
WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 5 PAGE 1

WeKnow TheObject

ObjectiveView

Objects, Components and eBusiness Development
for Software Professionals

 Plus:
 The RSI
 Approach To
 Use Case Analysis

Object
Design
Issues

e-Business
 Development

Published by

OO consultancy – training – tools – recruitment

see www.ratio.co.uk for back copies

Got questions about an article?
Join the ObjectiveView discussion

group – email:
objectiveview-subscribe@egroups.com

Further details on page 2

 Claude Monet 1840-1926 “The Thames at Westminster”

üü Components versus
Objects

üü Dynamic Object Model

üü Goldilocks and the
Three Software Processes

PAGE 2 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

ObjectiveView

The Object and Component Journal for Software Professionals

CCOONNTTEENNTTSS

Personal Views
Interview with Ivar Jacoson
by Adriano Comai

Object/Component Architecture
Components versus Object
by Clemens Szyperski

Requirements Engineering
The RSI Approach to Use Case Analysis
by Mark Collins-Cope

e-Business Development
Building e-Business Solutions
by Keiron McCammon

Object Design Issues
Dynamic Object Model
by Ralph Johnson

Software Process
Goldilocks and the Three
Software Processes
by Doug Rosenberg & Kendall Scott

8

17

24

IINN TTHHEE NNEEXXTT IISSSSUUEE OOFF OOVV……

ü Interview with Bertrand Meyer

ü John Daniels:
 “UML Components”

ü Alistair Cockburn:
“Use Case Analysis”

ü And lots more…

CCOONNTTAACCTTSS

Editor
Mark Collins-Cope
markcc@ratio.co.uk

Production editor
Karen Ouellette
karen@ratio.co.uk

Free subscription
email delivery:
objective.view@ratio.co.uk
(subject: subscribe)

hardcopy delivery:
objective.view.hardcopy@ratio.co.uk
(include full contact details)

Feedback / Comments / Article Submission
objective.view.editorial@ratio.co.uk
or join objectiveview@egroups.com

Circulation / Sponsorship Enquiries
objective.view.editorial@ratio.co.uk

30

31

36

We’d like to invite all ObjectiveView readers to join the recently introduced
objectiveview discussion group @ egroups.com.

This discussion forum was created as a tool to encourage communication between
ObjectiveView readers and authors, as well as between readers themselves.

Feel free to the email the list with questions about articles, as well as about object
and component technical issues of general interest.

JOIN NOW! 2 EASY WAYS:
Go to http://www.egroups.com/group/objectiveview and click on the

‘subscribe’ button

PAGE 3 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

Personal Views Series

Interview with Ivar Jacobson

Adriano Comai interviews Ivar Jacobson

[Adriano Comai]: Mr. Jacobson, you are widely
known as the inventor of the "Use Case" concept.
How was this concept born? Which were the
forces that brought you to work on this idea?

[Ivar Jacobson]: It evolved over many years. First
of all, I worked in telecommunications in my early
days, where exists the concept of "traffic cases".
The traffic case was like a use case, it was, in fact,
a telephone call. There were many different kinds
of telephone calls, many different kinds of traffic
cases. That was something I learned there. In that
time we had no cases for other things than
telephone calls. In that early time, I mean back in
1967, I had another term that was similar to use
case, and meant the same thing: we called them
"functions". A function crossed the whole system.
A telephone call was a function, but functions
were also more abstract things, and the term was
not really well defined. We used this approach,
"function-driven development", that is called now
"use-case-driven development". We identified the
functions, and then we designed the functions, like
we do with use cases today. So these ideas are
very old.

I identified the use case concept in 1986, and
when I had found that concept I knew I found
something that solved many problems for me,
because I could use this concept for everything
that systems did, and for every kind of system. It
helped me a lot to create a systematic
methodology.

[Adriano]: The Use Case concept is like a filter
that distinguishes between functions related to the
user and functions internal to the system…

[Ivar]: Yes, it discriminates lots of functions that
can not be use cases. It's much more specific. A
function could be anything, that's the problem.
Use cases cannot be anything.

[Adriano]: What are the roots, the ancestors to
the UC concept in the software engineering
literature?

[Ivar]: I don't know. Actually, I don't have
anything like that. I think the closest thing was this
idea of traffic cases.

But I want to make a point. It may be the truth that
I am most known for the use cases, but we had
component-based development in 1967, and use
cases were not there, so component-based
development is something I've been working in
my whole life. The other thing is architecture, I
mean really to identify an architecture before
doing everything else. We talked about software
architecture in 1968. We presented the software
architecture when we went out to our customers,
and I remember they had never heard about
anything like that. They taught about architecture
for hardware, but there was not an architecture for
software.

[Adriano]: The use case concept seems, today,
almost obvious, common sense...

[Ivar]: And I think it is.

[Adriano]: Yet it was marvellous to see how
quickly and broadly it was accepted by other
methodologists. How could this happen with so
few resistance?

[Ivar]: Most of the methodologists went into the
objects world, and there was a lot of competition.
However, the use case didn't compete with
anything, and it solved a problem that everyone
had. Even the concept of scenario was about
something internal to the system, about internal
interactions, but was not really specified.

One thing I did late was to publish. If you look
upon my 1987 paper for OOPSLA, there I had all
these things, but the problem I had was that I
could sell my book, the Objectory book, in 1990-
1991, for $25,000 a copy, so why should I go and
give it away to Addison-Wesley or any other
publisher, to then get $3 a copy, even if that was
selling many more? Now I understand that I
should have done it a little bit differently, but it's
very hard to say, you have to be at the right time.
So I think the other books helped us, because they
had a big problem, that was how to get from

PAGE 4 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

requirements to start an OO analysis and design.
But I refuse the idea that just the fact that people
publish their book, they were first with the idea:
they were older ideas.

[Adriano]: Use case specifications are mainly
textual (although they can be complemented with
UML diagrams). Previous methods (as Structured
Analysis, or Information Engineering) proposed
the use of diagrams as a "common language" to
reach an agreement between customers ("users")
and developers. What's behind this resurgence of
the role of text?

[Ivar]: In reality, today, customers of software
don't want to read diagrams. Use case diagrams
are so intuitive that everyone can read them. Text
is something people don't need to learn a special
language to use.

We can use activity diagrams to describe use
cases, and it's very nice, but there are two
problems with that. First, they become very
quickly very detailed, and it's not sure that they are
more understandable because they are detailed,
even if there is no doubt that at some point you
need to specify in more detail. But we think that
the best way to do that is in terms of the analysis
model, where you describe every use case as a
collaboration among objects, instead of trying to
detail the use case without talking about objects.
You can use activity diagrams, but activities can
be very abstract, so it's very hard to understand
them, you really need to understand what has to be
done, to understand the activities. So I'm very
careful in introducing a formalism in use cases. I
think that when you go to analysis you get a much
better formalism, a much better language to
express details, because you talk about objects.

[Adriano]: Maybe activity diagrams cannot
convey so much information as text …

[Ivar]: Yes, it's just a pragmatic thing, it's not a
holy cow. In some cases it is maybe good to use
activity diagrams, but I think I want to have a
warning there, because it's better to be detailed
when you have the right language to express
details. And I think that in analysis when we talk
about objects, and about collaborations between
objects, even if these objects are conceptual, and
not physical, implementation things, they are
much more concrete and much easier to
understand than just activities.

[Adriano]: What about the ambiguity of natural
language?

[Ivar]: Yes, it is ambiguous, but I think there is a
trade-off. … Language is understandable, it's ok to

use just English. On the other hand, in situations
when we have hard use cases, with a lot of
interactions, you may need to go further. But it's
better to view the analysis model as part of the
requirements. In the new Unified Process book
I've taken a little step in that direction, I view
analysis as a part of requirements, and one of the
things we get from analysis is the structure that we
would like to see in the design and in the
implementation, so we have some requirements on
the architecture that we create through analysis.

[Adriano]: Use cases have a double role in your
method. First, they are used to discover and to
validate requirements coming from customers and
users. Then, they drive the whole system
development. Is one of these roles more important
than the other?

[Ivar]: No, of course not. But many
methodologists and many software developers are
very technology-introvert. If the use case concept
wasn't so good in describing interactions, and
helping to define collaborations, they wouldn't
have bought into it. So it does work as a very good
sales argument to software developers: they would
never have been accepted as widely as they are, if
they hadn't this impact on the design, if they didn't
drive the development. For me, anyway, both
aspects are equally important, it's a very nice way
to find the requirements, and to capture
requirements in some kind of diagram, without
going into the internals of the system. They are
used to capture and to identify scenarios, and
describe relationships between these things.

[Adriano]: In your book, you speak about feature
list of requirements as a starting point to derive
use cases.

[Ivar]: The feature list is something that will be
translated to use cases, and the documentation will
describe the use cases, so the feature list will grow
and shrink, as you translate the requested features
into use cases.

[Adriano]: Some years ago, you applied the use
case concept, and other Objectory ideas, to the
business process reengineering area. How well
has been your proposal accepted by non-IT
people? Are use cases used in business
engineering so much as in the IT area?

[Ivar]: No, they are not, for several reasons.
Rational has selected to work primarily in
software, even if we understand completely the
importance to do business engineering. However,
we also know that the tools people need for
business engineering are easily described in terms
of tools for software engineering. If you have

PAGE 5 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

Rose for visual modeling, you can extend it, to
make it work for business engineering as well, but
not the other way round. We still need to have a
good tool for visual modeling of software. We
have been working on Business Engineering, but
we have done it locally, in Scandinavia, and we
have in Sweden a Service Package from Rational,
called Rational Business Engineering, with a
specialization of Rose and detailed process
descriptions.

Anyway, the customer base for software
engineering is much larger. People who want to do
business modeling are typically people who
understand software, and who understand they
need more. It's very sad that people from business
engineering, like Hammer, didn't think about
modeling so much, so the stream of people that
come from that part is much fewer, most people
come to business modeling from the software
world. It's a much smaller business, but we have
customers with hundreds of licences of Rose for
Business Engineering, for example in one telecom
company and in the Swedish pension system.

[Adriano]: Did you have any contact with people
like Hammer or Champy about your business
modeling proposal?

[Ivar]: No, I read their books, of course, and, we
have been doing business engineering for many
years, but when I read the books I said: "oh, here
we have a guy who presents a problem, and he
gives a sketch, an outline of the solution, but he
cannot model it, and if you don't model it you
don't understand it". Anyway, I feel that Hammer
work and our work were very tightly related.

Another important idea is one-to-one marketing.
One of the people that worked for me at Objectory
is now working on it, and she thinks that our
approach is perfect for it. This is an area in which
I'm thinking to do more work in the future. I
always work in the long term, on what happens
five years from now and so on, and there are two
areas in which I will work in the near future, one
is business engineering, and how that is impacted
by the new world, the internet world, and the other
thing is software development in the context of the
web, applications for the web. Even if the web
changes everything, and it changes basically
everything we do in business, the way we develop
software for the web doesn't change very much.
It's basically the same thing, but there is one thing
that is different, and that's the user interface. The
user interface design is very important.

[Adriano]: I saw you quote from Larry
Constantine in your last book about this issue. Do
you like his approach?

[Ivar]: Very much. His last book is a very good
one. The only problem I have with it is that,
instead of using the UML, he uses his own
notation which is much weaker, not so well
defined, and he has a different approach to what a
model is, but there are lots of good things in that
book. I like it a lot, it's the best book I've seen in 3
years in software.

[Adriano]: Is it more difficult to persuade IT- or
non IT-people of the importance to do business
modeling as a starting point for a new project or
for the evolution of an existing system?

[Ivar]: The problem is that we don't have the time.
Time-to-market is today… it's more important that
you get something out than that it's a good thing,
and that means that these approaches must be very
tightly integrated. IT people know that to do
business models takes 6 months, 12 months, and
when they start to build the software, the business
has changed. What's unique about our approach is
that business modeling is part of the process, so if
you have a software that takes 6 months to
develop, than you do business engineering for 6
months. I can understand that people hesitate to do
business modeling: if we think quality is not so
important in order to get it out, then we will
always have problems with any structured
approach to develop software. But with iterative
development we get something out according to
the plan, and I think that will help people to
understand the need for business modeling,
continuously, during all the time.

[Adriano]: The UML was a collective creation.
And so the Unified Process. But in the latter, your
own contribution is clearer, more apparent. UP
roots are more in the Objectory / OOSE ground
than in the Booch method or in OMT. Does this
reflect a sort of "division of labor" among the
Amigos?

[Ivar]: I don't think that we have divided on
purpose. Some people are experts on everything,
and it's hard to see that anyone of us three would
agree that there is an area in which we don't have
any expertise. Honestly, I think there is no
division of work. It's a fact that we started from
Objectory, when developing the Rational Unified
Process, and from there we have evolved. And of
course, you cannot move from object modeling,
just object modeling. There is not a simple way to
go from approaches like OMT, or Booch, to do
what we did in Objectory. So it is easier to go the
other way round, thinking about use cases and
then you have objects and classes and subsystems
to design.

PAGE 6 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

[Adriano]: Booch and Rumbaugh moved from
software, while you moved from customers and
users…

[Ivar]: Yes, but there is also another aspect.
Components are what we have to start with. I
actually started with components. In 1967, when I
was introducing this approach at Ericsson, the
main objection I had from developers was that
these components, that we developed, were not
easily related to the "functions", or the "use
cases". If you take the use case, the use case
crosses many components: that was an objection.
They were thinking in terms of "one function, one
module".

Whereas I was saying, well, that's not ok. Most of
one function, or one use case, will be implemented
by one component; but then the other components
will play a role in that use case. So that was one of
the objections. And I said: that's exactly this
objection that I will turn into something positive:
this is exactly what you need, you need to have
that complexity, because that's how it is. So the
outside world talks about use cases, but inside use
cases cross these components - subsystems.

Just having objects and components, and don't
care about things that cross them, is a smaller
problem. One of the difficult things is to make use
case realizations, and to manage dependencies
between subsystems, and that's much harder.
Thinking just upon objects is a much smaller
problem, it's a sub-problem.

No, I don't think there is any conscious decision
on dividing work - we think that the UML was a
big task, and we had to work together to get it
done. Now we are working on different things; we
just don't think it's meaningful to work together on
everything.

[Adriano]: Do you expect for the Unified Process
a success and an impact on the IT industry,
analogous to that of the UML?

[Ivar]: Yes, absolutely yes, and we have very good
reasons to believe that. We are making inroads
into many corporations today, and it's our goal to
get there. We don't think it would be an easy thing
to make the Unified Process a standard, it would
be so much hard work and so much opposition, so
we'd rather do it in small steps. Instead of going
and forcing people through a standard, let people
convince themselves. And I think that everyone
that looks at the Rational Unified Process will
become convinced this is the way they've got to do
it, as soon as they have started to look at it. There
is nothing even close to it. Many people tried to
say that there is, but what is that they have? They

have something that can be compared with my
book, but they don't have anything that can be
compared with our process. If you just look upon
it in terms of substance, and depth, and
experience, and so on, and if you compare … How
old is Approach A, or Approach B? Do we know
that it works, for large projects? We know that our
works. It's really very different.

[Adriano]: How much of Objectory is left in the
Unified Process?

[Ivar]: If you look just upon the basic ideas, we
basically only covered requirements, analysis and
design in Objectory. If you look upon these things,
what was in Objectory in the old days is still there.
But there's a lot of new stuff that has been added.
We had very little about implementation, very
little about testing, nothing about configuration
management and version control, nothing about
project management. Iterative development was
primarily something we recommended, but it was
not enforced by the process, we didn't really tell
about the differences among the various iterations,
so I think the core ideas are still there, but there
are lots of other things that have been added. The
Rational Unified Process is really a teamwork, we
have a lot of people that have been involved.
Whereas the Objectory Process was primarily my
ideas, my work that we implemented. But, given
the smaller resources we had, it was quit a lot.
[Adriano]: You present every iteration like a mini-
waterfall …

[Ivar]: Yes, we think of it as a mini-waterfall, but
we have a lot of parallelism. Within the waterfall,
the people who develop subsystems work
concurrently on their subsystems. So people who
work on use cases rather independently talk to one
another so they don't invent new things and so
they reuse the same components, but they work
concurrently on subsystems during an iteration.
But that is still waterfall, because you always start
with requirements, then you go through analysis,
and then through design activities.

[Adriano]: You come from Sweden. Do you feel
there is a European specificity in system and
software engineering? Maybe more concern, more
care about organizational issues than in the US?

[Ivar]: I have not been able to find any systematic
difference, because I found people in the US very
interested in starting with the business, in
understanding the business, before they develop
the software, and in Europe too. There is no
systematic difference. It would be more funny…
There has been a lot of research, in Europe, in
areas that are more at an abstract level, and less in
the concrete, physical world, but I must say that a

PAGE 7 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

lot of research has been done, and with useful
results, both in the US and in Europe - and also a
lot of work done that never led to anything.

[Adriano]: Now the greatest part of the "unifying"
effort is done. Are you going to rest, and capitalize
on it, or are you moving forward to other areas of
interest? What next?

[Ivar]: There is one part of me that says: I want to
go ahead, and look for what needs to be done, to
create a much better world, and we have a lot of
things to do. In a way, UML is a standard, and
that's wonderful. But it doesn't mean that these are
new ideas, we just got them consolidated. In the
last years, I don't think I've done anything really
new, I pushed the adoption process more than the
creation process. Now a part of me wants to take a
next step. What is beyond the Unified Process?
What is beyond UML? I think it is still an
evolution, not a revolution, but there are some
important steps that need to happen in software, to
get up to the level of extremely high quality which
we need to develop the systems we will want to
develop in the 2020, or something like that. These
are much larger systems than we can think of
today, and more complex, and we need to be able
to develop these systems. We need a much better
infrastructure than we have today, in terms of
operating systems, programming languages, UML
integrated with programming languages, maybe

part of the UML will be a programming language,
with action language semantics and so on. That's
one thing I'm constantly thinking of.

The other thing is to capitalize on business
engineering. There is something really interesting
to get done, there. The Rational Unified Process is
very well prepared for the Web. Many of the
companies who develop websites are using the
Rational Unified Process today, specializing it a
little bit, so it fits for their special purposes, but it's
the same process. I would like to see that we
extend and make the right decisions to make the
required model improvements, in the Rational
Unified Process, changes that make it clearly,
without any doubt, "the" process for web sites
applications design.

I'm also going to write a revision of my book "The
Object Advantage" for the end of this year. The
Internet, and ideas like one-to-one marketing, will
have a lot of impact on this revision. We need to
make the book more approachable for business
people, and not only for software people. We will
show how to use it in the context of business, not
only in the context of software. The basic ideas are
already there, it works very well, customers are
happy, but today we need to take that through the
barrier of IT, solving the problem existing with the
acceptance of technical notation. Activity
diagrams are very useful for business modeling.

Adriano Comai is an Italian methodologist. This interview is also published at

http://www.analisi-disegno.com and in the October 1999 issue of the Italian magazine ZeroUno.

P U B L I C S C H E D U L E C O U R S E

We Know the Object of…

XML for Software Developers
A Four-Day Hands-On Course

13 – 17 November 2000, London (UK)

This course will give you a sound theoretical understanding of XML and its related specifications,
while providing practical experience in implementing and applying XML within applications. It
covers a range of tools, technologies and approaches essential for managing the data interchange

requirements of a distributed computer environment.

For more information on this course, contact Ratio on +44 (0)20 8579 7900
or by email at bookings@ratio.co.uk

Please note: class size is limited, so book early!

This course is also offered as a private in-house course.

PAGE 8 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

Object/Component Architecture Series

Components versus Objects

Clemens Szyperski, author of ‘Component Software’, discusses the
similarities and differences of objects and components…

Introduction

Components are on the upswing, while objects
have been around for a while. It’s understandable
but not helpful to see object-oriented
programming sold in new clothes by simply
calling objects “components.” The emerging
component-based approaches and tools combine
objects and components in ways that show they
are separate concepts. In this article, I will
examine some key differences between objects
and components to clarify these muddy waters. In
particular, you’ll see that approaches based on
visual assembly tools really assemble objects, not
components, but create components when saving
the finished assembly.

Why Components?

What is the rationale behind component software?
Or rather, what is it that components should be?
Traditionally, closed solutions with proprietary
interfaces addressed most customers’ needs.
Heavyweights such as operating systems and
database engines are among the few examples of
components that have reached high levels of
maturity. Large software systems manufacturers
often configure delivered solutions by combining
modules in a client-specific way. However, the
interfaces between such modules tend to be
proprietary—at most, open to highly specialized
independent software vendors (ISVs) that
specifically produce further modules for such
systems. In many cases, these modules are fused
together during a linking step and are no longer
distinguishable in deployed solutions.

Attempts to create low-level connection standards
or wiring standards are either product- or
standard-driven. The Microsoft standards, resting
on COM and now the .NET Framework common
language runtime (CLR), have always been
product-driven and are thus incremental,
evolutionary, and to a degree legacy-laden by
nature.

Standard-driven approaches usually originate in
industry consortia. The prime example here is the
Object Management Group (OMG)’s effort.
However, OMG hasn’t contributed much in the
component world and is now falling back on

JavaSoft’s Enterprise JavaBeans standards for
components, although attempting a CORBA
Beans generalization: the CORBA Component
Model (CCM). The JavaBeans standard still has a
way to go; so far it is not implementation
language-neutral and bridging standards to Java
external services and components are only
emerging.

At first, it might surprise you that component
software is largely pushed by desktop- and
Internet-based solutions. On second thought, this
should not surprise you at all. Component
software is a complex technology to master—and
viable, component-based solutions will only
evolve if the benefits are clear. Traditional
enterprise computing has many benefits, but they
all depend on enterprises that are willing to evolve
substantially.

In the desktop and Internet worlds, the situation is
different. Centralized control over what
information is processed when and where is not an
option in these worlds. Instead, contents (such as
web pages or documents) arrive at a user’s
machine and need to be processed there and then.
With a rapidly exploding variety of content
types—and open coding standards such as XML—
monolithic applications have long reached their
limits. Beyond the flexibility of component
software is its capability to dynamically grow to
address changing needs.

What a Component Is and Is Not

The separate existence and mobility of
components, as shown by Java applets or ActiveX
components, can make components look similar to
objects. Indeed, people often use the words
“component” and “object” interchangeably.
Objects are said to be instances of classes or
clones of prototype objects. Objects and
components both make their services available
through interfaces. Language designers add more
confusion by discussing namespaces, modules,
packages, and so on. I will try to unfold, explain,
and justify these terms. Next, I’ll browse the key
terms with brief explanations, relating them to
each other. Based on this, I’ll look at a refined
component definition. Finally, I’ll shed some light
on the fine line between component-based
programming and component assembly.

PAGE 9 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

Terms and Concepts

Components. A component’s characteristic
properties are that it is a unit of independent
deployment; it is a unit of third-party composition;
and it has no observable state.

These properties have several implications. For a
component to be independently deployable, it needs
to be separated from its environment and from other
components. A component therefore encapsulates its
constituent features. Also, since a component is a
unit of deployment, you never partially deploy it.

If a third party needs to compose a component with
other components, the component must be self-
contained. (A third party is one that you cannot
expect to access the construction details of all the
components involved.) Also, the component needs
to come with clear specifications of what it provides
and what it requires. In other words, a component
needs to encapsulate its implementation and interact
with its environment through well-defined interfaces
and platform assumptions only. It’s also generally
useful to minimize hard-wired dependencies in
favor of externally configurable providers.

Finally, you cannot distinguish a component without
any observable state from copies of its own. (State
that isn’t observable, such as serial numbers used for
accounting or caches, is permissible.) A component
can be loaded into and activated in a particular
system. However, in any given process, there will be
at most one copy of a particular component—
multiple copies would not provide any additional
value. So, while it is useful to ask whether a
particular component is available or not, you don’t
need to ask about the number of copies of that
component. (Note that a component may
simultaneously exist in different versions. However,
these are not copies of a component, but rather
related components.)

In many current approaches, components are
heavyweights. For example, a database server could
be a component. If there is only one database
maintained by this class of server, then it is easy to
confuse the instance with the concept. For example,
you might see the database server together with the
database as a component with persistent state.
According to the definition described previously,
this instance of the database concept is not a
component. Instead, the static database server
program is and it supports a single instance: the
database object. This separation of the immutable
plan from the mutable instances is key to avoid
massive maintenance problems. If components
could be mutable, that is, have observable state, then
no two installations of the same component would
have the same properties. The differentiation of
components and objects is thus fundamentally about
differentiating between static properties that hold for

Components are Binary Units
In this article the general point is made that a software
component needs to be a unit of deployment—or, to be
more precise, a unit of potentially separate deployment.
Any software that is ready for deployment needs to be
in binary form. While I have made this point many
times, confusion seems to prevail as to what it is that I
mean when I say “binary.”

For example, Bertrand Meyer, in our ongoing exchange
published as part of the Beyond Objects column in
Software Development Magazine
(www.sdmagazine.com), expressed that he finds the
qualifications “source” and “binary” confusing,
pointing out that in the “good old days (a long, long
time ago—1992, perhaps) ‘source’ meant something
like C or Pascal, and ‘binary’ meant code for some
processor.” Well, in the really old days, Fortran source,
once completed and packaged into libraries, would be
shipped as binary components. These components
consisted of a deck of punched cards encoding the
source (!) of the Fortran code. Job Control Language
(JCL) statements on leading cards would instruct the
loader of the machine to first compile the cards. (Yes,
nothing is new on the face of the earth…) In this case,
the deck of cards, used as a software component, is in
“binary form”—ready to be used by an automatic
execution environment. The Fortran source is included
verbatim in the deck, but the leading JCL commands
provide the necessary closure to allow load-time
compilation.

So, a binary unit’s main characteristic is that it can be
used directly by the execution environment that the
unit targets, whether the unit is a component or not. If
the target environment contains an interpreter or
compiler, then a binary unit can look very much like
source code. However, true source code serves a
different purpose: It is written by programmers to be
read by both programmers and tools, with an intention
to build things. Almost always, source code units are
not self-contained. For example, they textually include
files from locations specified using file system paths,
contain references to build-time variables (conditional
compilation), do not contain explicit specifications of
what build-tools they require and so on. In fact, source-
code unit are quite regularly unusable outside of their
delicate build environment. It's true that source code
fragility depends on the language and development
environment. For example, XML, in combination with
XML namespaces, can be seen as a world of “source”
that can be directly used as a “binary” as well. The
same is true for many scripting languages. However,
the fact that the same form can serve both purposes,
that of source and that of binary unit, is not a reason to
go soft on distinguishing between the two.

To summarize: a unit is a binary if it targets an
execution environment; whether the form of that unit is
human-readable and whether it is textual or machine
code is irrelevant. A unit is a source if it targets human
readers as well as development tools. The choice of
ahead-of-time, just-in-time, or continuous online
compilation or interpretation is one of execution
technology that is unrelated to these terms.

PAGE 10 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

a particular configuration and dynamic properties of
any particular computational scenario. Drawing this
line carefully is essential to curbing manageability,
configurability, and version control problems.

Objects. The notions of instantiation, identity, and
encapsulation lead to the notion of objects. In
contrast to the properties characterizing components,
an object’s characteristic properties are that it is a
unit of instantiation (it has a unique identity); it has
state that can be persistent; and it encapsulates its
state and behavior.

Again, several object properties follow directly.
Since an object is a unit of instantiation, it cannot be
partially instantiated. Since an object has individual
state, it also needs a unique identity so you can
identify it, despite state changes, for the object’s
lifetime. Consider the apocryphal story about George
Washington’s axe, which had five new handles and
four new axe-heads—but was still George
Washington’s axe. This is typical of objects: nothing
but their abstract identity remains stable over time.

Since objects get instantiated, you need a
construction plan that describes the new object’s
state space, initial state, and behavior before the
object can exist. Such a plan may be explicitly
available and is then called a class. Alternatively, it
may be implicitly available in the form of an object
that already exists, that is close to the object to be
created, and can be cloned. You’ll call such a
preexisting object a prototype object.

Whether using classes or prototype objects, the
newly instantiated object needs to be set to an initial
state. The initial state needs to be a valid state of the
constructed object, but it may also depend on
parameters specified by the client asking for the new
object. The code that is required to control object
creation and initialization could be a static
procedure, usually called a constructor.
Alternatively, it can be an object of its own, usually
called an object factory, or factory for short.

Whitebox vs. Blackbox Abstractions
and Reuse

Blackbox vs. whitebox abstraction refers to the
visibility of an implementation behind its interface.
Ideally, a blackbox’s clients don’t know any details
beyond the interface and its specification. For a
whitebox, the interface may still enforce encapsulation
and limit what clients can do (although implementation
inheritance allows for substantial interference).
However, the whitebox implementation is available
and you can study it to better understand what the box
does. (Some authors further distinguish between
whiteboxes and glassboxes, where a whitebox lets you
manipulate the implementation, while a glassbox
merely lets you study the implementation.)

Blackbox reuse refers to reusing an implementation
without relying on anything but its interface and
specification. For example, typical application-
programming interfaces (APIs) reveal no implemen-
tation details. Building on such an API is thus blackbox
reuse of the API’s implementation. In contrast,
whitebox reuse refers to using a software fragment,
through its interfaces, while relying on the
understanding you gained from studying the actual
implementation. Most class libraries and application
frameworks are delivered in source form and
application developers study a class implementation to
understand what a subclass can or must do.

There are serious problems with whitebox reuse across
components, since whitebox reuse renders it unlikely
that the reused software can be replaced by a new
release. Such a replacement will likely break some of
the reusing clients, as these depend on implementation
details that may have changed in the new release.

Urgent Requirement for a customer-facing Technical Representative (OO)
South of England, - £60,000 plus major benefits and stock options.

Responsibilities:

Pre-sales: product demonstrations, customer evaluations, customer liaison.

Post-sales: product training, customising products, consultancy/mentoring

Skills/Experience:
Degree in IT related discipline, Software development background, UML, Requirements

Management, Iterative Software Development, Business Modelling, Component based development,
CASE tools, awareness of current trends and techniques in IT, Team Player, good communicator.

For more details or to submit your CV please contact: jobs@ratio.co.uk or call 020 8579 7900.

PAGE 11 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

Figure 1. Components are the deployable static units that, when activated, can create
interacting objects to capture the dynamic nature of a computation.

Object References and
Persistent Objects

The object’s identity is usually captured by an
object reference. Most programming languages do
not explicitly support object references; language-
level references hold unique references of objects
(usually their addresses in memory), but there is
no direct high-level support to manipulate the
reference as such. (Languages like C provide low-
level address manipulation facilities.)
Distinguishing between an object—an identity,
state, and implementing class—and an object
reference (just the identity) is important when
considering persistence. As I’ll describe later,
almost all so-called persistence schemes just
preserve an object’s state and class, but not its
absolute identity. An exception is CORBA, which
defines Interoperable Object References (IORs) as
stable entities (which are really objects). Storing
an IOR makes the pure object identity persist.

Components and Objects

Typically, a component comes to life through
objects and therefore would normally contain one
or more classes or immutable prototype objects. In
addition, it might contain a set of immutable
objects that capture default initial state and other
component resources. However, there is no need
for a component to contain only classes or any
classes at all. A component could contain
traditional procedures; or it may be realized in its
entirety using a functional programming approach,
an assembly language, or any other approach.
Objects created in a component, or references to
such objects, can become visible to the
component’s clients, usually other components (or

objects in other components). If only objects
become visible to clients, there is no way to tell
whether a component is pure object-oriented
inside, or not.

A component may contain multiple classes, but a
class is necessarily confined to a single
component, since partial deployment of a class
wouldn’t normally make sense. Just as classes can
depend on other classes (inheritance), components
can depend on other components (import). The
superclasses of a class do not necessarily need to
reside in the same component as the class. Where
a class has a superclass in another component, the
inheritance relation crosses component
boundaries. Whether or not inheritance across
components is a good thing is the focus of heated
debate (most likely it is not). The theoretical
reasoning behind this clash is interesting and close
to the essence of component orientation, but it’s
beyond the scope of this article.

Modules

Components are rather close to modules, as
introduced by modular languages in the early
1980s. The most popular modular languages are
Modula-2 and Ada. In Ada, modules are called
packages, but the concepts are almost identical.
An important hallmark of modular approaches is
the support of separate compilation, including the
ability to properly type-check across module
boundaries.

With the introduction of the Eiffel language, the
claim was that a class is a better module. This
seemed justified based on the early ideas that
modules would each implement one abstract data
type (ADT). After all, you can look at a class as
implementing an ADT, with the additional

PAGE 12 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

properties of inheritance and polymorphism.
However, modules can be used, and always have
been used, to package multiple entities, such as
ADTs or classes, into one unit. Also, modules do
not have a concept of instantiation, while classes
do. (In module-less languages, this leads to the
construction of static classes that essentially serve
as simple modules.)

Recent language designs, such as Oberon,
Modula-3, Component Pascal, and now C#, keep
modules and classes separate. (In Java, a package
is somewhat weaker than a module and mostly
serves namespace control purposes.) In these
languages, a module can contain multiple classes
and, where classes inherit from each other, they
can do so across module boundaries. You can see
modules as minimal components. Even modules
that do not contain any classes can function as
components.

Nevertheless, module concepts don’t normally
support one aspect of full-fledged components.
For one, there are no persistent immutable
resources that come with a module, beyond what
has been hardwired as constants in the code.
Resources parameterize a component. Replacing
these resources lets you version a component
without needing to recompile; for example,
localization. Modification of resources may look
like a form of a mutable component state. Since
components are not supposed to modify their own
resources (or their code), this distinction remains
useful: resources fall into the same category as the
compiled code that forms part of a component. A
second aspect of components that is not usually
associated with modules is the configurability of
dependencies.

Component technology unavoidably leads to
modular solutions. The software engineering
benefits can thus justify initial investment into
component technology, even if you don’t foresee
component markets.

It is possible to go beyond the technical level of
reducing components to better modules. To do so,
it is helpful to define components differently.

A Definition: Component

“A software component is a unit of composition
with contractually specified interfaces and explicit
context dependencies only. A software component
can be deployed independently and is subject to
composition by third parties.” (Workshop on
Component-Oriented Programming at ECOOP
1996.)

This definition covers the characteristic properties
of components I’ve discussed. It covers technical
aspects such as independence, contractual
interfaces, and composition, and also market-
related aspects such as third parties and
deployment. It is the unique property of
components, not only of software components, to
combine technical and market aspects. A purely
technical interpretation of this view maps this
component concept back to that of modules, as
illustrated in the following.

• A component is a set of simultaneously
deployed atomic components. An atomic
component is a module plus a set of
resources.

Figure 2. Components contain immutable code and data, typically called modules and resources. Classes
can be found inside modules; serialized prototype objects inside resources. The entire structure of a

component is immutable and thus suitable for deployment across physically separated systems
(by means of replication).

PAGE 13 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

This distinction of components and atomic
components caters to the fact that most atomic
components are not deployed individually,
although they could be. Instead, atomic
components normally belong to a set of
components, and a typical deployment will cover
the entire set.

Atomic components are the elementary units of
deployment, versioning and replacement; although
it’s not usually done, individual deployment is
possible. A module is thus an atomic component
with no separate resources. (Java packages are not
modules, but the atomic units of deployment in
Java are class files. A single package is compiled
into many class files—one per class. In
Microsoft’s .NET Framework, the unit of
deployment is an assembly; also a package
containing classes and resources, but based on
multiple languages.)

• A module is a set of classes and possibly non-
object-oriented constructs, such as procedures
or functions.

Modules may statically require the presence of
other modules in order to work. Hence, you can
only deploy a module if all the modules it depends
on are available. The dependency graph must be
acyclic or else a group of modules in a cyclic
dependency relation would always require
simultaneous deployment, violating the defining
property of modules.

• A resource is a frozen collection of typed
items.

The resource concept could include code resources
to subsume modules. The point is that there are
resources besides the ones generated by a
compiler compiling a module or package. In a
pure objects approach, resources are serialized
immutable objects. They’re immutable because
components have no persistent identity. Duplicates
cannot be distinguished.

Interfaces

A component’s interfaces define its access points.
These points let a component’s clients, usually
components themselves, access the component’s
services. Normally, a component has multiple
interfaces corresponding to different access points.
Each access point may provide a different service,
catering to different client needs. It’s important to
emphasize the interface specifications’ contractual
nature. Since the component and its clients are
developed in mutual ignorance, the standardized
contract must form a common ground for
successful interaction. What nontechnical aspects

do contractual interfaces need to obey to be
successful?

First, keep the economy of scale in mind. Some of
a component’s services may be less popular than
others, but if none are popular and the particular
combination of offered services is not either, the
component has no market. In such a case, the
overhead cost of casting a particular solution into
a component form may not be justified.

Notice, however, that individual adaptations of
component systems can lead to developing
components that have no market. In this situation,
component system extensions should build on
what the system provides, and the easiest way of
achieving this may be to develop the extension in
component form. In this case, the economic
argument applies indirectly: while the extending
component itself is not viable, the resulting
combination with the extended component system
is.

Second, you must avoid undue market
fragmentation, as it threatens the viability of
components. You must also minimize redundant
introductions of similar interfaces. In a market
economy, such a minimization is usually the result
of either early standardization efforts in a market
segment, or the result of fierce eliminating
competition. In the former case, the danger is
suboptimality due to committee design; in the
latter case it is suboptimality due to the
nontechnical nature of market forces.

Third, to maximize the reach of an interface
specification, and of components implementing
this interface, you need common media to
publicize and advertise interfaces and components.
If nothing else, this requires a small number of
widely accepted unique naming schemes. Just as
ISBN (International Standard Book Number) is a
worldwide and unique naming scheme to identify
any published book, developers need a similar
scheme to refer abstractly to interfaces by name.
Like an ISBN, a component identifier is not
required to carry any meaning. An ISBN consists
of a country code, a publisher code, a publisher-
assigned serial number, and a checking digit.
While it reveals the book’s publisher, it does not
code the book’s contents. The book title may hint
the meaning, but it’s not guaranteed to be unique.

Explicit Context Dependencies

Besides specifying provided interfaces, the
previous definition of components also requires
components to specify their needs. That is, the
definition requires specification of what the
deployment environment will need to provide,
such that the components can function. These

PAGE 14 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

needs are called context dependencies, referring to
the context of composition and deployment. If
there were only one software component world, it
would suffice to enumerate required interfaces of
other components to specify all context
dependencies. For example, a mail-merge
component would specify that it needs a file
system interface. Note that with today’s
components even this list of required interfaces is
not normally available. The emphasis is usually
just on provided interfaces.

In reality, there are several component worlds that
coexist, compete, and conflict with each other.
Currently there are at least three major worlds
emerging, based on OMG’s CORBA, Sun’s Java,
and Microsoft’s COM and .NET. In addition, the
various computing and networking platforms
cause fragmentation of the component worlds.
This is not likely to change soon. Just as the
markets have so far tolerated a surprising
multitude of operating systems, there will be room
for multiple component worlds. Where multiple
such worlds share markets, a component’s
context-dependencies specification must include
its required interfaces and the component world
(or worlds) it has been prepared for.

There will, of course, also be secondary markets
for cross-component-world integration. In
analogy, consider the thriving market for power-
plug adapters for electrical devices. Thus, bridging
solutions, such as the OMG COM-CORBA
Interworking standard or SOAP (Standard Object
Access Protocol) mitigate chasms.

Component Weight

Obviously, a component is most useful if it offers
the right set of interfaces and has no restricting
context dependencies; that is, if it can perform in
all component worlds and requires no further
interface. However, few components, if any, could
perform under such weak environmental
guarantees. Technically, a component could come
with all required software bundled in, but that
would defeat the purpose of using components in
the first place. Note that part of the environmental
requirements is the machine the component can
execute on. In the case of a virtual machine, such
as the Java Virtual Machine, this is a
straightforward specification. More generally, this
is true for portable intermediate formats, such as
that of Microsoft .NET assemblies. On native code
platforms, a mechanism such as Apple’s fat
binaries, which packs multiple binaries into one
file, would still let a component run everywhere.

Instead of constructing a self-sufficient component
with everything built in, a component designer
may have opted for maximal reuse. Although

maximizing reuse has many oft-cited advantages,
it has one substantial disadvantage: the explosion
of context dependencies. If component designs
were frozen after release, and if all deployment
environments were the same, this would not pose
a problem. However, as components evolve and
different environments provide different
configurations and version mixes, it becomes a
showstopper to have a large number of context
dependencies. Maximizing reuse minimizes use.
In practice, component designers have to strive for
a balance.

Component-Based Programming
vs. Component Assembly

Component technology is sometimes used as a
synonym for visual assembly of pre-fabricated
components. Indeed, for relatively simple
applications, “wiring” components is surprisingly
productive—for example, JavaSoft’s BeanBox lets
a user connect beans visually and displays such
connections as pieces of pipework: plumbing
instead of programming.

It is useful to take a look behind the scenes. When
wiring or “plumbing” components, the visual
assembly tool registers event listeners with event
sources. For example, if the assembly of a button
and a text field should clear the text field
whenever the button is pressed, then the button is
the event source of the event “button pressed” and
the text field is listening for this event. While
details are of no importance here, it is clear that
this assembly process is not primarily about
components. The button and the text field are
instances, that is, objects not components. (When
adding the first object of a kind, an assembly tool
may need to locate an appropriate component.)

However, there is a problem with this analysis. If
the assembled objects are saved and distributed as
a new component, how can this be explained? The
key here is to realize that it is not the graph of
particular assembled objects that is saved. Instead,
the saved information suffices to generate a new
graph of objects that happens to have the same
topology (and, to a degree, the same state) as the
originally assembled graph of objects. However,
the newly generated graph and the original graph
will not share common objects: the object
identities are all different.

You should then view the stored graph as
persistent state but not as persistent objects.
Therefore, what seems to be assembly at the
instance rather than the class level—and thus
fundamentally different—becomes a matter of
convenience. In fact, there is no difference in
outcome between this approach of assembling a
component out of subcomponents and a traditional

PAGE 15 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

programmatic implementation that “hard codes”
the assembly. Indeed, visual assembly tools are
free to not save object graphs, but to generate code
that when executed creates the required objects
and establishes their interconnections. The main
difference is the degree of flexibility left in theory.
You can easily modify the saved object graph at
run time of the deployed component, while the
generated code would be harder to modify. This
line is much finer than it may seem—the real
question is whether components with self-
modifying code are desirable. Usually they are
not, since the resulting management problems
immediately outweigh the possible advantages of
flexibility.

It is interesting that persistent objects, in the
precise sense of the word, are only supported in
two contexts: object-oriented databases, still
restricted to a small niche of the database market,
and CORBA-based objects. In these approaches,
object identity is preserved when storing objects.
However, for the same reason, you can not use
these approaches when you intend to save state
and topology but not identity. You would need an
expensive deep copy of the saved graph to
effectively undo the initial effort of saving the
universal identities of the involved objects.

On the other hand, neither of the two primary
component approaches, COM and JavaBeans,
immediately supports persistent objects. Instead,
they only emphasize saving the state and topology
of a graph of objects. The Java terminology is
object serialization. While object graph
serialization would be more precise, this is better
than the COM use of the term persistence in a
context where object identity is not preserved.
Indeed, saving and loading again an object graph
using object serialization (or COM’s persistence
mechanisms) is equivalent to a deep copy of the
object graph. (Many object-oriented systems use
this equivalence to implement deep copying.)

While it might seem like a major disadvantage of
these approaches compared against CORBA, note
that persistent identity is a heavyweight concept
that you can always add where needed. For
example, COM supports a standard mechanism
called monikers, objects that resolve to other
objects. You can use a moniker to carry a stable
unique id (a surrogate) and the information needed
to locate that particular instance. The resulting
construct is about as heavyweight as the standard
CORBA Object References, but far more flexible,
since new moniker classes can be added anytime.
Java does not yet offer a standard like COM
monikers, but you could add one easily.

Component Objects

Components carry instances that act at run-time as
prescribed by their generating component. In the
simplest case, a component is simply a class and
the carried instances are objects of that class.
However, most components (whether COM,
.NET, or JavaBeans) will consist of many classes.
A single class externally represents a Java bean;
thus, a single kind of object represents all possible
instantiations or uses of that component. A COM
component (or a .NET assembly) is more flexible.
It can present itself to clients as an arbitrary object
collection, whose clients only see sets of interfaces
that are unrelated. In JavaBeans or CORBA,
multiple interfaces are ultimately merged into one
implementing class. This prevents proper handling
of important cases such as components that
support multiple versions of an interface, where
the exact implementation of a particular method
shared by all these versions needs to depend on
the version of the interface the client is using. The
CORBA Components proposal promises to fix this
problem.

Mobile Components vs. Mobile
Objects

Surprisingly, mobile components and objects are
just as orthogonal as regular components and
objects. As demonstrated by the Java applet and
ActiveX approaches, it is useful to merely ship a
component to a site and then start from fresh state
and context at the receiving end. Likewise, it is
possible to have mobile objects in an environment
that isn’t component-based at all. For example,
Modula-3 Network Objects can travel the
network, but do not carry their implementation
with them. Instead, Network Objects assumes that
all required code is available already everywhere.
It is also possible to support both mobile objects
and mobile components. For example, a mobile
agent (a mobile autonomous object) that travels
the Internet to gather information should be
accompanied by its supporting components. A
recent example is Java Aglets (agent applets).

What’s Up?

While components capture a software fragment’s
static nature, objects capture its dynamic nature.
Simply treating everything as dynamic can
eliminate this distinction. However, it is a time-
proven principle of software engineering to try
and strengthen the static description of systems as
much as possible. You can always superimpose
dynamics where needed. Modern facilities such as
meta-programming and just-in-time compilation

PAGE 16 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

simplify this soft treatment of the boundary
between static and dynamic. Nevertheless, it’s
advisable to explicitly capture as many static
properties of a design or architecture as possible.
This is the role of components and architectures
that assign components their place. The role of

objects is to capture the dynamic nature of the
arising systems built out of components.
Therefore, components and objects together
enable the construction of next-generation
software.

Copyright © 2000 Clemens Szyperski. Opinions expressed in this article are the authors and don’t

necessarily coincide with those held by Microsoft Corporation. Note that BeanBox, C#, COM, CORBA, Java,
JavaBeans, .NET, and other marks referred to in this article may be trademarks or registered trademarks

held by their respective owners in the US or other countries.

Clemens Szyperski is the author of the Jolt-award winning book Component Software—Beyond Object-
Oriented Programming (Addison-Wesley, 1988). After working both as entrepreneur and as academic, he is

now a software architect with Microsoft Research in Redmond, Washington, USA.

U K R E C R U I T M E N T B U L L E T I N F R O M

The most stimulatingThe most stimulating
OO jobs in the UK!OO jobs in the UK!

Ratio continuously has vacancies for IT professionals with the following skills:
• Object-Oriented Analysis and Design

• Object-Oriented Architecture
• Object-Oriented Development in C++ and Java

• Object-Oriented Project Management
• CORBA/DCOM

For internal roles within Ratio or to join one of our prestigious external clients.

Both permanent (£40,000+) and contract (c.£1500/week) positions are availab le.

For more information regarding these opportunities, please call Ratio on
+44 (0)20 8579 7900, or email us your CV at jobs@ratio.co.uk, or visit our

web site at http://www.ratio.co.uk for more details.

URGENT!!!
IT MANAGER / ARCHITECT TO DEFINE IT DEVELOPMENT STRATEGY FOR MAJOR

INVESTMENT BANK. CITY-BASED, SKILLS IN OO, FINANCE, SOFTWARE

ARCHITECTURE, MANAGEMENT. (C £100,000)

Ratio… We Know The Object

PAGE 17 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

Requirements Engineering Series

The RSI Approach to Use Cases
A Pattern for Structured Use Case Development

Use case analysis is a requirements capture technique that is most often used in the

early stages of OO and component development projects. Mark Collins-Cope discusses
an approach to categorising use cases based on their granularity and level of detail.

Introduction

When engineers first undertake use case analysis,
a number of issues are raised for which easy
answers can't be found in the text books. These
include: What is the appropriate level of
granularity for use cases? If large grained use
cases are used, should they decomposed into
'lower level' use cases? If so, at what point should
this decomposition stop, and how should these
sub-use cases be used? Should user or external
system interface functionality be described in use
case text? Where do report layouts go? Should
interchange file formats form part of the
documentation? And, in particular, at the end of
the use case analysis process, can you answer the
question: What exactly will this application do?

In this article I look at the RSI approach to use
case analysis. This approach provides a
framework for analysing and understanding
potential use case deliverables and their inter-
relationships, with a view to answering the
questions detailed above.

RSI Stuctures Use Cases
In Three Types

RSI divides use cases three categories, shown by
the UML stereotypes: «business requirement» (R),
«application interface» (I) and «service» (S).

Business requirement use cases
Business requirement use cases document
business processes for which automated support
may be required by an application. They detail the
business process that is driving the development
of an application, are typically low on detail. In
their book Software Re-use, Jacobson, Griss and
Jonsson describe a business use case as follows:

A business use case is a sequence of work steps
performed in a business system that produces a
result of perceived and measurable value to an
individual actor of the business.

To this I would add:

The business use case model (as a whole) defines
the business context that is driving definition of
the application to be developed.

The target audience for business use cases is very
much end users, so the style of documentation
should be targeted accordingly - so I recommend
following Alistair Cockburn's (from his work on
goal oriented use cases). Here's an example:

«business requirement» use case: get paid for
car accident (insurance system):
Actor - Claimant
Actor goal - to get paid for a car accident

1. Claimant submits claim with substantiating
data;

2. Insurance company verifies claimant owns
a valid policy

3. Insurance company assigns agent to
examine case

4. Agent verifies all details are within policy
guidelines

5. Insurance company pays claimant

Extensions

1a. Submitted data is incomplete
1a1 Insurance company requests missing
information
1a2 Claimant supplies missing information

Application interface use cases
Application interface use cases provide a detailed
description of the interfaces presented to the
application's actors and describe the functionality
associated with it.

An application interface use case describes a
single interface (file format, report format or
dialog) between the application and one or more
of it's actors. The application interface use case
model (as a whole) defines a functional contract
between the outside world and the application.

Readers in a software house environment may find
the application interface use case model
particularly useful in tie-ing down detail for fixed

PAGE 18 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

price development contracts – the application
interface use case model provides one way of
defining exactly what the application will do.

Application interface descriptions are targetted a
two different different audiences: end users - for
the user interface, and technical staff - for the
external system interface. Detailed user interface

descriptions are best 'documented' using a
dynamic interface prototype - as this enables users
to get a good feel for what the system will actually
do, and to give feedback accordingly. In this case,
the application interface use case model (the UML
bubbles) can still be used to summarise the overall
user interface structure, as follows:

sales
system

find
customer

policy
detail

<<includes>>

insurance
clerk

<<application interface>>

<<application interface>>process new
sales

<<application interface>>

Figure 1. Application interface use case model

This summary diagram tells us that there is a "find
customer" dialog (directly traceable from step two
of the business use case described above), which
uses an associated secondary dialog "policy detail"
to show additional details on the customer's policy
if requested by the insurance clerk. We'll come

back to the "process new sales" use case in a
moment.

In the case where it is not feasible to develop a
dynamic interface prototype, UI sketches can be
used to describe the interface in the following
manner (the level of description here is cut down
here due to space constraints!):

Customer

cockburn
cope
mcbreen
matthews
martin

find

 policy details

cancel

Enter (partial)
customer name

Press find to populate
dialog box with names

that match customer
field

Press to view selected
customer’s policy

details

Figure 2. Cut down interface use case description

PAGE 19 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

Application interfaces to external systems (such as
the sales system shown in figure 1) indicate some
form of external system interaction. In this case,
the interface use case will detail the formats used
by the use case, e.g.:

«application interface» process new sales -
actor: sales system.

This use case is triggered when a file is placed into
the {transfer directory}. The following file
format is used to transfer new sales from the
external system into the application.

[new policy holder] [new policy number]

…

Each new policy is processed and added to the
application.

Service use cases
Service use cases provide a detailed description of
the functionality provided by the core of a system
in a manner independent of the needs of any
particular interface. Take the application interface
use case "process new sales." This interface will
need to "add a new policy" to the system. Suppose
the application also has a (user) interface use case
"add new policy." This will equally need to "add
a new policy" to the system. So underlying the
differences between the two interface formats -
one a user interface, the other an external system
interface - is a common need. Indeed, it's not too
difficult to imagine that the might be a multiplicity
of user interface mechanisms that all use the same
underlying service.

A service use case describes a function the
application will provide in a manner independent
of the interface used to collect the information it
requires, and is atomic in that it is guaranteed to
run to completion without further actor
intervention.

The service use case model (as a whole) defines a
functional contract between the outside world and
the application that is independent of the
interfaces used by the application.

The service use case model provides an alternative
mechanism by which we can answer the question:
exactly what does this system do? At an intuitive
level, we're all quite happy to say things like: "we
need to be able to add a customer" without
worrying too much about the details of how the
user interface is going to be implemented. Probing
slightly more deeply, we can also see that
regardless of how the information is obtained from
the user, the underlying service will need to know
the customer's "details." The service use case
model provides us with a mechanism to enable us
to work at this "intuitive" level.

Service use cases are intended to form the starting
point for a component based development of a
system - they give us a placeholder from which we
can begin to assign services to components.
Service use case descriptions are therefore
targetted at system developers, as shown in the
following fragment of a service use case (directly
traceable to the interface to the sales system
described above):

«service » "add new policy" (in: policyholder,
policynumber)

pre-condition: true

post-condition: a new policyholder has beed
added to application.policyholders; and a new
policy has been added to policyholder.policies,
such that policy.number = policynumber.

Note that the pre- and post-conditions of service
use case cross-reference a specification level
object model (essentially a type model of the
system - with no operations) in a formal or semi-
formal manner. The following model fragment
shows the specification model corresponding to
the decription above:

FREE OBJECTIVEVIEW SUBSCRIPTION:

Email delivery: objective.view@ratio.co.uk
(subject: subscribe)

Hardcopy delivery: objective.view.hardcopy@ratio.co.uk
(include full contact details)

TELL A FRIEND!TELL A FRIEND!

PAGE 20 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

<<singleton>>
<<type>>
application

<<type>>
policy

number

1 *

 policies

<<type>>
policyholder 1

 * policies1

*

policyholders

Figure 3. Specification model referenced by service use case description

This brings me to a final important point about the
service model:

The service use case model together with its
associated specification level object model form a
complete analysis model of the application.

Inter-relationships
The formal relationship between business,
application interface and service use cases is
shown in figure #. The relationship can be briefly
summarised as follows:

• any individual business process may have a
number of application interfaces associated
with it;

• any individual application interface may be
used to support many business processes, and
may require many services to implement its
functionality;

• any individual service use case may support
many application interfaces.

::requirement ::service::interface

::use case

* *
<<trace>>

* *
<<trace>>

* *

<<essential service trace>>

Figure 4. Relationship between BIS use cases

OBJECTIVEVIEW DISCUSSION FORUM

 JJJJOOOO IIII NNNN NNNN OOOO WWWW !!!!

Go to http://www.egroups.com/group/objectiveview and click on the
‘subscribe’ button

or send an email to objectiveview-subscribe@egroups.com

PAGE 21 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

use case A

use case B

use case C

re-usable core of system

fuctionality to manage the interfaces to actors

<<service>>

<<service>>

<<service>>

use case 1

use case 2

use case 3

use case 4

human actor 1

human actor 2

external system
actor 1

external system
actor 2

<<interface>>

<<interface>>

<<interface>>

<<interface>>

uses

uses

uses

uses

uses

Figure 5. Alternative view of the relationship between service and application interface use cases

A conceptual process
We can see from the inter-relationships between
RSI use cases that there are a number of logical
dependencies between them:

1. Application interfaces depend of business use
cases - if business requirements change, the
interface the application presents to the world
will need to change too.

2. Services are also dependent on business use
cases - if business requirements change, the
services provided by a system may need to
change accordingly.

But what of the relationship between service and
application interfaces. To understand these fully it
is necessary break services into two groups
subgroups - those that are directly mandated by
the business use cases - the essential services, and
those that are only required to support the
application interface (the non-essential services).
Interestingly, the former tend to be 'updates' to the
application (i.e. they change the application's
state), and the latter tend to be 'queries' (i.e. they
return information about the system's state without
changing it).

Given this, we can now describe the dependencies
between application inteface and service use cases
in the following manner:

3. Application interface use cases are dependent
on the essential service model. If the essential
service model changes, the application
interface model may have to change
accordingly.

4. Non-essential services are dependent on the
application interface model. If the application
interface model changes, the non-essential
services may have to change accordingly.

Having understood the dependencies between the
various use case types, we can describe the
'conceptual' process of generating the full use case
set, which is as follows:

1. Develop the business use case model (for
the current project increment)

2. Develop the essential service use case
model and specification object model (for
the current project increment)

3. Develop the application interface model
(for the current project increment)

4. Develop the non-essential service use case
model and update the specification object
model if necessary (for the current project
increment).

This process can be applied informally - in your
head - or formally - on paper - as you see fit.

Summary

The RSI approach to use cases structures use cases
into three categories, based on their granularity -
the scope of the functionality they describe is -
and their level of detail - how specific they are
about what they say.

• Business requirement use cases describe a
business process, and are generally wide in
scope but low in detail. They provide a
starting point for working out the
functionality you might want from your
application.

• Application interface use cases give a highly
scoped description of a single interface (user
or external system) the application presents to
the outside world.

PAGE 22 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

• Service use cases give a highly scoped and
highly detailed description of the functionality
provided by the application in a manner
independent of the application's interface to
the outside world, and together with its
associated specification object model,
provides a complete analysis of the
application.

I have made suggestions as to how you might
document the various types of use case, but more
important than this is to understand that they each

serve a different purpose during the analysis
process - whether you identify them explicitly or
not - and that there is a clear set of dependencies
between them.

A more comprehensive article on the RSI
approach to use case analysis can be found on the
following web site:
www.ratio.co.uk/techlibrary.html

Mark Collins-Cope undertakes consultancy for Ratio Group, a training and consultancy company
specialising in object and component based technology. Mark can be contacted at markcc@ratio.co.uk,

Ratio group can be contacted by telephone on +44 (0)208 579 7900.

P U B L I C S C H E D U L E C O U R S E

We Know the Object of…

Java 2 Enterprise Edition (J2EE)
A One-Day Overview

20 November 2000, London (UK)

The Platform for e-Business Solutions
The JavaTM 2 Platform, Enterprise Edition (J2EE) defines the standard for developing,

deploying and managing multi-tier server-centric applications. J2EE simplifies enterprise
applications by basing them on standardized, modular components, by providing a complete
set of services to those components, and by handling many details of application behavior

automatically, without complex programming.

This one day overview will be of benefit to IT Managers, Consultants, Architects, Analysts,
Designers, Operations Managers, IT Strategists, programmers and developers, and anyone
who needs to be aware of the impact of this new suite of technology.

The course will cover all the topics included in J2EE suite individually, but as importantly
provides a strategic perspective on how they work together, and how they can interact with
other technologies such as CORBA, RDMBS, and legacy applications and technologies.

At the end of the seminar you will have an appreciation of all aspects of J2EE and the benefits
and opportunities it affords e-business IT solution providers. This course also provides a

foundation for further study such as that provided by Ratio Group's five day hands on
Advanced Java course.

For more information on this course, contact Ratio on +44 (0)20 8579 7900
or by email at bookings@ratio.co.uk

Please note: class size is limited, so book early!

This course is also offered as a private in-house course.

PAGE 23 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

e-Business Development Series

Building e-Business Solutions
Enterprise JavaBeans & Intermediate Data

Keiron McCammon on e-Business system development

Abstract

Object-Oriented techniques have failed to deliver
the wholesale re-use that they once promised.
Few have managed to achieve significant success
above the implementation of class libraries. Why?
The answer generally cited:
"Its too damn difficult"

Delivering re-use across projects at the object
level is hard. Re-use first requires the wholesale
adoption of a common infrastructure; this
infrastructure provides the bed upon which
developers can lay down their own applications,
assured that they will be able to inter-operate with
others. With a common infrastructure in place it is
then possible to define re-use at a much coarser
level of granularity than the object, the
“component.”

This paper aims to take a look at the industry’s
move towards a common infrastructure and how
this has lead to component-based development. In
addition component development brings with it
new challenges, one being the management of
“Intermediate data,” this paper will define what
Intermediate data is, its role and how it can
efficiently be managed in the component world.

Background

Re-use, The Holy Grail
When object-oriented (O-O) approaches and
technologies were first touted they promised to
deliver a more natural way of modeling and
solving real world problems, moving away from
thinking in terms of how the machine (computer)
works and thinking more in terms of the physical
concepts apparent in the problem domain.

The pillars of the O-O paradigm:

• Abstraction

• Encapsulation

• Inheritance

• Polymorphism

Have provided the foundation for developing
highly cohesive, loosely coupled software
packages using data hiding (encapsulation)

techniques to reduce interdependencies and isolate
change. The ability to extend and re-use existing
implementation (inheritance/polymorphism)
facilitated development of generalized solutions
and allowed a more layered and iterative approach
to software development. This lead to the fabled
belief that O-O would deliver on the promise of
re-use. Re-use is seen as the “Holy Grail,”
reducing development times, improving the
quality of code, cutting project costs and generally
make the world a better place to live in.

Whilst the adoption of the O-O paradigm has
resulted in notable and valuable successes on the
path to finding the grail:

• At the language level, standard and
commercial libraries abound providing
anything from re-useable collection classes, to
simplification of complex areas like multi-
threading and socket-based communication.

• At the analysis and design level, patterns
have proved hugely successful, introducing a
common mindset to solving common problems.

We have seen little beyond this “fine grained” re-
use.

Where is the re-use of actual business processes?
Where are the commercially available, “off-the-
shelf" software components that can be bought and
plugged together to provide a solution?

Well, re-use beyond isolated class libraries
requires interoperability, to be able to re-use
something, it must be able to inter-operate with
what is already being used. In the past, to
facilitate interoperability traditional 3rd party
packages have supplied documented sets of APIs,
but since every package is different its rare that
they just plug together.

Achieving “coarser grained” re-use of actual
business processing requires adoption of a
common infrastructure. This commonality is the
“enabler” that allows things to inter-operate “out
of the box”.

But as many can testify, developing a common
infrastructure can represent a significant project
cost, and is only any good if adopted by all. But
without a common infrastructure how are we ever
going to progress beyond simple re-use of class
libraries!

PAGE 24 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

A Common Infrastructure
Communication is the basic requirement for any
infrastructure, without communication there can
be no “coarse grained” re-use. But a project
specific (or company specific) communication
infrastructure, whilst facilitating re-use locally, is
not going to promote it to those outside or allow
re-use of outside components inside. Therefore
the communication infrastructure needs to be
defined industry-wide.

This need was identified by the industry some
years ago. CORBA and COM initiatives have
provided an industry-wide (whether it be industry
defined or de-facto) communication infrastructure.
Any process using this infrastructure can inter-
operate with any other, 3rd party or otherwise.

But communication is only one aspect of
interoperability. Re-use of Enterprise business
processes requires an infrastructure that
encapsulates Enterprise services, like:

• Distributed Transaction Processing

Co-ordination of processing, guaranteeing
“all or nothing” semantics.

• Security

Ensuring communication is secure and not
open to abuse or misuse.

• Messaging

Support for asynchronous, disconnected
communication.

• System Management

Ensure levels of service are maintained
through load balancing, resource pooling
and high availability/fail-over options.

• Persistence

Guaranteed storage and recovery of
business data beyond the lifetime of a given
software process.

Component Based Development
The industry has come to address issues of
communication with CORBA and COM and has
been dealing with distributed transactions for
many years. TPMs and the X/Open XA standard
are well established. But in isolation these fail to
address the Enterprise issue.

Hence the advent of Object Transaction
Management products (OTM), which marry
CORBA and TPMs; or MTS, which marries COM
in a similar manner. The aim is to provide a
higher-level framework for inter-operability
offering security, system management (resource
pooling, load balancing) and messaging. As a
separate initiative, Enterprise JavaBeans (EJB)1
aims to define the same for Java.

Herald the dawn of component-based
development, perhaps the most significant
revolutionary step in software development since
client-server and a natural evolution of the n-
tier/distributed computing paradigm.

A component is a cohesive unit of business
processing that has been developed on top of a
common infrastructure and hence can be re-used
as-is by others. O-O is the foundation of the
component, an O-O language is used in
implementing the component and its common
infrastructure (the building blocks) is defined in
O-O terms.

Today, the “Application Server” (Weblogic from
BEA or WebSphere from IBM, as examples) is
the component-based environment. Its
underpinnings are the various industry standards
which it draws together to provide a cohesive,
component framework or infrastructure.

At last we are moving towards an industry-wide
component infrastructure.

CALL FOR PAPERS!

Get your most recent paper published in the next issue of ObjectiveView.

Suggested topics are component-based development, object/component
architectures, use cases, requirements engineering, experiences in e-business

development, experiences using different development processes, etc.

Submit to: objective.view.editorial@ratio.co.uk

Deadline for submission: 24 November 2000

PAGE 25 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

Application
Server

client client client client

HTTPIIOP
RMI

Line-of-Business Systems

Communication

Security

Transaction Processing

Persistence

Components

Figure 1. Application Server Architecture

Business Applications
Component-based development and use of
Application Server technologies have many
applications.

• There will be those who are beginning new
projects (Greenfield Development) and want to
take advantage of an industry-wide platform
that not only provides core Enterprise services
but also allows them to draw from a wide pool
of skills and expertise.

• There will be those looking to capitalize on
a new and growing business opportunity
(Components for Resale), the “component
marketplace.” Developing components that
can be resold and re-used by others.

• There will be those looking to leverage their
investment in existing legacy systems
(Enterprise Integration).

Greenfield Development

For those starting anew, looking to build a
business solution, component-based development
provides an industry-wide framework
encapsulating key Enterprise services. There are
no legacy dependencies and so the choice of
technologies is open.

The key drivers will be time-to-market, ease of
development and, if successful, ultimately
scalability and performance. The ability to draw
on an industry-wide pool of expertise is an
additional benefit.

Components for Resale

For those looking to build stand-alone components
or packages of components that can be resold as
“off the shelf” software, component-based

development provides the required industry-wide
framework allowing components to be re-used by
the widest possible audience.

The key driver is the platform and technology
independence. End users must have the flexibility
to deploy within their Enterprise, utilizing their
existing technology and platforms.

Enterprise Integration

The majority of companies have investment in
legacy systems, whether these are corporate
databases or proprietary applications. For
businesses to succeed in the Internet economy
they are looking to leverage this investment into
the e-business arena, no longer is it acceptable to
throw out the old to build the new.

But the requirement is beyond just simply
providing Internet access to these existing
systems, building new e-business applications
means developing significant additional
application and business logic. Whether that be to
provide a consolidated view of a customer across
many “stove pipe” line-of-business systems or
perhaps building a portal of aggregated
information for customers and business partners.

The key drivers are time-to-market coupled with
the need to leverage existing systems.

Intermediate Data

Any useful component will need to persist,
whether it is to survive failure and aid
recoverability, facilitate scalability beyond an in-
memory model or just to ensure business
transactions are captured (and processed) and
information shared appropriately.

PAGE 26 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

However, the type of data being persisted can be
viewed in two ways, “Business” data and
“Intermediate” data. Business data represents
actual business transactions, whereas Intermediate
data is everything else.

Imagine a simple example of an Internet shopping
cart. The customer browses the on-line catalog,

selecting products to add to a shopping cart. Once
happy, the customer then proceeds to the
checkout, fills in shipping details, provides credit
card information and confirms the order.

1. Browse Catalog

2. Add Item

3. Browse Catalog

4. Remove Item

5. Add Item

7. Proceed to Checkout

8. Enter details

9. Confirm Order

Application
Server

6. Add Item

Interm
ediate T

ransactions

Line-of-Business Systems

Business Transaction

Order Propagation of
Business Transaction

Intermediate Data

Business Data

?

Figure 2. Intermediate Data

In this scenario browsing the on-line catalog,
adding items to the shopping cart, filling in
shipping and credit card information all happen in
middle-tier. It is at the point of order confirmation
by the customer that the transaction is of interest
to the “line of business”, at this point the
consolidated order information has to be
propagated to the order processing system.
Imagine the transactional load on the “line of
business” systems if they had to handle each
customer interaction.

From this example it is clear that Business data
and Intermediate data have differing scope:
Intermediate data only exists in the middle-tier,
serving to support the application logic running
there; Business data exists outside of the middle-
tier, used to drive on-going business transactions
(ultimate order fulfillment).

Additional examples of Intermediate data might
include:

• “Business Intelligence” data, data captured
in the middle-tier and used to provide
personalized marketing.

• “Meta” data, data that describes how to
interact with back-end systems and legacy
databases, for business portals.

• “Workflow” data, data that describes
business rules and the state of ongoing business
processes.

• “Session” data, data that is relevant only to
the on-going interaction with an e-business
application (the shopping cart being a prime
example).

Providing persistence for Intermediate data should
be construed as a middle-tier issue and

PAGE 27 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

management of Business data as an issue of
business transaction propagation from the middle-
tier to “line of business” systems. This approach
alleviates the impact of the Internet on the
business systems, isolating the transactional load
in the middle-tier and gives cause to re-think the
role of the database.

The role of the Database in
the Middle-tier

Today, the dominant database technology is not
best suited to working in the component world. A
component represents and encapsulates complex
business processing and computations. O-O
modeling techniques are used to define a domain
model. This might consist of simple-valued
attributes (integers, strings), multi-valued
attributes (dynamic arrays of values) and complex
structures, along with inter-object relationships.
And it’s these relationships that are key - since
they are not just one-to-one or one-to-many, but
relationships that include semantics such as, sets
(uniqueness), lists (ordering) and maps
(associative lookup). These relationships may be
complex objects in themselves, perhaps containing
hashed values for efficient lookup and retrieval.

The focus of a component is on its business
process, not its data. It is this that is
fundamentally at odds with the use of relational
technologies whose focus is on data, not business
processes.

The relational model is based on a rigid, formally
defined set of rules, defined by Coddi in the earlier
70’s. Its aim was to provide flexible definition
and storage of simple data based on simple
predefined types; the manipulation of this being

abstracted via a declarative, set based language.
Objects and their inherent complexity were never
envisioned in this “two dimensional” world.

An object model is “multi-dimensional” in nature
and incompatible with the “flat” relational world.
With no built-in ability to handle the complexities
of objects the onus is on defining a mapping from
one model to the other to overcome this
“impedance mismatch.” A direct impact, aside
from the development, testing and maintenance
headache, is the effect on performance. For
anything other than a simple object model,
reconstituting an object from relational tables will
involve n-way joins and sorting.

What is needed is something that offers the
benefits inherent in using a database:

• ACID Transactions

• Multi-user concurrency control

• Scalability

• Reliability

• Recoverability

Combined with native support for Java…an
“Intermediate Data Management System”
perhaps!

Intermediate Data Management
An Intermediate Data Management System is
essentially a database that runs within the scope of
the Application Server, in the middle-tier. It
provides full database semantics and guarantees
(unlike cache-only solutions) and can be shared
between multiple instances of an Application
Server.

i Elmasri, R., & Nacathe, S. (1994). Fundamentals of Database Systems. 2nd ed. Redwood City, CA: The Benjamin/Cummings
Publishing Co.

EXCELLENCE IN SALES AT RATIO GROUP
Our mission - to be the U.K. brand leader for Object-Oriented related services. To achieve
this we need to take on more high calibre sales staff. Current vacancies include:

• Training Sales Executives to sell our OO related training products to both new and
existing customers. Sales experience essential; exposure to OO or similar technologies
highly desirable.

• Recruitment Executives. Some exposure to OO is desirable. Experience in IT
recruitment is essential.

Positions are based in Ealing, West London. We’ll pay a competitive base salary, a good
OTE (£45 to £50K) based on realistic targets, and we have no earning cap on commission.

For further details, or to submit CVs please contact Kate Harper on
+44 (0)20 8579 7900 or email her via kate@ratio.co.uk

PAGE 28 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

Application
Server

Application
Server

Middle-Tier

In-memory cache

Intermediate data management
across application servers Automatic propagation of

business transactions

De-coupling from
line-of-business systems

Figure 3. Intermediate Database

Because the “Intermediate Database” provides
native support for Java (and objects) the developer
is freed to focus on developing the business logic
and solving the business problem. When it comes
to interfacing to the business systems, this is a
matter of determining what constitutes a business
transaction and how it should be propagated. And
of course components built utilizing Intermediate
data are able to co-exist with components that
directly access existing systems and co-ordinate
activity through standard distributed transaction
processing.
An “Intermediate Database” should have the
following characteristics:

• Transparent persistence for Java objects

Eliminates expensive overhead involved in
mapping to/from the domain object model
and eliminates the need for anything other
then Java development skills.

• Full database guarantees

ACID transaction semantics (not simply an
in-memory cache).

• Shared

Ability to share Intermediate data between
multiple instances of an Application Server
to accommodate load balancing and fail-
over.

• Distributed transaction co-ordination

Ability to co-ordinate updates to
Intermediate data and “line of business”
systems.

• Propagation of business data

Ability to automatically manage updates to
“line of business” databases and systems.

Business Transactions

Propagation of business transactions can be
addressed in two ways, one synchronous and the
other, asynchronous.

The synchronous approach utilizes the in-built
distributed transaction management of the
Application Server. The Intermediate data and
Intermediate transactions are managed locally in
the Application Server, upon completion of a
business transaction application logic is used to
update both the Intermediate representation and
the “line of business” systems in parallel. The
advantage of this approach is the transaction is
propagated immediately, but this is also the
disadvantage. For highly transactional systems it
may be better to defer updates to some point in
time, de-coupling the middle-tier from the “line of
business” systems.

The asynchronous approach utilizes the database
guarantees of the “Intermediate Database”,

PAGE 29 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

allowing Business transactions to be cached
without being lost. Updates are either propagated
individually as they happen, or in batches,
depending on throughput. The advantage being,
because this is asynchronous, the middle-tier can
return to the user prior to the update reaching the
“line of business” system, safe in the knowledge
that even in the event of failure the business
transaction will still be propagated in the future.
This de-coupling isolates the effect of system
failures or downtime.

Of course for a particular solution a combination
of both approaches may be appropriate.

Cache-only Solutions

Pure in-memory caching solutions simply provide
an object layer on top of an existing relational
database (RDB). Whilst they can be useful for
mapping business data into the middle-tier for
read-only access, they are limited in terms of
scalability and ability to support new Intermediate
data. Ultimately transactional throughput is
limited by the underlying database and its inability
to natively support complex object structures.
Business transactions have to be propagated
immediately since on failure, the in-memory
representation is lost.

Versant enJin

Versant enJin is the world’s first Intermediate
Data Management System. In conjunction with
Application Servers like WebSphere from IBM
and WebLogic from BEA, it provides a

complete “solution in a box” for EJB and
component-based development.

It leverages the proven abilities of the Versant
database engine to handle Java objects, data
complexity and transactional throughput in the
middle-tier. Its O/R mapping solution can provide
direct access to relational data where required and
coupled with replication techniques can be used to
propagate business transactions synchronously or
asynchronously depending on need.

Summary

The industry-wide adoption of a standard
infrastructure is the enabling initiative behind
component-based development, which in turn
looks set to deliver significant advantages for
system development. However, the need for
Intermediate Data Management is more
compelling today than ever before. The
prevalence of O-O approaches and technologies
places a focus on developing business logic and
solving business problems. Using an
“Intermediate Database” ensures this focus is not
skewed when it comes to considering issues of
persistence.

Coupled with the pressures of the Internet to
deliver now, to perform now and to scale when
needed, new approaches have to be taken. The
elimination of the relational mismatch simplifies
development, saves time and money and provides
a natural part of an Application Server
architecture. Simply put:

“It’s now much easier”

1 Enterprise JavaBeans (EJB) specification:
http://java.sun.com/products/ejb/docs.html

©Versant Corporation 2000. Versant and Versant ODBMS are trademarks of Versant Corporation.

Keiron McCammon is the Director of Technology & Strategy for Versant. He has worked in the IT industry for
over 8 years, principally applying object-oriented technologies and techniques to solving business problems as
developer and manager. Since joining Versant in 1996 he has provided services to customers in the Financial and

Communications arenas aiding in the development of e-Business solutions utilising Versant and associated
technologies.

Visit Ratio’s web site at http://www.ratio.co.uk for links on
object technology, additional articles, and past issues

of ObjectiveView.

PAGE 30 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

Object Design Issues Series

Dynamic Object Model

Ralph Johnson, author of Design Patterns, on a dynamic

approach to object structure

Introduction

Recently I have seen many examples of a type of
architecture that was new to me. Half of the
demonstrations at OOPSLA'97 were examples of
this architecture. I have not found any
descriptions of this architecture, yet the number
of systems that I have seen indicates that it is
widely used. This architecture leads to extremely
extensible systems, often ones that can be
extended by non-programmers. Like any
architectural style, there are costs associated with
this architecture. It is not efficient of CPU time,
but is usually used where this doesn't matter. A
bigger problem is that the architecture can be
hard for new developers to understand. I hope
this paper will help eliminate that problem.

The architecture has many names, sometimes
called just a "reflective architecture" or a
"metaarchitecture". It was called the "Type
Instance pattern" in a tutorial at
OOPSLA'95[Gamma, Helm, Vlissides]. This
paper calls it the "Dynamic Object Model
architecture". Most of the systems I have seen
with a Dynamic Object Model are business
systems that manage products of some sort, and
are extended to add new products, so I have
called it the "User Defined Product architecture"
in the past[Johnson and Oakes]. I like the name
"Dynamic Object Model" because it tends to be
used as a modeling tool, and users define their
own objects with it.

A Dynamic Object Model for products defines
both a Product and a ProductType, and represents
a new kind of product with a new instance of
ProductType, not a new subclass of Product.
Often the Product class has no subclasses, though
sometimes the system uses inheritance for
customization, as well. A Dynamic Object
Model often denegrates inheritance, but it is
object-oriented to the core. The purpose is to let
people make new kinds of objects without
programming.

The Dynamic Object Model has been used to
represent insurance policies, to bill for telephone
calls, and to check whether an equipment
configuration is likely to work. It is used to

model workflow, to model documents, and to
model databases.

The Structure of the Dynamic
Object Model

The Dynamic Object Model architecture is made
up of several smaller patterns. The most important
is Type Object, which separates an Entity from an
EntityType. Entities have Attributes, which are
implemented with the Property pattern, and the
Type Object pattern is used a second time to
separate Attributes from AttributeTypes. The
Strategy pattern is often used to define the behavior
of an Entity Type. As is common in Entity-
Relationship modeling, a Dynamic Object Model
usually separates attributes from relationships.
Finally, there is usually an interface for non-
programmers to define new EntityTypes.

Type Object

Most object-oriented languages have the notion of
"class". A class defines the structure and behavior
of objects. Most object-oriented systems use a
separate class for each kind of object, so
introducing a new kind of object requires making a
new class, which requires programming.

However, often there is little difference between
new kinds of objects. If the difference is small
enough, the objects can be generalized and the
difference between them described by parameters.

For example, consider a factory scheduling system
for a factory that makes many kinds of products.
Each product has a different set of raw materials
and requires a different set of machine tools. The
factory has many kinds of machines, and has
varying numbers of each. Each type of product
would have a plan that indicates how to build it.
The plan indicates the types of machines that are
needed, but not the particular ones that are to be
used. The factory scheduling system takes a set of
orders and produces a schedule that ensures those
orders are built on time. It assigns each order to a
particular set of machines, checking that there are
enough machines of a particular type to do all the

PAGE 31 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

Logical View

ProductType MachineType

Product Machine

type type

0..n

1..1

work needed in a day. When the factory builds a
product, it might record its BuildHistory so that
quality control inspectors will know the exact
machines that were used to build it.

One way to associate plans with products is to
introduce a subclass of Product for each type of
product, and to define an operation in each
subclass to return the plan. In the same way,
there would be a subclass of Machine for each
type of machine. However, the only difference
between MachineTypes is the number of
instances and their name. Further, a plan needs to
refer to machine types, and some languages (like
C++) make it hard to have an object point to a
class or to create an object from a class with a

particular name. There should be a MachineType
object that knows all the machines in the factory of
a particular type. A Plan will refer to a
MachineType either by name or by direct
reference. A system for designing Plans might
require more information about a MachineType,
but a system for scheduling will not. If
MachineType is a separate class then Machines are
general enough that there is no reason to subclass
them. In the same way, the only difference
between types of products is probably the plans
used to make them. It is not necessary to make a
subclass of Product for each type of product; make
a class ProductType and create instances of
ProductType instead of subclasses of Product.

The Type Object pattern splits a class into two
classes, Types and Instances, and replaces
subclasses of the original with instances of the
Type. It can be used in the factory scheduling
system to replace subclasses of Product and
Machine with instances of ProductType and
MachineType. It can be used in an airline
scheduling system to replace subclasses of
Airplane with instances of AirplaneType (Coad
1992). It can be used in a telecommunications
billing system to replace subclasses of
NetworkEvent with instances of
NetworkEventType. In all these cases, the
difference between one type of object and another

is primarily their data values, not their behavior,
so the Type Object pattern works well.

Property

The attributes of an object are usually
implemented by its instance variables. A class
defines the instance variables of its instances. If
objects of different types are all the same class,
how can their attributes vary?

The solution is to implement attributes differently.
Instead of each attribute being a different instance
variable, make an instance variable that holds a
collection of attributes.

Interested in increasing your market exposure?
Getting your brand name recognised?

Become an ObjectiveView Sponsor
Contact us at objective.view@ratio.co.uk to received a detailed sponsorship

PAGE 32 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

 Property Pattern

entity

-attribute : Any

Entity Property

-name : String
-value : Any

0..n

attributes

Before After

The core of a Dynamic Object Model is a
combination of Type Object and Property. Type
object divides the system into Entities and
EntityTypes. Entities have properties. But
usually each property has a type, too, and each
EntityType then specifies the types of the
properties of its entities. A PropertyType is

usually more like a variable declaration than like
an abstract data type. It often keeps track of the
name of the property, and also whether the value
of the property is a number, a date, a string, etc.
The result is an object model similar to the
following:

Sometimes objects differ only in having different
properties. For example, a system that just reads
and writes a database can use a Record with a set
of Properties to represent a single record, and can
use RecordType and PropertyType to represent a
table.

But usually different kinds of objects have
different kinds of behaviors. For example, maybe
records need to be checked for consistency before

being written to a database. Although many tables
will have a simple consistency check, such as
ensuring that numbers are within a certain range, a
few will have a complex consistency checking
algorithm. Thus, Property isn't enough to
eliminate the need for subclasses. A Dynamic
Object Model needs a way to change the behavior
of objects.

Strategy

A strategy is an object that represents an algorithm. The strategy pattern defines a standard interface for a
family of algorithms so that clients can work with any of them. If an object's behavior is defined by one or
more strategies then that behavior is easy to change.

Each application of the strategy pattern leads to a different interface, and thus to a different class hierarchy
of strategies. In a database system, strategies might be associated with each property and used to validate

Dynamic Object Model

Entity

Property

EntityType

PropertyType

-name : String
-type : Type

0..n type

0..n type

0..nproperties
0..nproperties

PAGE 33 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

them. The strategies would then have one public operation, validate(). But strategies are more often
associated with the fundamental entities being modeled, where they implement the operations on the
methods.

Entity-Relationship

Attributes are properties that refer to immutable
values like numbers, strings, or colors.
Relationships are properties that refer to other
entities. Relationships are usually two-way; if
Gene is the father of Carol then Carol is the
daughter of Gene. This distinction, which has
long been a part of classic entity-relationship
modeling and which has been carried over into
modern object-oriented modeling notations, is
usually a part of a dynamic object-model
architecture. The distinction often leads to two
subclasses of properties, one for attributes and one
for relationships.

One way to separate attributes from associations is
to use the Property pattern twice, once for
attributes and once for associations. Another way
is to make two subclasses of Property, Attribute
and Association. An Association would know its
cardinality.

Another way to separate attributes from
associations is by the value of the property.
Suppose there is a class Value whose subclasses
are all immutable. Typical values would be
numbers, strings, quantities (numbers with units),
and colors. Properties whose value is an Entity
are associations, while properties whose value is a
Value are attributes.

Although this is a common pattern, I am not sure
why it is used. Perhaps it is just a more accurate
model. Or perhaps it is used by habit because
designers have been trained in Entity-Relationship
modeling. It is interesting that few language

designers seem to feel the need to represent these
relationships, but most designers of systems with
Dynamic Object-Models do.

User Interface for Defining Types

One of the main reasons people design Dynamic
Object-Models is so that the system can be
extended by defining new types without
programming. Sometimes the goal is to enable
users to extend the system without programmers.
But even when only developers define new types,
it is common to build a specialized user interface
for defining types. For example, the insurance
framework at the Hartford has a user interface for
defining new kinds of insurance, including the
rules for calculating their price. Innoverse, a
telephone billing system, has a user interface for
defining geographical regions, monetary units, and
billing rules for different geographical regions
expressed in various monetary units. The Argos
school administration system lets has a user
interface for defining new document types and
workflows.

Types are often stored in a centralized database.
This means that when someone defines new types,
applications can use them without having to be
recompiled. Often applications are able to use the
new types immediately, while other times they
cache type information and must refresh their
caches before they will be able to use the new
types.

The alternative to having a user interface for
creating and editing type information is write

Dynamic Object Model

Entity

Property

EntityType

PropertyType

-name : String
-type : Type

0..n type

0..n type

0..nproperties
0..nproperties

Rule

+evaluate()()

rule

PrimRule CompositeRule

0..n

PAGE 34 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

programs to do it. In fact, if programmers are the
only ones creating type information then it is often
easier to let them do it by writing programs, since
they can use their usual programming environment
for this purpose. But the only way to get non-
programmers to maintain the type information is
give it a user interface.

Advantages of Dynamic
Object Models

If a system is continually changing, or if you want
users to be able to extend it, then the Dynamic
Object Model architecture can be very useful. The
alternative is to pick a simple programming
language that is flexible and easy to learn. In fact,
a Dynamic Object Model is a kind of
programming language.

Systems based on Dynamic Object Models can be
much smaller than alternatives. One architect told
me that his 50,000 line system had more features
than systems written without a dynamic object
model that took over 3 million lines of code. I am
working on replacing a system with several
millions lines of code with a system based on a
dynamic object model that I predict will require
about 20,000 lines of code. This makes these
systems easier to change by experts, and (in
theory) should make them easier to understand
and maintain.

Disadvantages of Dynamic
Object Models

A Dynamic Object Model is hard for most
programmers to understand and to use. The
architects of systems that use a Dynamic Object
Model often consider them the highlight of their
careers, but programmers working on the systems
often hate them. Part of the problem is that these
systems are usually underdocumented, but another
part is that the systems are abstract and so hard for
most programmers to understand. This is by far
the biggest disadvantage of this architecture, and
architects should choose it cautiously and plan to
spend more than usual on documentation and
training.

A system based on a Dynamic Object Model is an
interpreter, and can be slow. Most of the systems
I've seen only required a little optimization to be

fast enough. However, I've also seen a few in
which some of the features were too slow.

A system based on a Dynamic Object Model is
defining a new language. It is a domain-specific
language that is often easier for users to
understand than a general-purpose language, but it
is still a language. When you define a new
language, you have to define support tools like a
debugger, version control, and documentation
tools. This is extra work. If you let users define
their own types, you have to teach them good
software engineering practices like testing,
configuration control, and documentation. Is it
worth the effort? Some designers do not worry
about this and their projects usually come to a bad
end. Others avoid these problems by only
allowing developers to define new types. Others
train their users. There are many ways around
this problem, but it is a problem that should be
faced and not ignored.

Summary

A Dynamic Object Model provides an interesting
alternative to traditional object-oriented design.
Like any architecture, it has both advantages and
disadvantages. The more examples we study, the
better we will understand its strengths and
weaknesses. Please contact me if you have used
this architecture in the past and can provide more
examples or if you know of any papers that
describe this architecture or aspects of it.

Bibliography

[Foote98] Brian Foote and Joseph Yoder,
Metadata and Active Object-Models, presented at
PloP'98, Allerton Park, August 1998.
[Gamma95] Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.
[Johnson97] Ralph Johnson and Bobbie Woolf,
Type Object, In Patttern Languages of Program
Design 3, Robert Martin, Dirk Riehle, and Frank
Buschmann ed., Addison-Wesley, 1997, pp. 47-
66.
Also see http://www-
cat.ncsa.uiuc.edu/~yoder/Research/
metadata/UoI98MetadataWkshop.html

Ralph Johnson is one of the four authors of "Design Patterns." He teaches courses at the University of

Illinois at Urbana-Champaign on object-oriented design, and specialises in helping companies design and
document their frameworks. He has helped develop frameworks for accounting and billing, amongst other

areas. He is not only an expert designer, he is also a master at explaining object-oriented design.

PAGE 35 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

Software Process Series

Goldilocks and the Three Software Processes

Doug Rosenberg and Kendall Scott on the ICONIX Unified Process

Once Upon A Time there was a project manager
named Goldilocks who went for a stroll in the
bookstore. Goldilocks wasn’t sure exactly what
she was looking for, but she was thinking about
how to manage her current software project, which
was an international banking project being
developed in London, Geneva, and New York.
Goldilocks wandered into the Computer Books
section, and was surrounded by shelves full of
books on Enterprise Java Beans, COM+, and
XML. Off in a corner of one shelf, she spotted
some books on software development processes.
“Aha!” Goldilocks exclaimed. “I think a
development process might be just what we need.”

Goldilocks saw three books from the same
publisher that looked interesting. There was a
Great Big Process, called the Rational Unified
Process, or RUP; a medium-sized Process, called
the ICONIX Process; and a little teensy-weensy
process called Extreme Programming, or XP for
short. When she saw the books for the Three
Processes, she smiled and clapped her hands.
"How pretty!" she cried. "I wonder where the
writers are?" She stood on her toes and peeked
over the information booth. There didn't seem to
be anyone around, so Goldilocks started looking at
the front and back covers of the books!

The first thing she noticed was that even though
the books were all about the same size, they
described porridge in bowls of three very different
sizes: a great big bowl for the RUP, a medium-
sized bowl for the ICONIX Process, and a tiny
little bowl for XP. "Oh, what a joy to have three
processes to choose from!" Goldilocks said. Then,
as she was feeling really curious, she opened up
the RUP book to taste the porridge.

"Ooooh!" she cried, dropping the book. "That
porridge is much too thick and heavy!"

The RUP porridge was very thick and heavy
indeed. Here's just a sampling of what Goldilocks
saw:

• References to over a thousand pages of
material describing all of the "artifacts" that a
team has to produce to maintain adherence
with the process. ("How will my team ever
get all of this done?" Goldilocks wondered. "I
know what'll happen: they'll run out of time
producing tons of artifacts, and then jump
straight to code without ever finishing the
design, and then where will we be?")

• Activities broken down into "thinking" steps,
"performing" steps, and "reviewing" steps.
("Don't people already do these things without
being told how to do them?" Goldilocks
mused.)

• Milestones called Life-Cycle Objective, Life-
Cycle Architecture, and Initial Operational
Capability. ("Whatever do these mean?”
Goldilocks pondered. “Wouldn’t it be better
to establish milestones that are a little less
lofty and easier for everyone to understand?".)

Next, she tasted the porridge in the tiny little bowl.
But that porridge was much too thin.

The XP porridge was very thin indeed. To wit:

• "There are only four important things about
software: Coding, Testing, Listening, and
Design." ("Gosh, aren’t requirements
important?" Goldilocks asked. “I thought
there were some pretty important regulations
about international funds transfer that we had
to comply with.”)

• "The code is the design." ("Golly, I always
thought design came before code!" Goldilocks
exclaimed. “It’s funny how code always
seems to come first in this process.”)

• "Do the simplest thing that could possibly
work." ("So, if you think you might not need
it, you don't need it," Goldilocks deduced.
"But what happens when the customers
decide they need it?")

Then she tasted the porridge in the medium-sized
bowl. "Mmmmmm," she said. "This porridge is
just right!" So she ate it all up!

The ICONIX porridge had just the right
consistency. For instance:

• It offers a streamlined approach to software
development that includes a minimal set of
diagrams and techniques that a project team
can use to get from use cases to code quickly
and efficiently.

• It includes extensions to the UML that save
time and money, and consistently yield good
results.

• It focuses on helping projects avoid the
dreaded analysis paralysis at those points at

PAGE 36 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

which it's all too easy to get bogged down in
nonproductive activities.

Then Goldilocks saw three chairs set before the
bookshelf: a great big chair for RUP, a medium-
sized chair for the ICONIX Process, and a tiny
little chair for XP. "Oh, it would be nice to sit
down for a while!" Goldilocks thought.

So she climbed into the Great Big chair that
belonged to the RUP. "Oh, no!" she said. "That
chair is much too hard."

Let's see what Goldilocks was trying to absorb
about the RUP.

• The full RUP includes four phases, which are
fairly easy to understand. But it layers six
"engineering workflows" and three
"management workflows" over the phases,
and then it brings in "iteration workflows,"
which supposedly describe the process more
from the perspective of what happens in a
typical iteration. ("Isn't it too bad that they
don't just go to the more practical stuff in the
first place, and dispense with all of the heavy
theory?" Goldilocks wondered.)

• Since the RUP describes phases and
iterations, it's necessary to produce phase
plans and iteration plans. But the RUP also
talks about having to plan the plans, and that's
where Goldilocks drew the line. ("So, who
plans to plan the plan?" Goldilocks asked, not
entirely in jest. “All this plan-planning makes
my head hurt.”)

• The RUP specifies roles for eleventy-twelve
different kinds of workers (27, actually, but
still), including someone called a Use-Case
Specifier, who "details the specification of a
part of the system's functionality by
describing the requirements aspect of one or
several use cases." ("Doesn't this make use
cases sound a lot scarier than they actually
are?" Goldilocks said.)

Then she sat in XP’s tiny little chair. "Oh, no," she
said, "That chair is much too soft!"

Why did Goldilocks decide that XP was too soft?
Here are some ideas:

• XP disciples say there's simply no point in
trying to do analysis since customers almost
never know what they need at the beginning
of a project, and even when they do start
figuring it out, they change their minds
weekly, even daily, sometimes hourly. Well,
actually, XP programmers are supposed to do
analysis on an ongoing basis as they're writing
code, but since that code doesn't involve
customers, saying that XPers do analysis is
more than a little disingenous. ("And how

come I can't find the word analysis in the
index of Kent Beck's book?" Goldilocks
wondered.)

• One XPer declared that use cases are just too
complicated. "Use cases as I have seen them
used are complex and formal enough that
business doesn't want to touch them." This
attitude is meant to further justify that you can
more or less skip analysis because it's too
hard to capture the results in a way that will
please customers. ("But isn’t it easier to try to
figure out what you’re building before you
start building it?' Goldilocks asked.)

• XPers like to talk about how programmers
should all be in one room, coding in pairs,
how they use index cards to capture the things
that their code can't, and how it’s a Very
Brave Thing to rely on Oral Documentation."
What happens when you have more than 10
or 12 developers, and they don't even live in
the same area? Or when you need to capture
things, like relationships among sets of
classes and the larger context in which the
system will operate, that don't lend
themselves to small pieces of paper? Or when
you realize that you need a full-time person to
maintain the repository of project
information, and there's no one around who
can keep track of all of that "oral tradition"?
("How on earth am I going to coordinate what
my programmers in London, Geneva, and
New York are doing without anybody writing
anything down?" Goldilocks pondered. “This
oral documentation stuff sounds oxymoronic,
but I’m afraid that for my project it would be
just plain moronic.”)

Next, she sat in the ICONIX Process's medium-
sized chair. "Ahh," she said with a smile. "This
chair is just right!"

Here are some reasons that Goldilocks felt so
comfortable in the ICONIX chair:

• The approach advocates starting with domain
modeling, which involves identifying the
objects in the real world that will serve as the
vocabulary for the use cases. This gets much
of the team meaningfully involved in the
project right away, as opposed to having most
of the players wait around for all the planning
to get done, or putting everyone except the
"star" programmers on hold while the latter
huddle in a room (in pairs, of course) and
build the system they feel like building.

• The ICONIX approach to use cases involves a
healthy number of small pieces of
straightforward text that captures functional
requirements in a manner that's easy for
everyone to understand. There's no place for

PAGE 37 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

long and involved use case templates that
simply clutter up the model, and the use cases
also provide a firmer foundation for
negotiation and exploration than index cards
containing user "stories".

• Robustness analysis, which sits at the center
of the ICONIX approach, is a deeply useful
technique specifically designed to close the
eternal gap between what the system being
modeled is supposed to (the results of
analysis) and how the system is going to
function (the results of detailed design). This
"missing link" provides a high degree of
traceability that's simply not available in a Big
Process (it gets buried under all that extra
stuff) or in a Tiny Process (case in point: look
up "requirements" in the index of the XP
book, and see what you find—nothing).

Goldilocks, though, was very curious indeed, so
she decided to give the Tiny Process chair another
chance, because she liked the sound of XP's "core
values," Communication, Simplicity, Feedback,
and (especially) Courage. Just then, though, there
was a loud crack! and the little chair broke right
through!

Goldilocks stood up and dusted herself off. (It
turns out that "courage," which in XP terms
basically means "feel free to start coding right
away and spend lots of time ripping up and
rewriting code you’ve already written because you
didn’t understand what it was supposed to do
when you coded it," wasn't the most suitable
principle for Goldilocks to focus on for her
software development project.) So she climbed
upstairs to the lounge of the bookstore. There she
saw three beds all in a row.

"Oh," she said, yawning. "I am feeling sleepy."

So she pulled down the covers and climbed into
the RUP’s Great Big bed. But she quickly jumped
down. "That bed is much too hard.," she said.

Why couldn't Goldilocks sleep in the Great Big
RUP bed?

• Rational says the RUP is highly customizable.
For instance, you can add, change, or remove
activities; add checkpoints for review
activities; add guidelines; and tailor
templates. But in doing so, you have to plan
the process implementation, execute the
process implementation, and evaluate the
project implementation—and then start over if
the process didn't take. ("Isn’t it less work to
start with a smaller process and add what you
need to it instead of starting with everything
in the whole wide world and taking out what
you don’t need?" Goldilocks wondered.)

• In some ways, the RUP is really less about
process than it is about Rational's tools.
Trying to capture requirements? Requisite Pro
is just the thing for you. Managing analysis
and design models? You simply have to have
Rose. Configuration management and change
control? You really can't do those without
ClearCase. The amigos even admit that the
tools and the process were developed
together. ("Goodness, I’m not sure if I want to
tie my entire project to a single vendor"
Goldilocks pondered.)

• The RUP has a number of dubious constructs
and also some rather gaping holes. It
advocates the use of large and unwieldy use
case templates, which we alluded to earlier, as
opposed to compact text that's less likely to
intimidate customers (and developers, for that
matter). It also says that you should write
"flows of events—design," as opposed to just
putting the text of the use case on your
sequence diagrams. But the RUP somehow
manages to shortchange domain modeling,
just like Objectory did, and its use of the
UML falls short in some other areas as well.

Then she tried XP’s tiny little bed. But it was too
soft.

Why did Goldilocks realize so quickly that XP is
just too soft for most projects?

• XPers like to talk about something we might
call the "ready, fire, aim" sequence, which
works in conjunction with the one-day-or-less
"nanoincrement." Unfortunately, this
basically boils down to the combination of (a)
a refusal to spend any meaningful amount of
time figuring out what to do before starting to
"produce," and (b) the insistence that doing
great work on an ongoing basis "in the small"
will somehow magically result in the whole
system being correct when the smoke clears.
("Gee, the book says that XP is different from
‘Cowboy Coding’, but what’s the difference,
really, if you jump to code before
understanding your requirements?"
Goldilocks queried.)

• In the eyes of true XP believers,
documentation is basically useless. Of course
they don't need to document the code, because
"merciless" refactoring results in perfect (and
perfectly readable) code. Of course they don't
need to draw pictures, because the code is the
design, and analysis doesn't come into play.
And of course they don't need user guides,
because "all documentation is to be distrusted
as out of date and subjectively biased." Of
course, oral tradition falls apart when a few of
the traditionalists leave, but that doesn't seem

PAGE 38 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

to bother XPers, who insist that the customer
has the right to request useless documentation
from the coders, if they’re foolhardy enough
to do so. ("You mean my customers would
have to make special requests to get material
that explains how their system works?"
Goldilocks wondered.)

• Let's not forget the mystical aspects of XP.
Our favorites have to do with "asking the
code." Actual statements by disciples of this
less-than-lightweight "process" include the
likes of "Restructur[e] the system based on
what it is telling you about how it wants to be
structured," "The system is riding me much
more than I am riding the system," and our
all-time favorite, "A 'code smell' is a hint that
something has gone wrong somewhere in
your code." Smell the code, indeed.("I
thought my friend Alice had a strange time
when she fell down that rabbit hole, but that
was tame compared to some of this."
Goldilocks mused. “I wonder if Alice’s
mushrooms would solve the scalability
problems”).

So she climbed into the ICONIX Process's
medium-sized bed. It was just right. Soon
Goldilocks was fast asleep!

Shall we speculate on how Goldilocks got to sleep
so quickly in the ICONIX bed?

• The ICONIX process is 98 percent fat-free. It
focuses on what you need, and ignores what
you probably don't need. The key is that it
helps you stay relentlessly focused on
answering the fundamentally important
questions about the system you are building
while also helping you refuse to get caught up
in superfluous modeling issues. If it turns out
that you really need to do activity diagrams,
or model several levels of worth of substates,
then you can simply add those kinds of tasks
to the ones that the process prescribes; you
just don't have to make the effort to remove
the extraneous stuff.

• On the other hand, the ICONIX process is still
a real OOA&D process, with analysis and
design playing appropriately important roles.
It advocates use case modeling, a technique

that has worked on countless projects, to
capture requirements. It describes how to
build sequence diagrams that will serve as the
foundation of detailed design. And it uses
robustness analysis to close that infernal gap
between "what" and "how," which helps a
project team build the right system and build
the system right.

• The creators and popularizers of the ICONIX
process don't offer lofty claims or catchy
slogans. They don't proclaim that the process
captures many of the best practices in modern
software development (even though the
practices it addresses are, indeed, very strong
practices indeed). They don't spout nonsense
about how the exponential cost of change
curve is no longer valid. Instead, they offer
plain talk about an elegant yet rigorous
process that's customizable and scalable
without being overwhelming.

While she slept, Goldilocks had a curious dream
in which the words “minimal yet sufficient” kept
repeating over and over. When she awoke, she
realized that these words were the key to
implementing a successful software process.
Goldilocks knew that she had to avoid too much
process or her project would fall into Analysis
Paralysis, and yet she needed a process that was
scalable and sufficient to keep her project from
degenerating into chaos. “RUP looks more than
sufficient, but it sure isn’t minimal” Goldilocks
said to herself, “and XP is most certainly minimal,
but there just doesn’t seem to be enough there for
my project”.

So Goldilocks put the RUP book and the XP book
back on the shelf, and took her copy of Use Case
Driven Object Modeling with UML to the cash
register. After reading it carefully (which only
took her a single evening), she ordered a copy for
each of her programmers in London, Geneva, and
New York. The software was delivered on
schedule, bug-free, and met all the customer’s
requirements. Goldilocks got a big raise, her
customers were all thrilled, and everyone lived
happily ever after.

Doug Rosenberg is the author of "Use Case Driven Object Modeling with UML -- A Practical Approach"
with Kendall Scott. Founder and President of ICONIX Software Engineering, Inc., he has been teaching
OOAD since 1992, several years before the advent of UML. Kendall Scott, the supporting author with

Martin Fowler of the award-winning "UML Distilled", is a UML consultant and mentor with particular
expertise in domain modeling and requirements capture via use case modeling. He is also the principal of

Software Documentation Wizards. Kendall and Doug are currently writing "Applied Use Case Driven
Object Modeling -- An Annotated E-Commerce Example", and "Understanding Distributed Components:

Cutting Through the COM, CORBA and EJB Hype", both scheduled for release in 2001.

PAGE 39 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

RATIO GROUP AT COCO 2000!
Mark Collins-Cope, Technical Director at Ratio Group will be delivering two presentations
at this year’s Component Computing conference, on Tuesday 10 October:

• A Reference Architecture for Object and Component Based Systems
• Use Case Analysis for Component Based Systems

Also stop by the Ratio stand in the Exhibit Hall for information on our services including
expert training, consultancy, mentoring, and development services.

PAGE 40 OBJECTIVEVIEW – ISSUE 5 WWW.RATIO.CO.UK

WeKnow TheObject

W E K N O W T H E O B J E C T O F

TRAINING
Excellence in Object and Component Training

The following courses are offered both in-house and on a regular public schedule basis.

Email info@ratio.co.uk or call Ratio Sales on +44 (0)20 8579 7900
for more information

Object-Oriented Analysis &
Design using UML

This course gives you a practical understanding of
the major techniques of the UML (Unified Modelling
Language) object-oriented analysis and design
notation, and how these techniques can be applied
to improve quality and productivity during the
analysis and design of computer systems.

What they thought…

“Thanks for this! Everybody is buzzing after
the course. Thanks to you and your team for
all of your efforts, particularly the lecturer,

who has an excellent manner and just knows
his stuff inside out.”

Chris McDermott, Polk Ltd.

Component-Based Design
using UML

This course gives you a firm understanding how to
analyse and design extensible and customisable re-
usable business (domain) oriented components, and
how to assemble such components to create bespoke
applications. The course has a clear focus on the
architectural aspects of component-based design.

What they thought…

“Patterns were particularly useful as were
the hints & tips & tricks that were sprinkled

throughout. It was also very useful to be
shown *why* some of the techniques we use
are good; up until now we’ve been choosing

the techniques based on instinct.”
Phil Harris, Silicon Dreams

Object-Oriented
Programming in C++

This course will leave students with a firm
understanding of the C++ language and its
underlying object-oriented principles. Attendance on
the course will enable participants to make an
immediate and productive contribution to project
work.

Object-Oriented
Programming in Java

This course will give you a practical understanding
of the major features of the Java development
environment and language, both in the context of
web applets, and in the context of stand-alone
applications. Students will leave the course able to
start productive work immediately.

What they thought…

“This has been a worthwhile exercise. The
course was concise ... well focused via

examples and practical sessions”
Course delegate, MTI Trading Systems

 “Things were explained clearly, in simple
terms and with relevant examples.”

Course delegate, Primark

What they thought…

 “I particularly liked the hands-on
implementation of the Java language theory

in an extendable example.”
Graham Hoyle, Tetra Ltd.

“Really good course, well presented, well
informed, lots of leads to wider ideas, etc.”
Roy Turner, Silver Platter Information Ltd.

