an electronic store.

Figure 4: A Node representing a home page

In OOHDM we can aggregate nodes to specify this home page. An aggregate allows
gluing different information items (other nodes) and access structures (like indexes) in the
same node. The specification of part of the node for the home page in Figure 4 reads as
follows:

Node MusicHome

news: Array [CDView]
search: SearchTool
categories: IndexOfCategories
topSellers: IndexOfTop
landmarks: IndexOfStores
...
other attributes

Node CDView FROM CD: C
name: String
performer: String SELECT name FROM Performer: P WHERE C isPerformed by P
description: Photo
shortComment: Text

Notice that the specification of type CDView above takes profit of the viewing
mechanism and it can be reused in other parts of the site (for example the Artists Essentials
section uses a similar summary for each CD). Aggregates allow specifying composite nodes
in an opportunistic way (as it is usual in Home pages). However, aggregate nodes synergize
with the viewing mechanism in a way that goes beyond simple composition mechanisms in
object-orientation. This sinergy is complemented with the linking mechanism that allows
different views of the same object to be connected with each other. For example you can
easily navigate from the summaries of CDs in Figure 4 to the corresponding CD. In Figure 5
we show in a diagram how to reuse one object’s view and how this view is linked to another
one of the same object.

CD

Music Home

CD View

Artist Essentials

CD View can be used in different
aggregates; from it, we can
navigate to CD (another view of
the same conceptual class).

Figure 5: Aggregates and view reuse in a navigational schema

This simple example raises some interesting issues and questions related with design
reuse:

1. Can we generalize the basic idea behind the previously shown home page? What design
problem are we solving when building this kind of aggregate node? Can we apply this
same solution in other Web applications?

2. Is the structure of this application similar to others in the same domain? In other words:
how can we profit from our intellectual investment while designing the conceptual and
navigational models in similar applications?

These questions shows some non-trivial design reuse problems. While composition,
viewing and inheritance allows to improve reuse and maintenance in a single application, they
are not enough for expressing reusable aspects in a family of applications. We next introduce
two novel approaches for design reuse in Web applications: navigation patterns and Web
design frameworks.

4. Design Reuse using Navigation Patterns

The idea of patterns was originally developped by Christopher Alexander in the field
of urban architecture [Alexander77] and was adapted to object-oriented software some years
ago [Gamma95]. Patterns record design experience by expressing in an abstract way recurrent
problems and proven solutions. They are a wonderful tool for capturing, conveying and
reusing design experience.

Patterns complement design methods by showing solutions that go beyond naive uses
of the methods’ primitives. Patterns improve communication among designers by enriching
the design vocabulary with terms that express non-trivial design structures. They formalize
well-known solutions in such a way that novice designers can profit form experts’ knowledge.

We have mined patterns for Web applications and have documented them using a
template similar to Alexander’s one [Rossi99a]. In fact hypermedia and Web patterns are
similar to the original urban patterns as they express recurrent structures for building usable
navigable spaces; they show design solutions that help the user find his way through the
hyperspace. The hypermedia community have proposed dozens of new patterns [Garzotto99]
and it is now pursuing a project for expressing these reusable solutions in a shared catalogue
[HypPatterns99].

Continuing with the previous example we may define two simple but effective patterns
for dealing with (part of) the application’s complexity: Portal and Landmark. We briefly
describe them, stating the problem they address and the (widely used) solution.

4.1 Portal

Problem:
In many Web applications, particularly in E-commerce we want to give the user a
comprehensive description about what he will find in the site including daily news,
suggestions, opportunities, etc. If we follow a naive hypermedia design view, the “home”
page should map some conceptual object, or may just be an index to services or products.
This approach may be correct from the design point of view but not practical at all; users will
have to go deep in hierarchical indexes to discover what they want.

Solution:
Design the home (or homes) as aggregates of different information items, anchors and access
structures. Dedicate space to news, suggestions to the user, general indexes, special offers,
etc. This home page may even contain information that may not be “semantically” connected.
A portal is an opportunistic design solution that allows increasing the site’s number of visitors
as it is easier and quicker for them to find what they want. Portals are widely used in all e-
commerce sites such as amazon.com, netgrocer.com and more general sites such as
netscape.com. Portals generalize the design solution in Figure 4.

4.2 Landmark

Problem:
Many Web applications contain sub-sites that provide specific functionality (different shops,
search facilities, etc). When we describe the navigational schema (i.e. the network of nodes
and links types), we try to follow closely those relationships existing in the underlying object
model; for example we can navigate from an author to his books, from a CD to the list of
songs it includes. We can go from a book to some comments previous readers did, read about
related books, etc. However, we may want that at any moment the reader can jump to the
music or book (sub) stores or to his shopping basket. If we build the navigational schema
linking every navigational class (such as book, comment, news, songs, etc) to the Music
Store, the Book Store or the Shopping Basket we will end with a spaghetti-like and difficult to
understand schema and we may be tempted not to consider those links.

Solution:
Define a set of landmarks and make them accessible from every node in the network. Make
the interface of links to a landmark look uniform. In this way users will have a consistent
visual cue about the landmark. We may have different levels of landmarks according to the
site area we are visiting. Notice that anchors and links to Landmarks are not easy to derive
from the conceptual model as they do not represent conceptual relationships. Landmarks are

different from indexes as they appear in every node in the application. This pattern is widely
used in Web applications for indicating relevant sub-sites and functionalities.

Mining and documenting patterns is a rewarding task. They may be general like the
previously shown ones or specific to a particular domain (see for example some e-commerce
patterns in [Rossi00]).

Patterns do not stand by themselves. They must be integrated into the development
method in order to be effective. They must be combined to create higher level abstractions,
allowing to express rich reusable architectures. In the context of OOHDM we have defined
notations for some navigation patterns such as Set-Based Navigation and Nodes in Context
[Rossi99b] and Landmarks [Rossi99a]. In Figure 6 we generalize the preceding example by
showing a navigation model incorporating the idea of Landmarks. Notice that instead of a
tangled diagram we get a simplified one in which links to landmarks are omitted. CD Store,
Book Store and Toy Store in Figure 6 are Landmarks (indicated with an arrow with a bullet as
source). Notice that, within CD Store, “Subjects”, “Search”, “Shopping Cart” and “Order” are
second level Landmarks.

...

...

CD STORE
Menu

Subject: Topic

Author

Subject

Related

Recomended

Search

CD

By Title

Comment

By CD

Order Form

Shopping
Cart

In Order

BOOK STORE
Menu

CD STORE

TOY STORE
Menu

CD STORE

WEB STORE

Figure 6: Using Landmarks in the Navigational Schema

Incorporating patterns into the design armory helps to reduce the complexity of
diagrams thus making reuse more feasible. However, when we design complex applications
we need more powerful reuse approaches in order to build new applications by combining or
specializing design components we used in other applications.

In the e-commerce domain for example we can easily find that most virtual stores
offer similar services to the customer: most of them allow finding products by searching or
hierarchical navigation, all of them provide a shopping basket for making selections
persistent, etc. Moreover we can find commonalties even in the core application behavior: for
example, the set of actions triggered when a customer makes a check-out operation are
basically identical: verifying user data, creating an order, sending a confirmation mail,
sending another mail when products are shipped, etc. We should be able to define
architectures that abstract these commonalties and that can be extended smoothly to cope with
variations in each particular application. We next introduce Web design frameworks and show
how they relate with navigation patterns.

5. From Web patterns to Web frameworks

Though patterns (in particular navigation patterns) allow recording and reusing micro-
architectures in Web applications, they are not enough for expressing larger reusable design
structures. However it is well-known in the object-oriented community that combining
patterns and other design primitives is an effective technique for generating object-oriented
frameworks [Johnson94].

Frameworks are reusable designs for a family of applications in a particular domain.
They act as skeletons of a set of applications that can be customized by an application
developer. When many different applications must be constructed in the same domain,
application frameworks provide "templates" for supporting their commonalties, and
accommodating individual variations (differences). While patterns provide abstract reuse of
design experience, frameworks allow reusing concrete designs in a domain [Fayad99].

 Frameworks are composed of a set of abstract and concrete classes, which contain the
specification of generic behaviors (usually specified using a particular programming
language) in the intended domain. A key aspect for designing frameworks is identifying its
hot-spots (i.e.: the points in the framework where variations will appear). Hot-spots may be
abstract classes, hook or template methods, etc.

Following with the preceding example, we can generalize the conceptual model (in
Figure 4) to reflect abstract classes and collaborations in virtual stores. The model should
include an abstract class Product, different kinds of Orders, Comments, etc. A designer
developing a particular store will need to define new concrete classes (for example sub-
classes of Product) and specialize some behavior such as order processing, to accommodate it
to the particular application (for example, selling other products using different business
rules). In virtual stores (such as Amazon.com) the approach will work for defining new sub-
stores in the company that may have, for example, different shipping or payment policies.

Designing frameworks is a difficult but rewarding task. We need to understand the
domain and produce a generic design that can be instantiated into different applications.
Given a framework for a particular domain we obtain:

• a reusable domain model, as the framework contains business entities, behavior
and rules,

• a reusable design for applications of this domain, as the framework will contain
design abstractions that help to solve specific problems in the domain and

• reusable classes and objects whose code can be customized by using template or
hook methods [Gamma95].

To apply this approach to Web application models, we need to take into account
different kinds of variability: those related with the domain model (e.g. different payment
policies) and those related with navigation architectures (e.g. different indexes, contexts, etc).
Besides, programming-language-centric approaches (common in application frameworks) are
difficult to apply in the Web, given the large number of combinations of languages and tools
that are often used in Web application development and implementation.

We define a Web design framework as a generic design of possible Web application
architectures, including conceptual, navigational and interface aspects, in a given domain.
Web design frameworks are different from application frameworks because while the latter
are programmed in a specific language, Web design frameworks are environment and
language-independent. We have used the OOHDM model as the basis architecture for
specifying Web design frameworks. Web design frameworks comprise a generic conceptual

model (that may be itself an object-oriented framework), a generic navigation schema and a
generic context schema.

Web design frameworks can be mapped either to an application framework to be later
instantiated into a running application or can be instantiated into “pure” OOHDM models and
then implemented as a single Web application [Schwabe00]. We next present a notation for
improving Web application models with the kind of abstractions needed in Web design
frameworks.

6. OOHDM-Frame: A notation for Web frameworks

In order to specify Web design frameworks, we have defined a new notation, called
OOHDM-Frame that extends OOHDM smoothly. It is not our objective in this paper to give
the detailed syntax of the notation but rather to analyze how to improve existing abstraction
and composition mechanisms in conceptual modeling in order to express generic Web
functionality. We will present the notation briefly to stress each particular modeling feature.

As previously explained, the specification of a framework’s model in OOHDM-Frame
is comprised of generic Conceptual and Navigational Models specifications, together with
instantiation rules. We next analyze each one pointing out novel abstraction mechanisms.

6.1 Abstraction and Genericity in the Conceptual Model

Variability in Web applications may appear in the conceptual model. In Figure 7 we
show part of a generic model for electronic stores. Notice that we have included some abstract
classes like Product and specialized Comment and Payment Method.

Person

Name:string
Address:string
CustomerID: String

Order

Order_Date:date

DuplicateOrder(order)
MakeOrder(order)

1..* Makes *

Product

Name:string
Description: [string+,

photo]
Keywords:{string}
Price:real
Size:string
Section: {Section}
InPromotion:boolean
Addit_Info:string
DeliveryTime:string

Product in Order

Qty:int

IncludeProd(order,
product,qty)

1

1..*

1..* reference 1..*
Company

Name:string
Address:string
Email:string
Site:URL

1..* Makes *

Comment

Author: String

Text: String

1 1..*has

Payment Method

Cost%:Real

ExpirationDate: Date
SecurityCode: String
Company:String

Bank:String

Credit Card Money Order

1 Payment_Form 1

CD

Themes:{string}

Book

ISBN: String

Editorial Comment

ISBN: String

Customer Review

ISBN: String

Figure 7: A generic conceptual model for virtual stores

Genericity in object-oriented models has been largely discussed in the object-oriented
community and one can use existing notations to express generic classes and behaviors

[Pree94], so we don’t discuss it further here. It is interesting to note that an abstract
specification in the conceptual model can be mapped to an abstract specification in the
navigational schema by using the viewing mechanism. It should be pointed out that each time
the generic conceptual model is specialized into a particular application, it could be necessary
to adapt the navigational model to conform to this change (See 6.2).

6.2 Specifying Generic Navigational Models

A generic Navigation Model in OOHDM-Frame is made up of a Generic Navigation
Schema, a Generic Context Diagram, and a set of mapping and instantiation rules. The
Generic Navigation Schema generalizes the idea of viewing (or observations in the
terminology of [Gamma95]); it is similar to the Navigation Schema, except for the fact that
Node attributes may be optional (marked with an "*") and Relations (links) can be optional
(drawn with a dashed line), as shown in Figure 8. An optional attribute (respectively Link)
may or may not appear in an instantiated application. Notice that as the navigational model
will be often mapped into a non object-oriented implementation, we are not constrained to
“pure” notations, e.g. we can always specify optional features (attributes or links) by defining
appropriate class hierarchies, though in a less concise way. For the sake of simplicity we have
not included those sub-classes in Figure 8.

Order

Order_Date:date
Payment_Form:string
Client_Name: p.Name

where P:Person makes
self

Client_Address: p.Address
where p:Person makes
self

DuplicateOrder(order)*
MakeOrder(order)

Product

Name:string
Description: string
Image: photo *
Mfg: c.Name where

c:Company Makes self *
Author: p.Name where

p:Person IsAuthorOf self *
Keywords:{string}*
Price:real
Size:string
Section: {Section}
InPromotion:boolean *
Addit_Info:string*
DeliveryTime:string*

Product in Order

Qty:int

IncludeProd(order,
product,qty)

1

1..*

Generic Reference

Title:string
Author_Name:

p.Name where
P:Person
IsAuthorOf self

Text:string
Ref_Date:date

1..* Mentions *

1..* reference 1..*

Figure 8: Optional attributes and Links in the generic navigational schema

Sub-classing in the Generic Navigational Schema allows a more subtle way of
achieving genericity. In the example above, we may create a sub-class of Product and either
add an attribute or anchor or we may even need to specialize the view specification for a
particular attribute, as shown below.

Suppose for example that we have two sub-classes of Comment (as shown in the
generic conceptual schema of Figure 7); if we want to generalize the store to a Books and
CDs store (in the context of a framework for virtual stores), we may require that some of the
navigational Product sub-classes show comments from only one (conceptual) sub-type.
Accordingly, we show the specification of part of the abstract node class Product, and how we

specialize the definition of the attribute comments for Books. The Refine operator takes the
query in the corresponding super-class and replaces Comment with its sub-class
EditorialComment. We are thus indicating that books only show Editorial Comments.

Node Product from Product: P
...
comments: Array[Text] SELECT text FROM Comment: R WHERE P hasComment R
...

Node Book from Book:B
...
REFINE comments WITH EditorialComments

...

Generic Context Diagrams meanwhile represent another kind of hot-spot in Web
applications, showing in an abstract way which contexts and access structures may appear in a
particular domain. Notice that as navigational contexts are sets of nodes, defining generic
contexts is equivalent to specifying generic sets. Thus, achieving generictiy in a context
diagram is not straightforward with usual object-oriented abstraction mechanisms, i.e. though
context and indexes may be finally mapped into classes, expressing their variability may
require using complex diagrams. Instead, we preferred to generalize Context Diagrams and to
complement them with a generic context specification card providing a guide for the
implementer indicating possible restrictions

In Figure 9 we show a simplified generic Context Schema for our virtual store framework.
Dashed boxes and rounded boxes indicate generic access structures and contexts For example
the generic context “Product by Property” is a simple class derived context, which will be
typically instantiated into one or more contexts that allow navigation among products
according to certain properties (e.g., “Product by price”; “Product by author”; “Product by
Color”; etc…). Once within any of these, it is normally possible to navigate to other “Related
Products” (e.g., accessories, matching products, etc…). There are several access structures
that lead the reader into these contexts; typically, these are hierarchical access structures that
reflect product sections (departments) in a real world store. Notice that we have also specified
some Landmarks (like Shopping Card, Order Form and Search).

A second way to look at products is within arbitrary groupings obtained
opportunistically. Typically, these will correspond to some (normally well-known) person’s
(or publication) recommendations, or some guide, such as “N.Y. Times Bestsellers List”. This
grouping is modelled through the generic context “Products by Reference”.

Order

Product

By Property
 n

Related
 0

By Query
 0

By Reference
 0

In Order

Comment

By Product
 0

Similar Property

Generic Reference

Arbitrary
 0

…:Section Product

…:Generic
Reference

Order Form

Query

Main Menu

checkout

Shopping Cart

References

Categories

Search

In Shopping
Basket

Figure 9: Generic Context Schema for virtual stores.

Notice that the context diagram in Figure 3 is an instantiation of the generic diagram
in Figure 9, where the generic context “Product by Property” has been concretized into “CD
by Subject” and “CD by Author”. Generic Context Schemas show concisely different ways of
providing Set-based navigation in Web applications for a particular domain. When
complemented with the generic Conceptual and Navigation Schemas, they provide the model
for a family of Web applications in the intended domain. In this way we can get abstract and
reusable specifications of Web application models combining general navigation patterns
(like Sets and Landmark) with domain specifications.

7. Concluding Remarks and Further Work

We have discussed in this paper different abstraction and reuse mechanisms in the
context of Web applications. We have shown that even the most simple techniques like
composition and inheritance offer subtle combinations to the designer when dealing with non
trivial navigation models. In particular, the OOHDM viewing language can be used
synergistically with aggregation (and sub-classification) to produce compact and reusable
navigation designs. We have discussed reuse of design experience by briefly analyzing
navigation patterns. Although patterns provide design reuse at a fine granularity, we have
shown how to combine them to obtain larger reusable models. We have introduced Web
design frameworks, explaining how generic and reusable conceptual and navigational models
can be described using the OOHDM-Frame notation . Web design frameworks show how the
combination of patterns (like Set-Based Navigation, Landmark, Observer) may yield a generic
design for a family of applications in a particular domain.

Web design frameworks are difficult to design because they require a thorough study
of the application domain; design artifacts (both at the conceptual and navigational level)
must be described by using different abstraction and composition mechanisms. Both the
conceptual and the navigational model should be reusable in the context of new applications
in the intended domain. We are studying ways of reusing context diagrams by extending the
idea of specialization to contexts.

Even though the focus of this paper has been put on design, it is important to stress
that all primitives and mechanisms previously presented can be implemented using current
Web technologies [Schwabe00]; in addition, mapping design frameworks to “pure” object-

oriented settings is straightforward. We are mining Web patterns in specific domains such as
e-commerce, and studying ways to enrich the framework design notation with these new
patterns. Several implementation aspects should also still be studied, such as efficient ways to
implement views and contexts in Web applications.

We believe that the growing interest in Web applications requires ways to build easyly
extendable and reusable conceptual models. Web applications present novel features that need
to be considered in order to apply well-known abstraction and composition mechanisms to
this new field. The ideas underlying this paper may serve as the background for studying
abstraction and reuse in Web models.

8. References

[Alexander77] B. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and
S. Angel, “A Pattern Language,” Oxford University Press, New York 1977.

 [Fayad99] M. Fayad, D. Schmidt and R. Johnson (editors): “Building Application
Frameworks”, Wiley 1999.

[Gamma95] E. Gamma, R. Helm, R. Johnson and J. Vlissides: "Design Patterns. Elements
of reusable object-oriented software". Addison Wesley, 1995.

[Garzotto99] F. Garzotto, P. Paolini, D. Bolchini and S. Valenti: “Modelling by patterns of
Web applications”. Proceedings of WWWCM99, Lectures Notes in
Computer Science.

[HypPatterns99] Hypermedia Patterns repository: http://www.designpattern.lu.unisi.ch

[Johnson88] R. Johnson and B. Foote: “Designing reusable classes”. Journal of object-
oriented programming” 1(2), 22-35, 1988.

[Johnson94] R. Johnson and K. Beck. “Patterns generate architecture”. In Proceedings of
the European Conference on Object-Oriented Technology (ECOOP94).

[Kim90] W. Kim, "Advanced Database systems", ACM Press, 1994.

[Meyer94] Bertrand Meyer, “Reusable Software” - The base object-oriented component
libraries. Prentice Hall 1994.

[OOHDM00] Daniel Schwabe and Patricia Vilain: “The OOHDM notation”, available at
http://sol.info.unlp.edu.ar/notacaoOOHDM/

 [Pree94] W. Pree: “Design Patterns for object-oriented software”, Addison Wesley,
1994.

 [Rossi99a] G. Rossi, F. Lyardet and D. Schwabe: “Patterns for designing navigable
spaces”To appear in Pattern Languages of Programs 4, Addison Wesley,
1999.

[Rossi99b] G. Rossi, D. Schwabe, F. Lyardet: “Web application models are more than
conceptual models”. Proceedings of the First International Workshop on
Conceptual Modeling and the WWW, Paris, France, November 1999.

[Rossi00] G. Rossi, D. Schwabe, F. Lyardet: “Patterns for E-commerce applications”.
Submitted to EuroPLoP 2000, available at ...

 [Schwabe98] D. Schwabe, G. Rossi: “An object-oriented approach to web-based
application design”. Theory and Practice of Object Systems (TAPOS),
Special Issue on the Internet, v. 4#4, pp.207-225, October, 1998.

[Schwabe00] D. Schwabe, G. Rossi, L. Emeraldo, F. Lyardet: “Web Design Frameworks:
An approach to improve reuse in Web applications. Proceedings of the
WWW9 Web Engineering Workshop, Springer Verlag LNCS, forthcoming.

[UML97] UML Document Set. Version 1.013 January, 1997, Rational, 1997. (available
at http://www.rational.com/uml/references/index.html)

