
WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 1

WeKnow TheObject

ObjectiveView
The Object and Component Journal for Software Professionals

Claude Monet 1840-1926 “Poplars from Marsh”

Plus:
 Designing
 Distributed
 Object Systems

Product Line
Architectures

The OPEN
 Process

Specification

Published by

OO consultancy – training – tools – recruitment

see www.ratio.co.uk for back copies

Sponsored by

ObjectMentor Inc.
www.objectmentor.com

ü Interview with
Robert C. Martin

on eXtreme
Programming

ü The Topsy Turvy
World of UML

ü A Profile of XML
for Developers

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 2

WeKnow TheObject

ObjectiveView
The Object and Component Journal for Software Professionals

CCOONNTTEENNTTSS

Introducing Technology
A Profile of XML
by Richard Vaughan

Object Design
Designing Distributed Object Systems
by Jason Garbis

Object/Component Architecture
Product Line Architectures
by Jan Bosch

The Topsy Turvy World of UML
by Mark Collins-Cope &
Hubert Matthews

Development Process
OPEN is the Objective
by Brian Henderson-Sellers

Subjective Views
Interview with Robert C. Martin
On eXtreme Programming

3

8

13

19

21

30

IINN TTHHEE NNEEXXTT IISSSSUUEE OOFF OOVV……

ü Interview with Ivar Jacobson
ü Clemens Szyperski:

“Recent Insights into Components”
ü Bertrand Meyer on Component-

Based Development
ü Ralph Johnson:

“The Dynamic Object-model
Architecture”

CCOONNTTAACCTTSS
Editor

Mark Collins-Cope
markcc@ratio.co.uk

Production
Karen Ouellette
karen@ratio.co.uk

Free subscription
objective.view@ratio.co.uk
(with ‘subscribe’ as subject)

Circulation / Sponsorship Enquiries
objective.view@ratio.co.uk
Tel: +44 (0)20 8579 7900

R A T I O I S P R O U D T O S P O N S O R

“Enterprise Architecture - Patterns - Components”
Mont Saint-Michel / Saint-Malo l Normandy/Brittany, France

5-8 JUNE 2000
Visit http://www.tools.com/europe

for programme and registration details

TOOLS… the major series of international conferences entirely devoted to Objects

TOOLS
Europe 2000

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 3

WeKnow TheObject

Introducing Technology Series

A Profile of XML
Richard Vaughan with an introduction to XML…

Introduction

The Mexican poet Octavio Paz once commented
‘the differences between the spoken or written
language and the other ones – plastic or musical –
are very profound, but not to such an extent that
they make us forget that essentially they are all
language: expressive systems which possess
significant power.’

Nowhere more than in computing do expressive
systems abound, our most recent bouncing baby
being the eXtensible Markup Language or XML. In
fact Junior is now a strapping toddler of two years
of age and given his explosive growth rate one
wonders just how big he will become in adulthood.
However, the computing industry is also guilty of
putting much old wine in many new bottles. There
are, therefore, other crucial questions, for example
what kind of child is XML and what does it actually
want to be when it does grow up?

This article examines XML, its origins, syntax and
its relationship to software systems.

Some Background

Throughout this decade, the growth of the Internet
and the success of the Web has seen an increasing
demand for a more powerful version of HTML that
can serve as a universal data interchange standard.
For a variety of reasons it was not possible to extend
HTML itself, not least because it is a presentation-
oriented schema. The search therefore began for an
alternative.

Standard Generalized Markup Language (SGML)
was originally considered but was rejected because
of various inherent problems such as the challenge
of developing suitable parser technologies. It was
therefore apparent that a new language was needed
and thus XML (a subset of SGML) was born. In
fact, the specification was developed very quickly
over a period of only eighteen months. This was
mostly because of the high demand for a universal
format, however it was also in an attempt to prevent
the standard from becoming clogged with lots of
extra ‘goodies’, most of which appear on only a few
people’s wish lists.

Note however that although XML can be used for
transmitting information across a network (and has a

very big future in terms of the Internet) it is not, by
definition, an Internet issue. In fact, it can just as
easily be used in a non-networked environment.
When an application receives some data, this can
come from a secondary storage medium such as disk
or tape as easily as from a network link. Developing
this principle, the information does not even have to
come from ‘outside’ the machine at all. Applications
can in fact use XML to communicate between
themselves at run time using operating system
services such as pipes and shared memory arenas.

Given that XML is not fundamentally an Internet
issue, it is therefore not a ‘web language’. It is
possible to present XML data in a browser by means
of stylesheets, however this issue is peripheral to the
core standard. XML is therefore not a direct
replacement for, or extension of HTML, although
the future of HTML is now a moot point.

What’s the Deal?

The pivotal issue is that XML is a universal file
format and therein lies the source of the commotion.
The principle of divide and conquer has proved time
and again to facilitate systems development because
it allows us to deal with problems in manageable
chunks. In fact, the softer the links between its
components, the more robust a system will be as a
whole. Indeed, the ‘decoupling’ theme is the prime
mover in the current trend towards component-
based development.

XML therefore enables us to soften the links
between system components, thereby allowing us to
protect and capitalize upon our development
investments. XML can do this in two ways.
Spatially speaking, an application can communicate
with another physically separate application without
advance knowledge of that application (hence the
fuss about XML and the Net). Temporally speaking,
an application can write data without prior
knowledge of the future applications that may read
it.

XML and the Application

This decoupling is accomplished by sending
descriptions of the information being communicated
along with the information itself. In other words the
data stream also contains metadata or ‘mark-up’ and
the price paid for this approach is that applications

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 4

WeKnow TheObject

must incorporate some form of parser to separate
mark-up from data.

The simplest form of parser is the event driven
variety whereby an appropriate procedure is called
for each type of mark-up construct encountered.
This is effected in C/C++ by means of pointers to
functions. The second class of parser is the tree-
based form where an internal data structure known
as a ‘document tree’ (essentially an object
hierarchy) is generated during analysis. Once the
tree is built, the application is free to navigate the
structure, reading and updating it as it chooses. If
need be, the tree can then be written out again, as
XML, to a file or network link.

Note that a number of third party parser
technologies are available to developers. Examples
are Microsoft’s COM based component, Vivid
Creation’s library and James Clark’s Expat.

Let us now explore some XML markup and see how
the syntax and grammar operate.

Some Syntax

A complete XML script is called a document and
although this is treated as a single logical object,
physically a document can be composed of many
separate files or ‘entities’. An XML document must
therefore be composed of at least one top-level file
called the ‘document entity’ and any files separate
to this are called ‘external entities’. The document
entity must contain a single top-level ‘element’, the
general form for which is as follows:

<StartTag>

 Data

</EndTag>

Here <Tag> tells the application that some marked-
up data follows and the </Tag> indicates the end

of that data. Note that Tag will normally be some
useful label for the enclosed data. This syntax
operates such that elements can be nested within
each other. For example:

<Tag>

 <NestedTag>
 Data
 </NestedTag>

 <NestedTag>
 Data
 </NestedTag>

</Tag>

Which allows complex composite data to be
represented. The second aspect to element syntax is
that the start tag can carry ‘attributes’. For example:

<Tag Attribute1 = “Data”,
Attribute2 = “Data”>
In essence, this is no different to the first general
example we saw in that an element is stated as
containing various data and this is one of the more
confusing aspects of XML. In a grammar such as C,
block enclosure and nesting is the only containment
model available, which makes for a considerably
simpler syntax.

In addition, ‘empty’ element tags are possible which
consist of a start tag but no corresponding end tag.
These take the following general form:

<Tag/>

Note the trailing slash indicating that this tag stands
alone. Empty element tags can possess attributes
and in fact this is their only real purpose as there is
no other way for them to ‘enclose’ data.

Let’s now see an example of the above general
forms in action:

<CompactDisc Type = “Music”
 Title = “Shifting Images”
 Band = “Stampede”>

 <Track Title = “Huckleberry Finn”
 RunningTime = “4.33”
 Copyright = “G Shelter”/>

 <Track Title = “Lemon Luminance”
 RunningTime = “4.19”
 Copyright = “A Livingboy”/>

 <Track Title = “The Seeing Room”
 RunningTime = “10.56”
 Copyright = “N Kiwit”/>

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 5

WeKnow TheObject

</CompactDisc>

This piece of XML describes a Compact Disc. The
attributes in the most enclosing start-tag state that it
is a music CD and detail the name of the album and
the band that recorded it. Our hypothetical CD also

contains three tracks and the empty element tags
representing these possess attributes describing the
title, running time and author.

Figure 1. Document tree that would be generated from this document (in UML notation)

Constraining Markup

The above XML script is an example of what is
called a ‘well formed’ document. This means that it
obeys all the rules such that start and end tags are
properly nested etc. However, there are no
constraints placed on this document. The
CompactDisc element could easily contain an
element describing the price of bread, which would
of course be inappropriate.

To assert the required structure and content of
marked-up content one must include a Data Type
Declaration or DTD. During processing the parser
checks the document’s element content and
structure against the constraints stated in the DTD.
If the elements conform to the DTDs type
declarations then the document is said to be valid.

In addition to a DTD, documents can contain an
‘XML Declaration’ in the document entity and a
‘Text Declaration’ in external entities. These can be
used to state what version of XML is being used
(although only version 1.0 currently exists), the kind
of character encoding scheme used and so on.

Note that DTDs, implemented as external entities,
provide the substrate for the XML vertical market

data formats that are becoming increasingly
available. Here an organization can define and
publish a data interchange standard for a given
domain thus making a lingua franca for that domain
available to all interested parties. Examples include
ChemML for defining documents that describe
chemical and molecular information, DocBook for
paper publications and MathML for mathematical
equations and data. There are also a slew of
business-oriented data formats such as FinXML,
OFX, Biztalk and cXML.

Further Markup

XML goes much further than the above example
however. It is possible to embed comments within
entities (files) just as one would in a traditional
programming language. There are some differences
however in that comment text can be made available
to the application that is parsing the document and
there are certain restrictions on the placing of
comments within an entity.

It is also possible to create predefined entities within
the DTD, which can be referenced in marked-up
content rather than spelt out explicitly. This facility
is very similar to the #define preprocessor directive
in C/C++. Note that these predefined character

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 6

WeKnow TheObject

sequences can be contained within entities that are
separate to the main document entity and in this
case the ‘entity reference’ mechanism operates very
much like the #include preprocessor directive in
C/C++. Further to this, it is possible for the DTD to
be held in part or whole in a separate file just as one
would keep all C/C++ type declarations and
prototypes in separate headers.

XML also supports the concept of conditional
sections which operate in much the same way as
would ‘comment out’ a section of code in a program
source file. Note however that this and the entity
reference mechanism explained above do not enjoy
the flexibilities we are used to in C/C++.

Of course there are times when we wish to use
mark-up characters such as <, > and & in their
literal form rather than as signals to the parser. To
cater for this, XML allows these characters to be
escaped by means of a ‘character reference’
mechanism. In addition, XML defines the concept
of non-parsed character data or CDATA sections.
These are areas of content that the parser ignores
completely thereby allowing markup characters to
be used literally without recourse to character
references. The purpose of CDATA sections is to
enable sequences of raw binary data to be carried
within a document thereby enabling an application
to send any kind of data such as images or sound.

Implications

There are however a number of implications in
using a markup solution to data interchange. Firstly,
because XML documents are human readable this
means that they can also be created by hand using a
simple text editor program. This is in marked
contrast to the use of proprietary file formats, which
often yield machine-readable data only.

However, although proprietary formats are generally
not human readable they can be considerably faster
to read and write and can therefore mean faster
applications. This is because the ‘meaning’ in the
data is implicit in its sequential byte ordering, as
opposed to being explicitly stated by bulky
metadata. Similarly the ‘understanding’ of the data
is integrated into the application code itself,
obviating the need for a separate parsing stage
between the information and the application’s
internal data structures.

In addition, marked-up data means larger files and
longer data streams. These therefore take up more
disk space and take longer to transmit across a
network connection. In addition, an XML
application will often be larger and slower because
of the parsing technologies involved. Indeed, this is
the classic time and space tradeoff we must accept

every time we choose to decouple systems
components still further. I.e. performance gets
slower and software gets bigger.

Finally, there are the human resource costs to
consider in a move to XML. Programmers need to
understand the syntax to be able to work with DTDs
and also need experience in working with parser
interfaces in order to produce shippable code.

As pointed out earlier however, the true significance
of XML is that disparate applications can talk to
each other. Using XML, an application can write
and read data to and from other unknown
applications. Moreover, should one really need
speed of transmission, it is quite possible to mix the
proprietary and universal file format approaches by
wrapping binary data in CDATA sections.

Further to this, XML text can be compressed before
transmission, which ameliorates the bandwidth
consideration significantly. Note that various
schemes have been suggested for making XML
more terse, usually at the risk of errors, however
none of these have been much more effective than
using compression techniques. In essence, XML’s
design favours readability and robustness over space
considerations.

Conclusion

In many ways the advent of XML can therefore be
seen as part of a trend towards greater unification,
which has a parallel in the rise of (UML) and this
can only be for the general good.

However, as a formal grammar or ‘expressive
system’, XML simply does not measure up. It is
fraught with restrictions and duplications and
generally lacks the flexibility that we enjoy in
languages such as C++. For example, there are two
entity reference mechanisms, DTDs use ‘parameter
entities’ and content markup uses ‘general entities’.
There are also restrictions in entity reference syntax
regarding external entities. In addition, one can use
either attributes or element nesting to the same
effect and this causes considerable confusion in
XML neophytes.

Furthermore, comments can be used to signal
sections of a document that must be ignored.
Yet CDATA sections do the very same thing, while
conditional sections can also be employed to the
same ends but only in external entities. Why not
have a single mechanism for ‘blindfolding’ the
parser? This would make markup semantics easier
to understand and parsers would thus be easier to
write, more reliable and faster in operation. To
signal the difference between a comment and run of

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 7

WeKnow TheObject

binary data one could use some form of ‘comment
header’.

Currently, a number of peripheral standards are
under development such as XLL (XML Linking
Language), XPath, XPointer, XSL (XML Stylesheet
Language) and XQL (XML Query Language).
Amongst these are XML schemas, which are a
proposed alternative to Document Type
Declarations. One reason that these are being
promoted is because DTD syntax is inextensible.
That is to say that additional markup properties
cannot be expressed beyond what the lexicon
allows. But wait a minute, are we not talking about
the eXtensible Markup Language...?

To be a complete heretic, one can argue that a close
cousin of C not a subset of SGML should have been
developed. Learning XML would then parallel the
transition from C++ to Java where the syntax is so
similar that an experienced C++ programmer can be
up to speed with Java in a matter of days. Instead of
having to digest a set of new (and somewhat arcane)
semantics, programmers would be able to read and
write XML syntax within hours. Moreover, the
grammar in which applications were coded (whether
C++ or Java) would be near identical to the
grammar written and read by those applications.
Now that would be real unification.
Muddying the waters still further, an initiative has
recently been launched to develop a cut down

version of XML called Simple Markup Language or
SML. Proponents point out that most developers are
using only a subset of the full specification and to
standardize on that would therefore result in a
language that was easier to learn and implement.
The proposed SML specification would be the same
as XML but with no attributes, processing
instructions, DTDs, CDATA sections and so on.

In conclusion, it would seem that Junior is a Curates
Egg and very much in a state of flux.
Moreover, we have been here before with Java and
have seen discrepancies in virtual machine
implementations and proprietary extensions to the
specification. XML is already showing similar
blemishes with, for example, discrepancies between
parsers. An overarching solution can only work if
the standard is adhered to by all and to the letter.

The reality however is that given its potential and
the industry’s response, individuals and
organizations alike cannot afford to ignore XML.
Indeed, it would appear that, despite the confused
picture, companies are already investigating and
implementing the XML approach because they fear
being left behind. It may have its shortcomings
however given the backing of the heavyweights and
its potential for the Internet; XML (in whatever
form it grows into) is not going to go away.

Richard Vaughan is a consultant and trainer with Ratio Group Ltd., specialising in C++,
Patterns and XML. Richard can be contacted at ‘richard.vaughan@ratio.co.uk’.

Ratio Group can be contacted on +44 (0)20 8579 7900.

P U B L I C S C H E D U L E C O U R S E

We Know the Object of…

XML for Software Developers
A Four-Day Hands-On Course

by Richard Vaughan

2 Dates in London, UK
6 – 9 March 2000 • 17 – 20 July 2000

This course will give you a sound theoretical understanding of XML and its related specifications,
while providing practical experience in implementing and applying XML within applications. It
covers a range of tools, technologies and approaches essential for managing the data interchange
requirements of a distributed computer environment.

For more information on this course, contact Ratio on +44 (0)20 8579 7900
or by email at bookings@ratio.co.uk

Please note: class size is limited, so book early!

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 8

WeKnow TheObject

Object Design Series

Designing Distributed Object Systems
Jason Garbis, author of Enterprise CORBA,

discusses the differences between designing stand-alone
and distributed object systems…

Introduction

At first glance, it seems that a component-based
application should be equally usable whether the
components are contained within a single process
(local), or distributed across multiple processes
(remote). Ideally, we’d be able to migrate from a
local component-based application to a remote one
in a straightforward manner, perhaps even
automatically with the help of a tool or two.
However, this is not the case. There is a
fundamental difference between local and remote
applications, even if they are both component-based.
Migrating from one to another requires a creative
human element, and designing for one is different
from designing for the other. We cannot blindly
transfer the object model from one to the other.

That’s the bad news. The good news is that
designing for local and remote applications are
nonetheless similar tasks, with a lot of overlap. In
this article, we explore the differences and important
things to be aware of. An illustrative way of doing
this is to look at an example of a local component-
based application, and examine how it would
behave if it were magically converted to a remote
application. However, before we can do this, we
need establish some context for this task.

Let’s define a component-based application as an
application that makes use of one or more
functionally distinct elements (components), each of
which is encapsulated inside a well-defined

interface. This is why, when we look at a well-
designed component application, it is appealing and
natural to make some of these functional
components accessible remotely, or to centralize
this functionality.

If we think about moving from a local, component-
based application to a remote one, what we are
really talking about here is the differences between a
2-tier architecture and an N-tier architecture.
Actually, this is a simplification, since most well-
designed applications are internally layered, and can
therefore be thought of as having internal tiers, and
not just being a 2-tier application. However, the
essential difference is that these tiers will now be
physically separated into distinct processes, perhaps
on different hosts.

This may mean that the server elements will be
servicing multiple clients concurrently, which raises
a number of additional issues. Alternatively, each
client process could have its own dedicated server
process. This deployment pattern is only applicable
under certain circumstances, and is less frequently
used. In general, distributed applications tend to
consist of server processes than service multiple
concurrent clients.

Sample Application

Let’s examine a sample component application, and
see what happens if we simply distribute it across
servers and hosts.

GUI

Authorization

Position
Modification

Financial
Analysis

Logging
Database

Figure 1. Elements of a simple financial services management application

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 9

WeKnow TheObject

Traders use the GUI to perform financial analysis
(in the Financial Analysis component) and modify
the holdings (positions) of their various portfolios in
the Position Modification component. These two
functional elements make use of the Authorization
and Logging components. All the components
(excepting the GUI) make use of the database as
well. There are multiple traders, and therefore
multiple client-side applications running
concurrently. The database can handle this, because
all access to it is performed within the end user’s

logon. The position manager’s updates are
transactional; again the database properly keeps
these updates isolated until the client application
either completes the transaction, or times out.

Because we did a good job designing our
components, and chose a technology that is well-
suited to remote as well as local access, we now
decide to repackage and redeploy this application,
with remote access to our components.

Database

GUI

Authorization

Position
Modification

Financial
Analysis

Logging

Figure 2. Possible deployment diagram

We now have multiple processing running
concurrently in our system, with some form of
communication between them. There are many
implications of this new deployment: First, the
remote components are now “farther away” from
each other. This means that rather than making local
(in-process) method invocations, all inter-
component interaction must use some mechanism to
communicate between processes or across hosts.
Any such remote invocation will be much, much
slower than a corresponding local invocation, so the
performance of the system will be slower.

Second, client elements now have to somehow
obtain a reference to each remote component at
runtime, rather than relying on local references
typically resolved at link time.

Third, we have broken up our local, relatively
monolithic system into a number of distinct
component communicating across a network.
Therefore, there are many more things that can go
wrong, and we must be able to detect and handle a
failure of any of the elements of the system.

Fourth, some of the components are now shared by
multiple client processes concurrently. This means
that we have to address issues of concurrency, client
session management, security, and transactions.
Fifth, we may need to duplicate functionality or
components in a distributed model. For instance, we
may want to have both local and remote logging
elements, in order to log greater detail locally than
remotely, and to be able to continue logging in the
event of a failure.

Wow! That certainly seems complex and dangerous,
and may be scary enough to convince us not to
develop distributed applications at all! Fortunately,
of course, we not typically faced with migrating a
local component application to a remote component
application, but rather designing these separately.
Because the design process for these two tasks is
different, we can address all these issues in our
distributed system model, rather than addressing
them after the fact. That is, we cannot simply
translate from a local object model to a remote
model. To turn this statement on its head, designing
for local access is different than designing for

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 10

WeKnow TheObject

remote access – it includes the additional step of
turning a local component model into one suitable
for remote access.

How can we begin to adapt our design process to
address the different characteristics of local and
remote systems? First, we need to recognize that our
object model should properly reflect all our
knowledge of our business domain. This seems like
an obvious goal; the point is that we want to
consider the intended distribution aspects of our
system only after our knowledge of the business
model is relatively complete. That is, we suggest an
additional step in the design process, where we
begin to model the system’s distribution, and design
the exposed component interfaces based on the
business objects, the distribution architecture, and
the use cases.

Approaches to Handling
Distribution

We offer the following general approaches to the
distribution step. Remember that we begin with a set
of components suitable for local access, and need to
modify this so that it results in a component that can
be robustly and efficiently accessed remotely.
• Increase the granularity of exposed components
• Make judicious use of non-Object-Oriented

elements, such as structures

Let’s look at these in turn.

Increase the granularity of exposed
components

The object model should contain as many elements
as are needed to properly model your business
domain. However, this can result in a fine-grained
object model; that is a model with many “small”
classes, with many attributes or methods exposed
across the classes. This may make sense for local
access, but may perform poorly for remote access,
due to both the large number of remote method
invocations that must be performed, as well as the
large number of object references that must be
obtained and managed by the client. By increasing
component granularity, we mean consolidating local
classes into a smaller number of remote
components, and increasing the amount of work
performed for each remote invocation. This has the
effect of reducing the number of object references
our clients must obtain and manage, as well as
reducing the number of remote method invocations
performed.

Of course, these tasks must be performed
intelligently – ay, there’s the rub. Our consolidated
component should only be comprised of logically

related local classes. Likewise, by deliberately
reducing the number of methods exposed, we are
changing the flavor of our system, and often
offering service-level interfaces rather than
attribute-level interfaces. The important thing is to
make sure that this consolidation is done with full
knowledge of our expected use cases.

Make judicious use of non-Object-
Oriented elements

When designing components for remote access, it is
important to realize that not everything should be an
object. This may seem unappealing to purists, but in
practice, it is often a necessary step in order to
achieve acceptable performance and scalability. Our
intention should be to look at how clients need to
access the data associated with our objects, and
based on this knowledge, present the data in
efficient and concise manner. For instance, consider
a class with 10 attributes. In a local application, it
may make sense to expose this state via 10 getter
and setter methods. For a remote application, such
an element would be very inefficient to use, and
would be better off representing the state in a single
data structure with 10 fields, and only expose a
single get and set method.

Another approach is to not expose business, but
rather expose manager objects, which manipulate
the data associated with the business objects. In this
case, clients make invocations on the manager
objects, and identify the target object by passing in
an Object ID to the manager object. Let’s look at an
example of performing both these steps.

Position

PositionStatus
Company ID

CurrentValuation(...)
buy(...)
sell(...)

Purchase Lot

DateOfPurchase
Price
NumberOfShares

currentPerformance(...)

Figure 3. Example of object model performing
both steps suggested above.

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 11

WeKnow TheObject

Both the Position and PurchaseLot elements
are modeled as objects, each having some attributes
and methods. In addition (not shown), we will need
a PositionFactory to create Position
objects. The effect of choosing this model is that

everything is an object. This is conceptually easy to
work with, and useful, for a local application.

Let’s consider how this model would behave as a
remote application. We map this to OMG IDL in a
straightforward way, as follows:

// OMG IDL
// typedefs, enums, structs and exceptions omitted
interface PurchaseLot; // forward declaration

typedef sequence<PurchaseLot> lotSeq;

interface Position
{
 attribute PositionStatus status;
 attribute string companyID;

 Money currentValuation();
 PurchaseResult buy(…);
 SaleResult sell(…);
 lotSeq getLots(…);
}

interface PurchaseLot
{
 attribute Date dateOfPurchase;
 attribute Money purchasePrice;
 attribute long numberOfShares;

 Performance currentPerformance(…);
}

These interfaces are rather fine-grained – in order to
fully evaluate a position, clients have to obtain
references to one Position object, and multiple
PurchaseLot objects, and must make numerous
remote invocations. If our use cases are such that

this is a common occurrence, our GUI will likely
perform slowly. Designing for remote access would
lead us to a slightly different model, of coarser
granularity. An example of this is shown below.

// OMG IDL
// some typedefs, enums, structs and exceptions omitted
struct PositionLot
{

string lotIdentifier;
Date DateOfPurchase;
Money Price;
long NumberOfShares;

};

typedef sequence<PositionLot> seqPositionLots;

struct Position
{
 string positionID;
 PositionStatus status;
 string companyID;
 Money currentValue
 seqPositionLots lots;
};

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 12

WeKnow TheObject

interface PositionManager
{
 Position getPosition(in string positionID);
 PurchaseResult buy(in string positionID, …);
 SaleResult sell(in string positionID, in LotIDSequence lotsToSell, …);
}

With this model, client applications only have to
obtain a single object reference – the
PositionManager. Position information is
exposed as a single data structure, which clients can
efficiently retrieve in a single invocation on
getPosition(). Each time a client makes an
invocation on the PositionManager, it
identifies the position to work with, by passing a
positionID argument. This approach is a bit like
a Remote Procedure Call (RPC), but has a number
of advantages for remote systems. First, it tends to
reduce the number of remote invocations made by
clients. Second, it usually reduces the number of
object references that clients must obtain. These two
advantages are especially true for the common
search-and-select-one use case, where clients
perform a query and display the results so that the
user can select one business object to perform
further work with.

Note that this example shows both the coarsening of
interfaces (by eliminating multiple interfaces in
favor of a manager interface), and the introduction
of data structures rather than object attributes. In
many cases, we may choose to make use of only one
of these approaches, and still obtain significant
benefits. For example, rather than eliminating the
Position interface, we may choose to keep it,
and augment it with a corresponding
PositionInfo data structure. Combining these
will allow us to view the business object as data
when it’s most beneficial (such as in search-and-
select, or update), but also treat it as an object when
that perspective is beneficial (such as in invoking
semantically meaningful business methods, or
dealing with relationships between objects).

Going from Remote to Local

What about the reverse task – that of taking remote
components and combining them into a single, local
process? In general, this step can be performed

without modifications to the deign, as long as the
required infrastructure functionality is supported
locally as well as remotely. Obviously, the
platforms and languages must be compatible, in
order to combine these components into a single
process. In addition, a distributed application may
rely on the containing server to supply some
infrastructure elements, such as security or
transactionality. If components are put into a single
process, without a container, such features may be
lost. This would be the case, for instance, with an
Enterprise Java Bean. It relies on its container to
enforce the transactionality and security declared by
the bean developer. If a client were able to invoke
directly on the bean implementation outside of a
container, security and transactionality would be
lost.

Conclusion

Designing a component application for remote
access involves additional considerations than
designing for local access. We suggest an additional
step in the design process, where business objects
are compared to the anticipated use cases, and
modified to expose coarser interfaces and make use
of non-object-oriented elements such as data
structures. In addition, remotely accessed
components must address new issues such as
security (authorization and authentication),
concurrency, partial failure, or transactions. These
issues may have been nonexistent, or relied on
implicit solutions in a local environment. In a
distributed environment, they must be explicitly
addressed. Despite the additional complexity, the
benefits of distributed component applications are
well-proven and well-worth the effort required. The
guidelines outlined here should help you realize
these benefits.

Jason Garbis is Principal Consultant with IONA Technologies, and is co-author of ‘Enterprise CORBA’,
published in 1999 by Prentice Hall Professional Technical Reference.

Jason can be contacted at ‘jason.garbis@iona.com’.

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 13

WeKnow TheObject

Object/Component Architecture Series

Product Line Architectures
Jan Bosch, author of the forthcoming book 'Design and Use of Industrial Software

Architecture' discusses software product lines…

Introduction

Achieving reuse of software has been a long
standing ambition of the software engineering
industry. Every since the 1960’s, the notion of
constructing software systems by composing
software components has been pursued in various
ways. In the first proposals, components contained
functions that could be reused by application
programmers, whereas, with the emergence of
procedural programming languages, the level was
lifted to modules. Although modules could be of a
considerable granularity, they were intended to be
reused without adaptation which reduced their
usefulness drastically. The subsequent paradigm, i.e.
object-oriented programming, provided a solution to
that problem by representing modules as classes that
could be inherited and extended by subclasses.
However, the granularity of classes is limited, which
lead to the definition of object-oriented frameworks.
A framework was traditionally intended to provide
the basis for application development, but, during
recent years, frameworks are used increasingly often
as coarse-grained components.

Component-oriented programming has been an
emerging trend during the 1990s. Most proposals to
achieving component-based software development
assume a market divided into component
developers, component users and a market place.
However, this proved to be too ambitious for most
types of software. This has been identified during
recent years and there has been a shift in focus from
world-wide reuse to company-wide reuse of
components. Parallel to this development, the
importance of an explicit design and representation
of the architecture of a software system for the
fulfilment of the quality requirements of systems
has become increasingly recognized.

The combination of the discussed concepts and
developments lead to the definition of software
product lines. A software product line consists of a
product line architecture, a set of reusable
components and a set of products derived from the
shared assets. Among others, one of the important
differences between traditional approaches to reuse
and software product lines is that it is explicitly
recognized that adopting a software product line
approach has organizational, process, technology
and business aspects, i.e. it affects the complete

software development organization. The success
from early adopters, including several large
european industries, in the context of EU ESPRIT,
i.e. ARES and PRAISE, or ITEA/Eureka, i.e.
ESAPS, projects, and otherwise, has shown that this
technology has the potential of creating pervasive
reuse in real industrial contexts; something that
traditional approaches to reuse did not succeed with.

The notion of software product lines is the topic of
this article, which will only provide an overview
over the concepts and issues associated with this
approach. For a more extensive discussion, I refer
you to an upcoming book from Addison-Wesley
[Bosch 00]. In the remainder of this article, we first
introduce the notion of software product lines and
especially the phases and processes associated with
the development and evolution with it. Then we
discuss some organizational models for software
product line based development and we describe
some experiences from companies that have adopted
this approach.

Software Product Lines

Software product lines present a highly promising
approach to achieving reuse of software within an
organization. In figure 1, the main components of a
software product line are shown. The main component
is the product-line architecture, i.e. the software
architecture that captures the commonalities
between the products in the product line, while sup-
porting the differences between the various
products. The second concept is the component set
that contains implementations for the architectural
components defined by the product line architecture.
These components may be traditional code modules,
but also object-oriented frameworks are frequently
used. The third main asset in the software product
line is represented by the products derived from the
reusable assets. For each product, first a product-
specific software architecture is derived from the
product line architecture. Then, suitable components
are selected from the component set and instantiated
with product-specific information and, where
necessary, code extensions. If necessary, product
specific code is developed for the product
requirements not supported by the reusable assets.
Finally, the product architecture, the instantiated
components and the product-specific code is
integrated to form the final software product.

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 14

WeKnow TheObject

Figure 1. Overview of the main software product line assets

In the sections below, we discuss the development,
deployment and evolution of a software product line
in more detail.

Development
When the decision to initiate a product line has been
taken, the first step is the development of a software
architecture for the product line that supports the
functional and quality requirements of the systems
included in the family. This phase includes activities
such as scoping, commonality and variability
analysis, architectural design and verification.

Once the product line architecture has been
designed, the subsequent phase is the development
of the components that make up the common part of
the system family. We discuss two types of
components, i.e. traditional components as
presented by contemporary literature, e.g.

[Szyperski 97], and object-oriented frameworks. In
our cooperation projects with various industrial
software development organizations, we have seen
an increase in the use of object-oriented frameworks
as components in product line architectures. One
reason for this is the high level of configurability
that is available within an object-oriented
framework. This suits the notion of system-families
very well, since it allows for the easy configuration
of components for individual systems.

The development of systems based on the product
line architecture and components could be viewed
as the third phase in development. However, since

the focus of this phase is on software architectures
and reusable components, we discuss system
development in the next part, i.e. deployment.

Designing a product line architecture
The design process of the product line architecture
consists of six main steps, i.e. business case
analysis, scoping, feature and system planning,
product line architecture design, component
requirement specification and verification. Below
each of the steps is briefly summarized:
• Business case analysis: This analysis is

concerned with establishing, at a sufficient level
of certainty, that the product line approach
represents a cost-effective and superior
approach. In addition, the analysis provides
data for deciding on a revolutionary or
evolutionary path to convert from a product-
based to a product line based organization of
software development.

• Scoping: This activity determines the systems
and the product features that are included in the
product line. It may not be beneficial or even
desirable to include all systems and features in
the product line; especially not from the start.

• System and feature planning: The focus of
this step is on identifying the characteristics of
subsequent versions of the product line
architecture. Since there will be continuous
development of the product line architecture in
terms of the features and systems it supports
and incorporating new, but anticipated, features
is generally considerably easier than

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 15

WeKnow TheObject

unanticipated features, it is important to
develop a plan for feature incorporation.

• Product line architecture design: The main
step in the process is, obviously, the design of
the software architecture for the product line. In
[Bosch 00], we present the Quality Attribute-
oriented Software Architecture (QASAR)
design method. QASAR consists of three main
phases, i.e. functionality-based architecture
design, architecture assessment and architecture
transformation. The latter two phases are
performed iteratively until the software
architect is confident that especially the quality
requirements are fulfilled. In addition, the
software architecture design process should
maximize the possibility to derive product
architectures from the product line architecture.

• Component requirement specification: The
software architecture dictates a set of
components that implement the required
behaviour. This activity is concerned with
specifying the requirements for each of the
components. The requirement specification
defines the interfaces, the functionality, the
quality attributes and the variability that the
each component should support.

• Verification: Finally, before entering the next
activity, i.e. component development, it is
important to verify that the product line
architecture supports the requirements specified
by the stakeholders. This can either be
established by a stakeholder meeting or by
architecture assessment teams that perform an
external evaluation.

Developing reusable components
The component development process is rather
constrained due to the aspects, rules and constraints
imposed by the software architecture and the,
potential, presence of legacy code that may need to
be incorporated. Components, in our definition,
should support three types of interfaces, i.e.
provided, required and configuration interfaces. The
provided and required interfaces are intended for the
interaction with other components. The provided
interface presents the operations that can be invoked
on the component, whereas the required interface
specifies what components and operations the
component requires access to for correct operation.
The configuration interface is intended for use by
the user of the component. When constructing an
application or system based on reusable
components, each component needs to be
instantiated and configured. The configuration
consists of defining, for each variation point
supported by the component, what concrete
variation should be used in this component instance.
Each configuration interface provides access to a
variation point and allows the software engineer to
control it.

An important aspect of component development is
to design the configuration interface. A number of
configuration mechanisms are available to the
software engineer, e.g. inheritance, extensions
(especially providing hooks), configuration
(selecting and arranging predeveloped pieces on
functionality), template instantiation and generation
(generating an instantiated component based on an
input specification).

Finally, the companies that we work with generally
use object-oriented frameworks as components in
their software product line. The advantages of using
object-oriented frameworks is that it allows for
coarse-grained components and yet supports
considerable variability for each instantiation of the
framework. In [Bosch 00], we distinguish a number
of different approaches to using object-oriented
frameworks, i.e. the system-specific extension
model, the standard specific extension model, the
fine-grained extension model and the generator-
based model.

Deployment
The software architecture and set of reusable
component that are part of the product line are
deployed during system development. The intention
is that the effort required for the development of
systems should be decreased drastically by using the
architecture and component as a basis for the
system. The instantiation of systems based on the
reusable assets in a software product line consists of
seven steps, i.e. requirement specification, system
architecture derivation, family component selection
and instantiation, development of product-specific
components, system integration, system validation
and, finally, system packaging and release. Below, a
selection of these steps is discussed.

Software architecture derivation is concerned with
configuring the product line architecture based on
the system requirements, leading to a product
software architecture. The configuration includes
the addition and removal of components and
relations in the architecture.

Component selection and instantiation is concerned
with the product line components that will be used
in the system under development. The instantiation
may consist of two parts, i.e. straight-forward
configuration of the component and the
development of product-specific component
extensions. Configuration includes activities such as
parameter setting and defining input specifications
to code generators. The development of product-
specific component extensions occurs typically
when using white-box framework as a component.
In that case, the component architecture and its
generic behaviour have been defined, but the

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 16

WeKnow TheObject

system-specific code needs to be added by the
software engineers developing the actual system.

Finally, it may be necessary to develop product-
specific software. The product line components do
not necessarily implement all product requirements.
The subset of the requirements that is not fulfilled
by the product line must be implemented by
product-specific software. This software is not part
of the product line, but only included in the source
code for the specific system. When using the
evolutionary approach to developing a product line,
the product- specific software may provide useful
hints about likely useful extensions to the
functionality supported by the product line.

Evolution
Once the first versions of the product line
architecture, the set of components and the set of
systems have been developed, the evolution of all
these assets will become the primary activity.
Evolution is, up to some extent, similar to
development, but the presence of assets is a major
complicating factor. The evolution is initiated by
new requirements on existing systems and by new
systems that need to be incorporated in the product
line. Evolution caused by the new requirements
takes place on all assets, i.e. architecture evolution,
component evolution and system evolution. Archi-
tecture evolution is concerned with changes to the
components that make up the product line
architecture, changes to the relations between these
components, etc. Component evolution is concerned
with the incorporation of new and changed
requirements on the component functionality which
generally affects the component internals, but may
also affect the component interface, which causes
effects on the architectural level.

Product evolution may express itself in two ways.
Traditionally, systems evolve through subsequent
versions that incorporate new requirements. During
recent years, a new type of system evolution can be
identified, i.e. run-time evolution. Systems or
products that have been shipped to customers can be
upgraded with new components or new versions of
existing components. However, each individual
instance of the system may have its own
configuration of older and new component versions.
Run-time evolution is also referred to as dynamic
architecture.

Organization

We have identified four organizational models for
software product lines. Below, we discuss, based on
our experiences, the applicability of the model, the
advantages and disadvantages and an example of an
organization that employs the particular model.

• Development department: In this model
software development is concentrated in a
single development department, no
organizational specialization exists with either
the software product line assets or the systems
in the family. The model is especially suitable
for smaller organizations. We have seen
successful instances of this model up to 30
software engineers. The primary advantages are
that it is simple and communication between
staff members is easy, whereas the
disadvantage is that the model does not scale to
larger organizations.

• Business units: The second type of
organizational model employs a specialization
around the type of systems in the form of
business units. The business units share the
product line assets and evolution of these assets
is performed by the unit that needs to
incorporate new functionality in one of the
assets to fulfil the requirements of the system or
systems it is responsible for. Three alternatives
exist, i.e. the unconstrained model, the asset
responsibles model and the mixed responsibility
model. The model is often used as the next
model in growing organizations once the limits
of the development department model are
reached. Some of our industrial partners have
successfully applied this model up to 100
software engineers. An advantage of the model
is that it allows for effective sharing of assets
between a set of organizational units. A
disadvantage is that business units easily focus
more on the concrete systems rather than on the
reusable assets.

• Domain engineering unit: In this model, the
domain engineering unit is responsible for the
design, development and evolution of the
reusable assets, i.e. the software architecture
and the components that are make up the reusa-
ble part of the software product line. In
addition, system engineering units are
responsible for developing and evolving the
systems built based on the product line assets.
The two alternatives include the single domain
engineering unit model and the multiple domain
engineering units model. In the latter case, one
unit is responsible for the product line
architecture and others for the reusable software
components. The model is widely scalable,
from the boundaries where the business unit
model reduces effectiveness up to several
hundreds of software engineers. One advantage
of this model is that it reduces communication
from n-to-n in the business unit model to one-
to-n between the domain engineering unit and
the system engineering units. Second, the
domain engineering unit focuses on developing
general, reusable assets which addresses one of
the problems with the aforementioned model,

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 17

WeKnow TheObject

i.e. too little focus on the reusable assets. One
disadvantage is the difficulty of managing the
requirements flow and the evolution of reusable
assets in response to these new requirements.
Since the domain engineering unit needs to
balance the requirements of all system
engineering units, this may negatively affect
time-to-market for individual system
engineering units.

• Hierarchical domain engineering units: In
cases where an hierarchical product line has
been necessary, also a hierarchy of domain
units may be required. The domain engineering
units that work with specialized product lines
use the top-level assets as a basis to found their
own product line upon. This model is
applicable especially in large or very large
organizations with a large variety of long-lived
systems. The advantage of this model is that it
provides an organizational model for effectively
organizing large numbers of software
engineers. One disadvantage is the
administrative overhead that easily builds up,
reducing the agility of the organization as a
whole, which may affect competitiveness
negatively.

Experiences

Finally, we have recognized a number of additional
factors that influence the organizational model that
is optimal in a particular situation. These factors
include geographical distribution, project
management maturity, organizational culture and
the type of systems.

We have studied and cooperated with several
companies that employ a software product line
approach. We discuss experiences of these
companies and the issues that have been
encountered by the staff at these organizations.
These experiences and issues have been organized
into organizational, process and technology issues.

Organizational topics that need to be addressed
include, among others, the increased amount of
required background knowledge by software
engineers, the lack of management support for long
term goals, the questioned need for domain
engineering units, the difficulty of selection the
appropriate organizational model, the time-to-
market pressure against the quality of the reusable
assets and the lack of economic models.

Process issues that were identified by the companies
involved in the case studies include the importance
and difficulty of information distribution between
business units, the difficulties associated with
maintaining up to date and accurate documentation,
effort estimation problems, especially when

designing reusable assets, and the scoping of the
software product line.

Several issues related to technology were identified,
including the need for multiple versions of reusable
assets, the increasing number of implicit
dependencies between components during
evolution, the difficulty of using components in new
contexts, the lack of appropriate tools support,
feature scoping, early intertwining of functionality
and the lack of encapsulation boundaries and
required interfaces.

Concluding, software product lines can and are
successfully applied in software development
organizations, ranging from small to large. These
organisations that we studied are struggling with a
number of difficult problems and challenging issues,
but the general consensus is that a software product
line approach is beneficial, if not crucial, for the
continued success of the organisations.

Conclusion

Software product lines are present an approach to
achieving pervasive, company-wide reuse of
software assets. Different from earlier proposed
approaches to achieving software reuse, software
product lines are already successfully applied by a
variety of software development organizations. The
principles underlying software product lines do not
only apply to companies developing products, but
also to software consultancy companies and IT
departments. The advantages of using software
product lines include drastic decreases in software
development and evolution cost, time-to-market and
staff numbers. However, adopting a software
product line approach must be a strategic decision
because it affects the business model, the
organization, the processes and the technology
associated with software development.

In this article, we have presented an overview of the
main processes and issues associated with software
product lines. The main steps while adopting a
software product line approach include the design of
a software architecture for the product line, the
development of the reusable components and the
derivation of the products that are part of the family.
Once the software product line has been initiated,
the evolution of all the aforementioned assets
becomes the main challenge. We have discussed a
number of organizational models that can be
adopted for software product lines. Finally, the
experiences collected from a number of companies
that have applied software product line principles
for several years have been presented.

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 18

WeKnow TheObject

References

[Bosch 00] J. Bosch, Design and Use of Industrial
Software Architectures (working title), Addison
Wesley Longman (forthcoming), ISBN 0-201-
67494-7, June 2000.

[Szyperski 97] C. Szyperski, Component Software
- Beyond Object-Oriented Programming, Addison-
Wesley, 1997.

Jan Bosch is Professor of Software Engineering at the University of Karlskrona/Ronneby in Sweden. He is
author of ‘Design and Use of Industrial Software Architectures’ to be published June 2000

Jan can be contacted at 'Jan.Bosch@ipd.hk-r.se'

P U B L I C M A S T E R C L A S S

We Know the Object of…

Component-Based Development –
Principles & Practices

A One-Day Seminar
by Bertrand Meyer

Author of “Object-Oriented Software Construction”

2 June 2000
London, UK

Component-Based Development (CBD) is increasingly emerging as the technique
of choice for developing the production systems of the future. A number of
competing component standards have appeared, fuelling the excitement about
CBD but also raising concerns of incompatibility. This seminar surveys the state of
the art of CBD, describing the promises of the approach while describing current
pitfalls and presenting decision-makers and developers with practical advice for
success in a component-based world.

For more information on this course, contact Ratio on +44 (0)20 8579 7900
or by email at bookings@ratio.co.uk

Please note: class size is limited, so book early!

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 19

WeKnow TheObject

Object/Component Architecture Series

The Topsy Turvy World of UML
Hubert Matthews and Mark Collins-Cope discuss a visual metaphor mismatch that

inhibits OO designers thinking architecturally.

Diagrams are a common way of writing down and
communicating ideas. We use them for all sorts of
things – road maps, wiring diagrams, UML class
diagrams, etc. One common feature of diagrams is
that all parties must understand the meaning of the
symbols being used – blue roads represent
motorways on most road maps, for instance.
Communication is difficult without this shared
knowledge, as one has to ask what a symbol means,
how is it different from some other symbol, and so
on. Thus at first we need some form of legend or
rubric to help us decipher the symbols.

Once we have assimilated the symbols we can start
to search for their meaning. This involves
understanding how and why they are connected in
that particular way. One great aid to comprehension
is to have standard conventions – maps traditionally
have North towards the top, circuit diagrams have
inputs on the left and higher voltages at the top.
This is what we’re used to and it helps to orient us.
Breaking these conventions slows us down and is
usually counter-productive.

What happens, however, if two related diagramming
conventions contradict each other? Let's look at
UML class diagrams and architectural diagrams.

UML class diagrams, used to show the static
structural aspects of object-oriented designs,
traditionally have superclasses towards to the top of
the page and subclasses drawn underneath them, as
follows:

Context AbsIF

Child1 Child2

Figure 1. Class diagram showing inheritance
relationship

The inheritance relationship in the class diagram
(Figure 1) is sometimes referred to as specialisation.
This is a clue to one of the conventions of the class
diagram: more specialised things are shown towards

the bottom of the diagram. The reasons for this
convention are probably rooted in the way we talk
about them: "the AbsIF is at a higher level of
abstraction, its subclasses at a lower level."

Architectural diagrams, such as in Figure 2 below
(an older notation), sometimes used to show the
layering of the software in a system, show the most
application specific layers towards the top of the
diagram, and we talk about them accordingly: "this
software is built on top of our persistence
framework, which is in turn built on top of the
underlying platform software… "

Debit
controlControl

Financer Daily checks

persistence

Customer

RDBMS

Account

Figure 2. Layered Architecture

Now this would be a big "so what" if it were not for
one important fact. The two types of diagram show
us different views (or levels of detail) of essentially
the same thing: the structure of our software. Let's
try super-imposing a UML class diagram and an
architectural layering diagram on top of each other
(with thanks to the Gang of Four's Factory Method
pattern for the example):

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 20

WeKnow TheObject

product

concrete
product

creator

concrete
creator

higher architectural
layer

lower
architectural

layer

Figure 3. Super-imposed UML class diagram and
architectural layering diagram

Something is clearly wrong here. We've got the
abstract classes in the more application specific
higher architectural layer - when in fact they should
be in the lower layer - being more generic and re-
usable than their concrete derivatives; and the
software dependencies go upwards, rather than
downwards as implied by the standard architectural
convention.

Reworking the diagram, reversing the common
UML convention, we get the following:

concrete
product

product

concrete
creator

creator

higher architectural
layer

lower
architectural

layer

Figure 4. Figure 3 reworked, reversing the common UML convention

The two diagram types can now be seen to
complement and reinforce each other perfectly. At
the lower architectural level (perhaps a level
indicating re-usable infrastructure) we have the
abstract product and creator classes. At the higher,
more application specific (and less re-usable) level,
we have concrete realisations exploiting the
infrastructure provided. It all makes perfect sense -
and we may even have gained an additional clarity
on why we were using the factory pattern in the first
place!

So, two conventions, both pervasive in the industry,
are clearly at direct odds with each other - causing a
visual metaphor mismatch that we believe inhibits
broad architectural thinking during design. Since
adopting the highest is most specific convention
when using class diagrams, we have found a lot of
our design and architecture thinking has clicked
rather neatly into place, visualising and organising
architectural dependencies has become easier, and
we've got a much clearer view on what it means -
architecturally - for a component or package to be
re-usable. Copernicus would have been proud :-)!

Mark Collins-Cope and Hubert Matthews undertake design and architecture consultancy for Ratio Group.
They can be contacted on +44 (0)20 8579 7900 or by email at ‘markcc@ratio.co.uk’ or

‘hubert@ratio.co.uk’ .
The diagrams presented above are taken from Ratio's 2-day Component-Based Development using UML

training course. Further details of this course can be obtained by emailing ‘info@ratio.co.uk’ or calling the
contact number above.

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 21

WeKnow TheObject

Development Process Series

OPEN is the Objective

Author Brian Henderson-Sellers introduces the
OPEN Development Process…

What is OPEN?

OPEN is a third-generation, full lifecycle, process-
focussed, object-oriented methodological approach
that is ideally suited for component-based
development as well as object-oriented software
development. OPEN stands for Object-oriented
Process, Environment and Notation and is in the
public domain. OPEN in fact defines a process
framework that can be (and is meant to be) tailored
to specific projects, specific organizations, specific
skills sets and so on.

Let's take each of those italicized adjectives in my
first sentence in turn and return to the framework
issue at the end.

OPEN is an object-oriented (OO) methodological
approach. Whilst there is some discussion about
exactly what a software development methodology
is or should be, it is generally agreed that it should
encompass rules, suggestions, heuristics, guidelines
etc. for building software systems. Indeed the
number of elements and its structure can be quite
complicated (Figure 1).

Figure 1. What is a method? (redrawn from Graham et al., 1997)

Many methodologies focus very much on the rules,
tips and techniques for modelling but do not address
the larger scale issues of people (roles in Figure 1),
process, project management, quality assessment,
metrics, standards and so on. A good methodology
should do all of these.

Methodologies, often simply called methods, have
been around a long time; but it is only since around
1990 or so that they have been available to support
object-oriented development. An object-oriented
approach relies on the notions of abstraction, strict
modularization & information hiding and

polymorphism. Requirements, design and code all
use the same model of the "object" which
encapsulates together state and behaviour with a
tightly controlled interface. The initial emphasis is
always on the "what" not the "how" within the
development lifecycle. With this more holistic view
of modelling and software design, it is beneficial to
ask about the high-level responsibilities that an
object has: responsibilities for doing, for knowing
and for enforcing. In later design and coding, these
are translated into methods of the classes. Whilst
using a responsibility-focussed approach is found
useful, object orientation can also give good results

TOOLS &
TECHNIQUES

MODELLING
LANGUAGE

MODELLING
PROCESS

METHODOLOGY

METRICS

QA

STANDARDS

MODELS

METAMODEL

NOTATION

TOOLS

WORK
PRODUCT

PROJECT
MANAGEMENT

ROLES

PROCEDUREbased on

represent

using

KEY

class

association/
mapping

aggregation

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 22

WeKnow TheObject

using a data-driven approach or a use case driven
method, depending on the particular problem and
problem domain.

OPEN is a third-generation OO methodology. The
first OO methodologies, created about 1990, were
primarily tips and techniques rather than true
methodologies. However, they are often referred to
as first generation OO methodologies. They were
constructed by individuals or small groups. They
were used in pilot projects in industry and in
teaching. By about 1994 two things were happening.
Methodological writing increased so that the
original methodology developers of 1990, along
with an increasing number of others, started to read
widely and incorporate good ideas from a wide
variety of sources in their own methodologies. The
methodologies began to look more and more like
each other, supporting common ideas and common
principles. Once published, these became known as
second generation methodologies. Typical examples
are Booch's 1994 approach, the SOMA approach
and MOSES (the last two being direct precursors of
OPEN). Despite the publication and teaching of
these second-generation methodologies, it soon
became clear to these methodologist authors that the
software industry in general still seemed reticent to
adopt their ideas. One reason was perceived to be
the lack of support in the sense that second-
generation methodologies were still under the
control of only one person or, at best, a small group
of people. Furthermore, CASE tool vendors found it
difficult to support such a large number of
methodologies. In addition to good tool support, for
largescale industrial usage, an industrial user needs
to be sure that, if one provider of support vanishes,
there will remain alternative sources. This led to the
active collaboration of methodologists in order to
create third-generation methodologies. Begun in late
1994, OPEN is the premier example of a third-
generation methodology, created by the
collaboration of over 30 methodologists,
researchers, tool vendors and practitioners
worldwide.

OPEN is a full lifecycle methodology. Software can
be considered to have a lifecycle from birth to death.
The need for software can arise when business
problems need solution. So the first step (the birth)
occurs when a business problem is identified. This
is a problem which must be clearly enunciated. And
although a software solution is not mandated at this
stage, for those problems that do lead to a software
solution, the requirements engineering activity,
which focusses on the elucidating the business
problem, is clearly a vital part of the software
lifecycle. Business decision making, requirements
engineering and systems analysis are all "early
lifecycle" activities. OPEN includes tasks and
techniques which are useful in these early stages.

Few other OO methodologies pay more than lip
service to these more business-focussed issues. Yet
in the real world, if technology (here object
technology or OT) is to be relevant to commercial
environments, an OO method must consider these
early lifecycle issues and not just assume that the
lifecycle begins with the handing over of a clearly
and uniquely defined requirements definition to the
software developer.

Similarly, a methodology should cover the late
lifecycle activities. Whilst most are good at program
design and coding, they tend to tail off in their
coverage of issues such as deployment and user
training and future enhancements/maintenance. It is
just as important that a method addresses these
issues, perhaps using testing metrics to do fault
detection and usability studies to evaluate customer
acceptance of the delivered product, for instance.

OPEN is a process-focussed methodology. Process
is the key to good software development practices.
It imposes order and rigour. A process, of any sort,
tells you how to take certain steps in order to
accomplish a specific task or goal - to get something
done. Taking steps involves ordering those into
some sequence because we live in a temporal
universe and, as individuals, do not live concurrent
lives. A process offers a repeatable and manageable
underpinning to software development. It has been
called "documented decision making" and equated
to workflow description.

Different problems, architectures, people,
organizations etc. need different process models -
for example, waterfall, spiral and recursive/parallel;
whether the project is the first of its kind or a
variation on a theme; whether the focus is a one-off
development or whether the creation of reusable
assets is of major concern.

Some software development seems to occur in a
very ad hoc fashion. When successes occur, the
underlying reason is not obvious and there is no
means to identify how to repeat the success. And
conversely, when failures occur (as they inevitably
will in an ad hoc development shop), there is no
way of identifying how to fix the process and learn
from the failure and avoid a repeat failure in the
future.

A process of any sort lays down some guidelines to
help developers set their own (personal and team)
standards that they can follow. It is then possible for
other personnel to temporarily or even permanently
take over a role and for managers to control,
monitor and evaluate how well the development is
progressing towards completion. A process thus
identifies activities that need to be done, probably
recommends means by which to achieve these goals

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 23

WeKnow TheObject

and, most importantly, creates a sequence (or a set
of sequences) which allows temporal planning.

Processes may be in an individual's head or may be
written down as an organizational (or international)
standard to be followed on each project. They may
be large or small; "authoritarian" or flexible.
Perhaps of greater importance is whether the
process is sufficiently mature to provide for
repetition. In other words, if I say I am applying a
process, do I apply it the same way the second time
and would a second person applying this same
process have the same result as me? The different
answers to these questions are ably captured in the
five-level framework known as the Capability
Maturity Model or CMM. This framework evaluates
the maturity of an organization's processes. Level 2
organizations utilize processes (Level 1 does not)
but these processes are not written down and
therefore highly individualistic. CMM Level 3 is
generally regarded as the lowest level in which the
use of process even approaches being satisfactory
(from a software engineering viewpoint). At Level
3, the process is institutionalized and used on each
project. It is documented and is repeatable. When
we talk about OO process, we generally assume that
the organization undertaking the OO software
development conforms to at least CMM Level 3. On
the other hand, an organization at Level 1 or 2 could
raise themselves to Level 3 by adoption of the types
of OO process discussed here.

Iterative, Incremental and Parallel
Lifecycle Processes

In an OO development environment, many of the
traditional process and associated project
management techniques are applicable. However,
there is one major constraint that can alter this. This
is the recognition by all OO developers, consultants
and mentors that the process lifecycle for an OO
development must be: (i) iterative (ii) incremental
and (iii) parallel.

An iterative lifecycle is one which occurs several
times. In contrast, the traditional waterfall lifecycle
dictates that you follow a number of steps (often
called phases) sequentially and once any given step
is completed - it is never returned to. In an iterative
lifecycle, there is often some sequentiality but, after
steps are completed, they are often returned to for a
further iteration. Iterations are thus "circular" -
although this is no excuse for rapid prototyping and
hacking. Iterations need to be planned and to go
across all lifecycle stages (user requirements
elicitation, analysis, design, code and test).

Incremental delivery is linked with the iterative
approach to some degree in that an OO development
should deliver products to the users incrementally,
usually at the end of each iteration, possibly every
few weeks. Incremental delivery keeps the customer
in the loop, ensuring that they always have in their
possession a delivered and running version which is
at worst a few weeks old. They can thus give
immediate feedback rather than waiting for a one-
time delivery of the full system perhaps as much as
three years after they first made the request for its
development.

Finally, OO supports a parallel lifecycle in that the
full software system awaiting development can be
easily broken down into packages or subsystems.
Because of the high degree of modularity
supportable in an OO development, it is relatively
easy to ensure that these several packages can be
developed essentially independently of each other.

OPEN's Process Framework

As a third generation OO methodology, one of the
prime purposes of developing OPEN was to provide
a useful and usable "standard" software
development process. OPEN has many elements:
process, modelling, management, measurement and
so on. There are two levels of process in OPEN: the
Software Engineering Process (SEP) and the
modelling process (Figure 2)

EXCELLENCE IN SALES AT RATIO GROUP

Our mission - to be the U.K. brand leader for Object-Oriented related services. To achieve this we
need to take on more high calibre sales staff. Current vacancies include:

• Training Sales Executives to sell our OO related training products to both new and existing
customers. Sales experience essential; exposure to OO or similar technologies highly desirable.

• Recruitment Executives. Some exposure to OO is desirable. Experience in IT
recruitment is essential.

Positions are based in Ealing, West London. We’ll pay a competitive base salary, a good
OTE (£45 to £50K) based on realistic targets, and we have no earning cap on commission.

For further details, or to submit CVs please contact Kate Harper on +44 (0)20 8579 7900
or email her via kate@ratio.co.uk

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 24

WeKnow TheObject

Figure 2. A software engineering process encompasses methodology, people/organizational culture and
tools & technology available. In turn, methodology consists of, primarily, lifecycle process, techniques

and representation.

The modelling process assists with identifying how
things change with time and what work products
should be created and when. It is a central part of
the methodology, which is objective (i.e.
independent of people) and can be written down.
The modelling process is just one component of the
methodology.

The second process element of OPEN is the
Software Engineering Process or SEP which brings
together the methodological element in the context
of one or more individuals in the team, as well as
taking into account organizational culture and
organizational standards and the technology
available. This is the "real" process in the sense that
if this fails so does the project and ultimately the
product. Whilst a modelling process can be codified,
it relies on real people to make it effective. Different
people have different skills sets and varying
experience. The organizational culture also has a
bearing here. Using a process that is very
authoritarian in an organization that is very
collegiate in its culture can be a disaster.

Similarly, the effect of available technology is
evident. If the project mandates a high degree of
traceability and version control then a tool that does
code generation and reverse engineering may be
called for - for instance, using a drawing tool that
only supports data flow diagrams makes it difficult
to design with an OO mindset.

There are thus a myriad of variables in any software
development project: tools, programming languages,
people, processes, quality goals, size and so on. It is
not possible to use a one-size-fits-all SEP. Larger

projects require more project management; smaller
projects can compress the timescales of
requirements analysis/design/code into days or even
hours without the need for detailed project
management. University projects have needs for
intensive activities interspersed with relative lull.
This is where the tailorability of OPEN comes to the
fore.

Clearly, a single, "out-of-the-box", pre-tailored
process is inadequate. What is needed is a process
framework which establishes the overall
architecture of the process while still permitting
choice at the detailed level. Making those choices
and constructing one specific OPEN-compliant
process is called process tailoring or process
engineering. It permits one process framework to be
instantiated to create several project-specific and
tailored processes.

When discussing a methodology, it is common to
divide up the lifecycle which the methodology
advocates into chunks. Traditionally these have
been called phases. So we talk of the "analysis
phase" or the "design phase". For a linear lifecycle,
like the traditional waterfall model, this is fine.
"Phase" sounds like you complete phase n before
progressing on to phase $n+1$. You can then factor
in milestones, work products, test criteria etc. quite
nicely at the end of each of these several phases.

However, if we adopt a more flexible lifecycle
model, such as the spiral, fountain or contract-
driven lifecycle (OPEN will support any of these but
favours a contract-driven lifecycle), then we are
better able to support those difficult-to-manage aims

SOFTWARE
ENGINEERING

PROCESS

METHODOLOGY

PEOPLE/
ORGANIZATIONAL

CULTURE

TOOLS/
TECHNOLOGY
AVAILABLE

TECHNIQUES MODELLING
PROCESS

MODELLING
LANGUAGE

us
e

help
create

WORK
PRODUCTS

KEY

clas
s
aggregation

association

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 25

WeKnow TheObject

of iteration, incremental delivery and parallel
development. These are agreed as being the optimal
way of building OO software. Once we allow for
iteration, we must permit the development team to
move on from design to analysis i.e. apparently a
"retrograde step". The word phase now seems
inappropriate. One commonly used word (and one
used in OPEN) is "Activity" (Figure 3).

Figure 3. A Process can be modelled as being
made up of a number of Activities.

Activities are, like phases, chunks focussed on
doing things. In addition, they say "what" is to be
done but not how it is to be done. On the other hand,
they lose the temporal sequencing implication of
phases so we now need to add back somewhere the
notion of sequencing rules. In OPEN, when using a
contract-driven lifecycle, these are added as pre- and
post-condition on the activities thought of as
objects. This applies the programming by contract
ideas to the very description of the process and
results in a process that is itself object-oriented.

Activities are generally largescale descriptions of
what is to be done. They are longterm objectives but
are difficult to manage because of their potential
duration. To manage the "what", a finer
discrimination is needed. In project management
parlance, a Task is the smallest unit of work which
can be evaluated as either complete or not complete.
Tasks are thus smaller scale "jobs to be done"
associated with each of the activities in the lifecycle.
But tasks don't say "how" the jobs are to be done.
This is the role of the Technique (Figure 4).

Figure 4. The SEP has many elements: including Activities, Tasks, Producers,
Work Products and Techniques.

The technique describes in full detail how we might
use object technology, object-oriented concepts and
years of experience of users to accomplish the Tasks
we have set ourselves. Since techniques are just
ways of doing things, they can be thought of as the
"tools of the trade". Just as the tools of the trade of a
plumber include hammers, screwdrivers and
wrenches, the tools of an object technologist include
knowledge about the use of, for instance, CRC card

modelling, aggregation modelling, OO team
building [There are over 150 techniques
documented in the book The OPEN Toolbox of
Techniques so we won't list them all here.].
Similarly, the value of a plumber is the knowledge
and experience in choosing which of the
screwdrivers and wrenches are needed to solve any
particular problem. Just so for the object
technologist who needs to be able to choose the best

KEY SOFTWARE
ENGINEERING

PROCESS

ACTIVITY

TASK TECHNIQUE

1-n

1-n

1-uses

WORKFLOW WORK PRODUCTcreate

help in
buildin
gPRODUCER

ASSERTION

Assertions produce
sequencing

STATE
MACHINE

{sequenced
collection}

are
sequenced
by

class

aggregation

association

PROCESS

ACTIVITY

1..n

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 26

WeKnow TheObject

OO technique to accomplish the specific OPEN
Task being worked on. Choosing the correct
technique is largely a matter of experience, real or

surrogate. The latter is encapsulated in the OPEN
tailoring matrix shown in Figure 5.

Figure 5. Matrix. A core element of OPEN is a two-dimensional relationship between tasks and techniques.
Each task may require one or several techniques in order to accomplish the stated goal of the task; and
techniques may be applicable to several tasks. For each combination of task and technique, an assessment
can be made of the likelihood of the occurrence of that combination. Some combinations can be identified as
mandatory (M), others as recommended (R), some as being optional (O), some are discouraged (D) but may
be used with care and other combinations that are strictly verboten (F = forbidden). Filling in the matrix
values is an important part of the lifecycle tailoring Task in OPEN (adapted from Graham et al., 1997)

This matrix [A similar matrix is used to link
Activities and Tasks.] represents the reality that it is
not just one Technique that is useful for each Task.
Any chosen Technique may in fact be useful to help
fulfil several Tasks. Conversely, any chosen Task is
likely to need the use of more than just the one
Technique. Part of this many to many linkage is
because there are, in fact, many "duplicates" in
OPEN's toolbox. For example, there are several
techniques for finding objects. Some OO software
developers start by a textual analysis, some use
simulation, some use CRC cards and yet others
prefer a use-case driven beginning to a software
project. It is your choice.

Activities performed iteratively by means of a set of
tasks result in work products. Work products are the
documents, including software, that are produced
either for internal inspection or for external
evaluation and final delivery/use. In OPEN, these
artefacts are delivered as part of the post-condition
of the Activities. However, since the lifecycle is

iterative and incremental, often the delivery is only
partial (but planned that way). Delivery may be to
other members of the team, to the manager or to an
external party, such as the end-user/customer. It
needs to be made clear to the recipient of each work
product just what proportion of the final delivery is
being made in such an incremental lifecycle. Thus
work products are built up over several iterations
but linked to the activities. They are not created by
the activities directly but rather by the techniques
used to realize the tasks of the activity. Any one
work product can therefore be the result of the
application of several techniques spread over several
iterations.

As we have seen (Figures 3 and 4), the overall
architecture of OPEN is that of a number of
Activities which are connected together in a flexible
and tailorable way to form an OPEN process which
is one specific instantiation from the OPEN process
framework (Figure 6).

A B C D E .

M = mandatory
R = recommended
O = optional
D = discouraged
F = forbidden

5 levels of possibility

For each Task/Technique
combination, one of the five levels
of probability (from Always to
Never) is chosen as appropriate.

TE
C

H
N

IQ
U

ES

M
D
D
F
F
R
D
D
R
O
F
.

F
F
O
O
O
M
F
M
D
O
O
.

F
F
O
O
D
R
M
D
R
O
F
.

F
D
D
F
F
O
O
D
R
R
D
.

1
2
3
4
5
6
7
8
9

10
11

.

.

.

.

.

.

.

.

.

.

.

.

.

.

TASKS

Email us at objective.view@ratio.co.uk to subscribe to
ObjectiveView for electronic or hardcopy delivery.

(type 'subscribe' in subject line)

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 27

WeKnow TheObject

OO Development
Process Framework

OO Development
Process

Project

Class Library of Predefined
Process Components

Work
Products

Producers

Work Units

is tailored
to meet the needs of

a specific

1

1

1..*

produce 1..*perform

1..*

create,
evaluate

or document

1..*

1..*
1..*

Instantiation
Guidelines

describe how
to use the

<<instance of>>

Figure 6. The structure of a development process framework
(diagram supplied by D.G. Firesmith, 1999)

The way these Activities are put together will lead
to slightly different versions or instantiations. Each
Activity is represented by an object in the process
description (Figure 7) and these are connected

together by lines representing potential transitions
that the user(s) of the process can make (an example
pertinent to MIS domains is shown here).

Figure 7. The contract-driven lifecycle for a single project in an MIS domain.

Project initiation

Requirements
engineering

Analysis &Business
Model refinement

Project planning

x3

Build iteration

Evaluation

User
review

ConsolidationImplementation
planning

Modelling,
Implementation
& Testing

Extra-project
activities & Reuse
management

Key:
Time boxed activity object
Unconstrained activity object
Guarded transition between tasks

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 28

WeKnow TheObject

The development proceeds as suggested by these
lines but only when the post-conditions of the
current activity have been met. These should be
specified clearly and should include testing criteria,
document delivery, model building criteria etc.
Once these have been satisfied, then the
development team may move on to another Activity
- again assuming that the pre-conditions of that next
Activity have been achieved. These might be that
certain work products are available, that a certain
percentage of the system has been designed, that
certain signoffs have been made etc.

The part of a methodology that then allows you, the
developer, to deliver documentation and other
artefacts, including the final code, must include a
modelling language (Figure 2). A modelling
language is a metamodel plus a notation. The
metamodel is essentially the set of rules that say
what you can and cannot do with the language
elements, which are themselves represented
graphically or textually (the notation). One well-
known modelling language is the Unified Modeling
Language which was endorsed by the Object
Management Group in late 1997. UML tends to be
more pragmatic than some other modelling
languages [Such as OML (OPEN Modelling
Language) which is compatible with UML but
offers some useful extensions.] and more aligned
with hybrid approaches such as C++, Java and
relational databases. Together, the metamodel and
notation will be the tools you use to depict the
results of modelling and coding as you build
software. Understanding of the metamodel is the
realm of methodologists and CASE tool builders;
software developers do not generally need to see the
metamodel itself. If the methodologists get the
metamodel right and the CASE tool vendors
implement it correctly, then you have access to fine
tools to increase your quality and productivity.

Finally, we need to expand a little on the statement
that OPEN is suited for component-based
development. Development in the new millennium
will incorporate distributed architectures almost by
default. With the advent of the internet and
industrial strength middleware to support distributed
architectures, a good methodology has the
responsibility of providing the detailed process of
architecting and designing fully encapsulated
components that can be deployed over a company's
network or on the web. OPEN provides detailed
support for such applications.

International Support for OPEN

Support for OPEN is in the form of an international
group of researchers, consultants, CASE tool
vendors and academics who are responsible for
developing and maintaining OPEN. As of August

1999, there were 37 members worldwide including
authors such as myself, Ian Graham, Don Firesmith,
Meilir Page-Jones, Tony Simons and Houman
Younessi. All material is public domain and is
distributed via books and articles many of which are
directly downloadable from the website at
www.open.org.au or one of the mirror sites.

The Consortium itself does not market any products
or services, although individual members may be
connected with companies that do so. In fact, we
prefer to work with third party companies
worldwide who can offer local and continuing
support. This can include support for training,
mentoring, consulting and tool distribution. These
sources are all advertised through the website.
Contact them directly or ask the folks at Ratio for
further details.

Summary

The beauty of the OPEN process is that it is not a
straitjacket that lays down the law on what you shall
and shan’t do. Rather, OPEN is a process
framework that can be tailored by individual
organizations in a way that suits them. Tailoring
requires choosing specific Activities, the way
Activities are interlinked and Tasks appropriate for
those Activities together with compatible and
effective Techniques. All the elements from which
to choose and tailor your own OPEN-compliant
methodology are in the full texts on OPEN (see
Suggested Further Reading section below).

Furthermore, while OPEN encompasses an iterative,
incremental and parallel process, which
should, of course, form the mainstay of any OO
software development approach, it leaves it up to
the users of the process to choose the lifecycle style
(e.g. spiral, waterfall, fountain, contract-driven) and
to express their work products in whatever
modelling language they see fit and relevant to their
development environment.

This tailored version of OPEN thus fits your
company requirements "like a glove" whilst still
being in accord with the overall OPEN "standard".
Flexibility brings ownership - a major objective
realized!

Suggested Further Reading on
OPEN

Most of the papers on OPEN are available for free
download from the OPEN website at
http://www.open.org.au with mirrors in Europe and
USA. Some sample chapters are also available of
the books (see below).

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 29

WeKnow TheObject

• The OPEN Process Specification, Graham, I.,
Henderson-Sellers, B. and Younessi, H., 1997,
Addison-Wesley, UK, 314pp

• The OPEN Toolbox of Techniques, 1998,
Henderson-Sellers, B., Simons, A.J.H. and
Younessi, H., Addison-Wesley, UK, 426pp +
CD

• Documenting A Complete Java Application
Using OPEN, 1998, Firesmith, D.G., Hendley,
G., Krutsch, S. and Stowe, M., Addison-
Wesley, UK, 404pp + CD

• OPEN Modeling Language (OML) Reference
Manual, 1998, Firesmith, D., Henderson-
Sellers, B. and Graham, I., Cambridge
University Press, New York, USA, 271pp

• Requirements Engineering and Rapid
Development. An Object-Oriented Approach,
1998, Graham, I., Addison-Wesley, UK, 271pp

• OPEN-ing Up UML: Modelling, 1999/2000,
Henderson-Sellers, B. and Unhelkar, B.,
Addison-Wesley, UK (in press)

• The OPEN Process Framework. An
Introduction, 1999/2000, Firesmith, D.G.,
Henderson-Sellers, B. and Unhelkar, B.,
Addison-Wesley, UK (in press)

• Object-Oriented Development Process
Framework Specification, Firesmith, D.G. et al.
(in preparation)

© 1999 Brian Henderson-Sellers
Brian Henderson-Sellers is Director of the Centre for Object Technology Applications and Research and
Professor of Information Systems at University of Technology, Sydney (UTS). He is author of eight books on
object technology and is well-known for his work in OO methodologies (MOSES, COMMA and OPEN) and
in OO metrics. He is a frequent, invited speaker at international OT conferences.

U K R E C R U I T M E N T B U L L E T I N F R O M

The most stimulating
OO jobs in the UK!

Ratio continuously has vacancies for IT professionals with the following skills:
• Object-Oriented Analysis and Design

• Object-Oriented Architecture
• Object-Oriented Development in C++ and Java

• Object-Oriented Project Management
• CORBA/DCOM

For internal roles within Ratio or to join one of our prestigious external clients.

Both permanent (£40,000+) and contract (c.£1500/week) positions are available.

For more information regarding these opportunities, please call Ratio on
+44 (0)20 8579 7900, or email us your CV at jobs@ratio.co.uk, or visit our

web site at http://www.ratio.co.uk for more details.

URGENT!!!
PRE-SALES SUPPORT, OO, C++, JAVA, CUSTOMER FACING

HAMPSHIRE (C.£40,000)
UML DEVELOPERS WITH REAL-TIME EXPERIENCE, HAMPSHIRE (C.£30,000)

Ratio… We Know The Object

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 30

WeKnow TheObject

Subjective Views Series

Interview with Robert C. Martin
 eXtreme Programming

Mark Collins-Cope interviews Robert C. Martin, President of
ObjectMentor, Object Guru, Editor of C++ Report and author of

'Designing Object-Oriented C++ Applications using the Booch Method'
 on his recent endorsement of XP.

General

[Mark Collins-Cope] Bob, you've recently endorsed
Kent Beck's eXtreme Programming approach to
software development. This may come as a surprise
to some as you've previously been a big advocate of
the use of UML as a design tool, or at least you've
written extensively on it, what would you say to
those who have been surprised in this way?

[Robert Martin] I would express my own surprise at
their surprise ;-). XP and UML are not mutually
exclusive. I am still a proponent of UML, and will
continue to use it and write about it.

XP is a development process. It says nothing about
UML whatsoever. Some folks have taken this to
mean that XPers don't use UML to model their
ideas. However, this is not the case. In XP, we do
create models; and we do design our software. And
we can use UML for those Designs.

XP does approach analysis and design a little
differently, however. The diagrams produced by
UML (or whatever modeling method you may be
using) are, with very few exceptions, ignored by XP
once they have yielded code. XP puts its value in
the code, and in the use cases; and ignores the
intermediate steps.

Process and Notation

[Mark] Process is a hot topic in the software
development community at present. We have RUP,
Open, Catalysis, XP etc., all of which seem to offer
something of a contradictory view of the world.
What is the average software developer or manager
supposed to make of this? Is there such a thing as a
right and a wrong approach to software
development?

[Bob] Yes, there is. The right approach is the one
that gets the job done with a minimum of fuss. Kent
Beck makes an astute observation about processes.
Process is about managing fear. We put processes
in place because we are afraid. If our fear is large,

we put big processes in place. If our fear is small,
we put little or no process in place. The process that
is right for a given team is the process that balances
their fears against their ambitions.

XP is a process for the ambitious team that wants to
get to market fast. XP manages fear by using
people methods rather than paper methods. In XP,
the fear of speed is mitigated by working in pairs,
writing lots of tests, communicating with the
customer on, at least, a daily basis.

[Mark] By managing fear I assume you mean fear
of project failure, bad design, etc. Haven't these
fears arisen for a reason - past failures for instance.
In which case, aren't there good reasons for having
well defined check points in the project lifecycle to
spot these failures before they become too big to
remedy?

[Bob] Checkpoints are a good thing. When
something is good, XP turns the knob up to 10.
That’s why it’s extreme. So we’ll have checkpoints
every few minutes. We’ll run tests every few
minutes to ensure the system still behaves properly.
We’ll reconsider the design every few minutes and
refactor as necessary. We’ll continually re-estimate
our schedules and re-prioritize our plans so that
we’re never working on out-dated assumptions.

[Mark] Would you call XP a RAD technique? Why?

[Bob] No. RAD techniques deal with fear by
assuming that the developers wish to be courageous
to the point of foolishness. XP is not a high-risk
process. It goes fast, but it also goes safe.

XP is dominated by tests. There are more lines of
test code written in an XP project than there are
lines of production code. The tests are run every
time we make any kind of change. They tell us
when we have broken something. In XP it is illegal
to check in code that does not pass *all* the tests.
Thus, the code never gets badly broken.

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 31

WeKnow TheObject

[Mark] UML now contains 8 notations. Do you
think UML has got a bit too huge and all
encompassing for its own good? Is the emergence of
XP something of a backlash against this and more
heavyweight process definitions? Is XP part of a
larger pendulum swing from formality to
informality?

UML's size is not a detriment. Developers are not
honor-bound to use every bit of UML notation.
Rather, we can use only that which we need, and
ignore the rest. Therefore, I'm glad that UML is
large, because it gives me a large set of tools to
draw from.

I think lightweight processes like XP are part of a
backlash against huge formal processes. Processes
have been getting ever bigger and ever heavier for
the last decade or more; and without an obvious
increase in software quality to support the growth.
It's as though the software industry has said "Gee,
our big processes aren't giving us the benefits we
need; I guess we have to make them still bigger".

Many of us have fought against the increasing
corpulence of processes for years now. I think XP
is a statement from those of us who have had
enough of untamed process growth.

On the other hand, it would be a mistake to think
that XP was a move away from either formality or
discipline. XP is code-centric; and there is little that
is more formal that code. XP is also highly
disciplined. The XP practices have very narrow
parameters. You can't just decide not to do them.

[Mark] So lack of process is not the reason for
software failures that have motivated larger
process. Where would you pin the blame then?

[Bob] The processes in use today focus upon paper
rather than people. Paper can’t think. Paper can’t
solve problems. Paper can’t adapt to change. We
can schedule all the reviews we want. We can
produce all the analysis and design documents we
want. We can coordinate and cross check and plan
all we like. But as long as people are considered
second order elements of the process, the process
will fail.

Alistair Cockburn says it best. Process is a second
order effect upon success. The first order is people.
XP focuses upon people. It provides a framework
within which people can communicate effectively.
As Kent Beck says, XP is an attempt at making it
OK to tell the truth.

[Mark] Ralph Johnson is quoted as saying (this is
hearsay) that the XP process is

analysis...test...code...design... would you say this is
an accurate description of XP?

[Bob] No. It is, however, an adequate description of
one development episode in XP. A development
episode might last an hour.

An XP project is filled with thousands of little micro
iterations. Each of which contains a component of
analysis, test, code, design. The ordering is
significant. Understanding comes first (i.e.
analysis); which is mixed with some design as well.
Then we write test cases that describe that
understanding. The act of writing tests means that
we must also have a design for the code in our
minds. Then we write code that passes the test
cases; and of course there is an element of design
involved with writing the code. Finally we refactor
the code to make it as simple and clean as possible.
So there is an aspect of design in all four of the
steps.

Software Architecture

[Mark] On the subject of the overall software
architecture of a system (the package structure,
architectural layering, etc.), you have always been a
proponent of the application of good design
principles (acyclic dependencies, interface
segregation, etc.). Is the architecture of a system (as
defined here) at risk with XP? The concept of a
system metaphor doesn't seem, to me at least, to sit
with this definition of architecture, what are your
thoughts on this?

[Bob] Architecture is probably the single most
important aspect of any software project. Without a
good architecture, a system will degrade into a
quivering glob of slime. Any process I use to
develop software will be centred on producing the
best possible architecture.

XP has an architecture step known as the System
Metaphor. The concept of the metaphor is not the
architecture in its full form. Rather it is the seed
from which the crystalline structure of the
architecture will grow.

Architecture can never be fully decided in an orgy
of up front design. Architecture, like everything
else in the software environment, must evolve. XP
provides the iterative frequency, and the architecture
focus to ensure that a strong architecture will evolve
as the project grows.

There are rules in XP that force the developers to
maintain and evolve the architecture. Rules of
simplicity -- rules of communication -- rules of
procedure. Developers are not allowed to check in a
module if it is not in the cleanest, simplest, and most

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 32

WeKnow TheObject

flexible state that they can think of. Developers
must always collapse duplicate code whenever it is
found. Developers cannot work alone, but must
always work in pairs, so that they can challenge
each other on architectural issues.

[Mark] I'd agree with your sentiments regarding
architecture as important, and that you're unlikely
to get all aspects of an architecture right up front.
But an up-front vision of the architecture system
can't be a bad thing, can it?

[Bob] No, not at all. That’s why we create a system
metaphor in XP. It’s also why every release begins
with an exploration phase, and every iteration
begins with reassessment of the current design and
architecture.

Design

[Mark] 'Do the simplest think that could possibly
work' is the design maxim of XP. Is it not true that
with a little more forethought and a little less
immediacy, the necessity to refactor existing code
could be avoided? A related point is that of how
'holistic' an approach is adopted. By holistic I mean
the opposite of 'piece by piece' - taking a wider view
of functional requirements and trying to design a
solution which covers, say, 5 rather than one
requirement.

[Bob] It is possible that with "a little more
forethought" we could reduce some refactoring. So
why would we choose to refactor instead of apply
forethought? Simply because refactoring is cheaper
and more reliable.

I'm not saying that forethought isn't valuable – it
certainly is. But forethought is speculative. And
time spent on speculative ventures is much more
expensive than time spent on sure ventures. Thus, I
prefer the surety of refactoring to the speculation of
long range forethought.

Thus, prior to each task, I will design that task; and
make sure it fits into the current system architecture.
I will write the tests. I will write the code that
makes the tests pass. And then I will look again at
the code and refactor it, in small steps, until I think
its design is good. No long range speculation.
Only short term surety.

Does this lead to revolutions? Certainly! There will
be times when the refactoring approach gets caught
in a local minimum. In such cases there is a better
approach to the entire system, but it requires an
incremental effort to push out of the local minimum
and get into the more global minimum. Once such a
need has been identified, XPers are unafraid to

refactor into this new global minimum. They aren't
afraid because:
1. They have the tests to prove at each step of the

way that nothing has been broken.
2. They work in pairs, so that every step has the

benefit of two minds.
3. They practice group ownership of the code, so

they are all familiar with every bit of the
existing code.

Could the change to the better design (the global
minimum) been prevented with some forethought?
Perhaps. How much forethought does it take to
ensure that you have found it? What will you pay
for it? Why should you pay this up front? The XP
philosophy is: pay for what you need, when you
need it; and not before.

[Mark] But if you know you're going to need a
certain design structure to cover the next two
requirements you're going to work on, wouldn't you
just put in that extra bit of work up-front to cover
them? And is it really cheaper to refactor than to
design?

[Bob] Is your design structure right? How can you
be sure if you haven’t implemented one of the
features yet? Are you sure it would be cheaper to
implement what you think the design ought to be?
Or would it be cheaper to implement the design
when you need it and no sooner? XP chooses the
latter course in the assumption that up front payment
on speculation is, on average, more expensive than
paying right now for just what you need right now.
XP justifies this by assuming that refactoring in the
presence of copious unit tests, and pair programming,
is very inexpensive.

[Mark] We all know that design is difficult. It's
difficult to think about design, and certainly has less
immediate reward than writing code. My personal
experience, though, is that getting the basics of the
software design right pays big dividends in the
longer run (and by this I mean over a two to three
months timescale). Is there not a danger that as XP
has no 'design deliverables' per-se, that design is
going to suffer?

[Bob] No, there is no danger at all. Indeed, design
thrives in an XP environment. XP is all about
design. We continuously drive the code into the
best possible design that we can think of. We never
say "We'll go back and fix that later."

We must come to terms with what design is. The
design of a program is the shape of its code. The
partitioning of the code into methods, classes,
packages, etc; and the relationships that exist
between those elements. We might represent these
things in diagrams; but the diagrams are not the

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 33

WeKnow TheObject

design. They are just proxies for the design. The
real design is in the code. XP does not value design
proxies. XP values direct expression of the design
in code. And XP values the best possible design for
the code.

It places such a high value on this, that forces us to
write tests that enable us to fearlessly refactor, just
so that we can be free to move the code in the
direction of what we perceive to be the best design.

[Mark] True, what we're working towards at the
end of the day is to have our code in a shape that
makes it easy to maintain, extend, etc. And true,
we're likely to need to restructure - refactor - our
code sometime to make this a reality. I think the
essence of what worries me amongst others is that
without an explicit 'design' phase you're just
postponing decisions that you're going to have to
make as some point, although I can see that the
focus on refactoring means you may get there
eventually.

[Bob]Again, XP assumes that paying now for what
you might need later is more expensive than paying
now for what you know you need right now. The
risk with this approach is that there may be so much
more rework than with a more up-front approach,
that it overwhelms the cost of the up front design,
and the cost of carrying all that extra unutilised
design through the project lifecycle. XP assumes
that rework in the presence of unit tests and pair
programming is inexpensive, and that the cost of up
front design, wrong guesses in that up front design,
and carrying all the up front design elements in the
software is expensive.

[Mark] Something UML (class and package
diagrams) do offer is the ability to look at your
software at a higher level of abstraction: putting the
focus on high level design, etc. Is there not a danger
that the lack of a design focus (in deliverable terms
at least) in XP may mean that a new generation of
programmers don't get to see the benefit high level
thinking? Would you, for example, advocate XPers
get OOA/D and UML training?

[Bob] To the last questions, yes, and yes. XPers
should certainly know the principles of OOD, and
should be able to use a design notation like UML. It
is the proper application of the principles of OOD
that keep the structure of the code flexible enough to

be refactored. This is especially true in C++.
Without strong use of the principles, C++ code will
become so badly intertangled as to completely resist
refactoring.

Am I concerned about the loss of high level
thinking? Not at all. There is lots of high level
thinking done in XP. It is done at the beginning of
the project, the beginning of each release, the
beginning of each iteration, and the beginning of
each task. Moreover, the high level structure of the
software is *exposed* by the code. In a well
designed OO program, you can rip the low level
details out of the program without changing, or even
recompiling, the high level modules. One of the
most important principles of OOD says simply that
high level modules should have no dependencies on
low level modules (The Dependency Inversion
Principle).

[Mark] In what way can code become resistant to
refactoring?

[Bob] If you make a single change to a module, and
that forces you to recompile for an hour, that
module is resistant to refactoring. In order to
refactor you must be able to get quick turnarounds.
What causes long recompiles? Improperly managed
dependencies!

Using XP, engineers are always sensitive to
turnaround time. If a change they make increases
turnaround, they refactor until turnaround is fast
again.

User Interface

[Mark] Where does user-interface design fit in with
XP? Does XP has any impact on the quality of
interface a system might have, be that positive or
negative, and would you encourage a user-interface
specialist to be involved in this?

[Bob] XP is a software development process. User
interface specification is a different topic entirely. I
would not have software engineers design the look
and feel of a user interface unless that interface was
going to be used by other software engineers. (And
maybe even then I wouldn't have the engineers
design it).

Visit Ratio’s web site at http://www.ratio.co.uk for links
on object technology, additional articles, and past issues of

ObjectiveView.

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 34

WeKnow TheObject

Team and Personnel Issues

[Mark] Pair programming is one of the facets of XP
that I find attractive. What benefits do you believe it
offers? Do you believe the benefits outweigh the
obvious costs, and how would you convince at IT
manager of this?

[Bob] There have been several studies conducted on
the topic of pair programming (See the work of
Laurie Williams at the University of Utah,
lwilliam@cs.utah.edu). These studies show that
paring causes no loss of productivity at all, while
significantly decreasing defect rate, code size, and
job dissatisfaction.

 I believe pair programming offers programmers a
way to maintain stimulating relationships with other
engineers. A way to share responsibility, overcome
fears, combine ideas, and just have fun writing code.

Convincing IT managers, who are unmoved by the
weight of other evidence, is a matter of convincing
them to try it on one project (along with the other
XP practices).

[Mark] Does 'role' separation exist in an XP team
(analyst, architectural authority, etc.) or can
everyone do everything?

[Bob] Everyone does everything. Clearly some
people will gravitate to certain kinds of jobs. But
there are no impressive titles like "architect".
Remember, too, that if one person has a skill, he
will teach that skill to all his pair partners. And
since pairings are kept very short in XP (e.g. four
hours) everyone will be exposed to everyone else's
expertise in very short order. Thus all the engineers
influence each other greatly and learn from each
other continuously.

P U B L I C M A S T E R C L A S S

We Know the Object of…

eXtreme Programming
& The Advanced Principles of OOD

A Four-Day Course
by Robert C. Martin

President of ObjectMentor Inc.
Author of:

“Designing Object-Oriented C++ Applications using the Booch Method”

3 – 6 April 2000
London, UK

For more information on this course, contact Ratio on +44 (0)20 8579 7900 or
by email at bookings@ratio.co.uk

Please note: class size is limited, so book early!

Each delegate receives:

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 35

WeKnow TheObject

[Mark] So if roles do exist it is because they occur
naturally within the team, rather than because they
are assigned?

[Bob] Yes. Of course there must be a manager who
is responsible for providing resources to the team,
and keeping distractions away from the team. This
manager is also responsible for monitoring the
process and trying to spot and correct problems.
From time to time the manager may need a certain
role filled. Rather than appointing someone to the
role, the manager will present the need to the team,
and let someone volunteer (or be elected).

[Mark] Some IT managers may feel that the
emphasis on developer satisfaction may be at the
expense of wider business objectives - deadlines,
etc. ("we have to have this system by this date")
How would you address such concerns?

[Bob] XP is focused on customer needs. The
customer is the only source of requirements and
priorities. There must be a customer (or a suitable
proxy) on site with the developers on a full time
basis. This customer bears the responsibility for
product definition and schedule. XP empowers that
customer to specify exactly what the team is going
to be working on, and in what order.

On the other hand, the team is responsible for all
estimates. The customer cannot load a release with
more than the team agrees can be done. The
customer can tell the developers what order to do
things in, but now how long it will take them.

In the end, the customer gets the most important
things done first. If a deadline is missed, it is only
the least important things that are missing.

Moreover, XP continuously measures progress
against deadlines. By the time a release is less then
one third complete, it will be clear whether the
velocity of the team is sufficient to meet the
schedule. And if it appears that the schedule will be
missed, the customer has the ability to remove scope
from the release.

Finally, the measured velocity of the team is applied
to all future estimates, such that the estimates
become more and more accurate over time.

Reusable Artifacts

[Mark] There is still a clear driver in the software
development industry to get re-use happening to cut
down development costs and time to market (see
recent interest in component based development).
How does XP sit with such approaches, and how
would you approach the issue of developing re-

usable infrastructure (e.g. a persistence layer, an
email component, etc.) in XP?

[Bob] There is one sure way to fail to produce a
reusable framework; and that's to design it up front.
This strategy has been repeated many many times,
and the results are frequently the same; the reusable
framework isn't very reusable.

The best strategy for creating reusable frameworks
is to evolve them concurrently with at least three
applications that use them. XP can certainly be used
for this evolutionary process.

[Mark] Can' t design up front work when the
designer has substantial experience of the needs of
the developers who will be using the component or
framework they are developing.

[Bob] Frameworks are big investments. Yes, they
can work if the designer has the necessary
experience, but how much of a risk are you willing
to take? Wouldn’t you rather know that the
framework will be effectively reusable?

Integration

[Mark] XPs emphasis on continual integration is
interesting, and will certainly bring any 'integration
errors' rather quickly to the attention of the team.
But, some of the projects I've been involved in have
millions of lines of code, and can take literally hours
or even days for a complete compile and rebuild. In
such an environment continuous integration may
prove to be problematic. Is this just a case of the
wrong project for XP?

[Bob] Possibly. However, when millions of lines of
code require hours or days to compile, the problem
is not one of sheer volume. Consider, there are
86,400 seconds in a day. If a 10-megaline program
requires one day to compile, the compiler is
chuntering through 115 lines of code per second.
That's not particularly quick.

When dependencies are poorly managed, compile
times are O(N*N). When dependencies are well
managed, compile times drop to O(N log N). When
compile times are inordinately long, there are
dependency problems in the design. And those
dependency problems are causing more heartache
than just compile time.

Still the question remains. If integration is
expensive, can XP be used? The trick would be to
design the system such that integration is not
painful. Using component design strategies, and
infrastructures like CORBA, COM, and RMI
become critical for this. In effect we take a huge

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 36

WeKnow TheObject

project and turn it into several dozen smaller
projects with little or no integration overhead.

[Mark] With a conscious focus on up front design?

Of course! There is a tendency to think that just
because XP defers a certain amount of up front
design, that XP is anti-up front design. This is far
from the case. XP simply defers those decisions
that make economic sense to defer. Clearly a large
component-based project would require at least
enough up front design to get an idea of what the
components were. Then each component could be
developed by an XP team.

Testing

[Mark] XP has a strong focus on functional testing.
I particularly like the idea of writing the tests before
you write the code. What benefits do you think this
offers?

[Bob] There are so many! A suite of tests gives you
an anchor. You know immediately if any change
you have made has broken something. This enables
high rates of refactoring. A suite of tests gives you
a supplemental document that describes the code
being tested. If you want to know how to create a
certain kind of object, there is a test case that shows
you how. If you want to call a particular method,
there is a test case that shows you how. And this
document remains 100% accurate and very
complete, regardless of how much the software
changes over time.

The act of writing tests before you design is an act
of design. Kent Beck calls this "Design by Testing".
It forces you to think through the item you are about
to test, from the point of view of a user. This is very
valuable.

[Mark] Testing is, I believe, integrally related to the
whole idea of refactoring. Are all tests and test
results automated? What tools are typically used to
assist in this (if any), and how would this type of
testing work in a GUI intensive environment, where
there is a requirement to drive the UI to get
something to happen, and the results maybe appear
on the screen?

[Bob] All tests are automated, so far as this is
possible. There are some very nice tools that help
with this. The XUnit family of test frameworks has
proven to be very useful. See
www.xprogramming.com for more information.

GUI testing can be done at the functional level
simply by grabbing the widgets, stimulating them
(faking a button press for example) and then reading
their state. Look and feel tests are much harder to

automate. I do them manually; but there are
automatic strategies.

Documentation

[Mark] ‘The code is the documentation.' This
reminds me of the self-documenting code arguments
when Pascal first came out. Can the code be the
documentation, and how?

[Bob] There is little doubt that code is
documentation. Code is a document. The question
is whether it is a good vehicle for others to read and
gain understanding of the software. The usual
problem is that the software is so incredibly
focussed upon details that there is simply no way to
use it to get the big picture, and to derive the intent.

Sadly, most programs fail very badly at
communicating intent. This, again, is a dependency
management issue. When a single module deals
with both high level and low level issues, it is not a
well partitioned module.

Well written code is well separated code. Well
separated code is easy to read because each module
covers on and only one level of detail. High level
modules remain high level. Low level modules
remain low level. And all dependencies point from
low levels to high levels. (Exactly the opposite of
structured analysis and design).

Notice that this has nothing whatever to do with
language. The readability of a program has
nothing to do with the language. One must
assume that the reader is familiar with the language
and therefore the language is a non-issue. The issue
is purely and simply one of structure and
communication. If the code is well structured, and
if names are well chosen for the functions and
variables, then the code will be good at
communicating intent.

This leaves the notion of a roadmap. XP has the
concept of a metaphor. It is the job of the metaphor
to act as the roadmap so that people understand the
concepts and relationships within the system. XP
does not demand that this metaphor be written
down, so long as it is firmly entrenched in the
programmers minds. Personally, I think writing it
down is not such a bad idea; so long as it is kept
very small; and is not any kind of a time sink.

The notion of oral documentation is scary to many
people. However, with pair programming, and with
people rapidly moving from pair to pair, the oral
knowledge will rapidly diffuse through the
organization, and any newcomer will learn it very
rapidly. XPers are not afraid of oral documentation.

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 37

WeKnow TheObject

[Mark] One major nightmare all of us in software
have to face is the issue of documentation getting
out of sync. with the code. I presume this is the
motivation behind 'the code is the documentation.'

[Bob] It is one, but it is a minor one. The real
motivation is simply that design documents have
high short-term value and low long term value. XP
recognizes the short-term value but ignores them
once they have been committed to code. There is no
room in an XP project for keeping old design
diagrams in sync with new code.

Some environments demand these documents for
bureaucratic reasons. In such cases, the *customer*
will demand the documents, will prioritize their
creation, and will schedule them in a normal XP
project. In XP, if the customer wants something, it
gets prioritized and scheduled. When the time
comes for it to be done, the developers do it. If that
means documentation, then the documentation will
be produced. It is not likely, however, that the
developers will ever look at the documentation
again.

[Mark] I've known some developers who can pick
up a piece of code, trawl through it and get a useful
grip on what's going on (I once worked on Unix
system software, where this was a common
approach). Personally, I always hated doing this,
perhaps this was because the code was so awful in
the first place - and as you said, didn't communicate
intent at all - or perhaps I'm just not right type of
developer for XP :-)? Is there a certain type of
developer to whom XP is more applicable?

[Bob] The only constraint I can think of is that the
developer must be comfortable working with others.
Remember that in XP everything is done in pairs.
Communication is one of the prime values of XP.
So lone cowboys, or developers who can’t work
well with others, are not going to do well with XP.

[Mark] Given the increasing prevalence of tools
that can reverse engineer say, a class diagram, from
a piece of code would it not be possible at least at
this low level to maintain an additional form of
documentation? Is this is a trend you would like to
see continue to higher levels of abstraction, e.g.
generating package diagrams with dependencies
from source code?

[Bob] The more tools the better. If I can quickly
and easily use a tool to convert my code to UML
diagrams, and then browse my code by navigating
those diagrams, then I'm all for it. Together-J, and
Visual Age for Java do things like that. It can be a
very powerful way to view the code.

The point is, that it is tied directly to the code.
There is no effort expended in creating the
diagrams, no effort expended in keeping the
diagrams in sync. The diagrams are just a
convenient reflection of the code. And they are just
as expendable as before, because they can be
recreated on demand.

More general

[Mark] Scalability has been raised as a concern
about XP is XP just intended for small teams?
How big a team would you say can be effective
using XP? and would you put a maximum limit on
the size of an XP team?

[Bob] Our experience with XP is with small teams
of a dozen or less. My personal belief is that it will
scale quite well. But caution is indicated. It would
be irresponsible to flash cut a 100-man team to XP
at the moment. I would, however, have no qualms
about easing a 30-man team into XP.

There is another issue here. Team size is not a good
indicator of project complexity. A dozen people are
probably enough to write 90% of the software
projects in play today. Many, perhaps most,
projects are simply overstaffed by a factor of five or
ten. IMHO, teams need to be lean and aggressive.

[Mark] Could you see XP being *misused*? What
are the biggest 'gotchas' that new XP teams are
likely to face?

[Bob] Anything can be misused. One form of
misuse is over-enthusiasm.

For the foreseeable future, new XP teams are going
to be enthusiastic about trying XP. I think they
need to temper their enthusiasm so that they don't
expect more than they can deliver. XP is a process,
not a miracle. It will help, perhaps a lot. But it's not
the master stroke that’s going to remedy the
software crisis. After all, software is *hard*. Even
with XP, there will still be schedule overruns, still
be improperly set expectations, still be unreasonable
demands, still be political manoeuvrings. XP is not
the signpost of the millennium. (er...)

[Mark] Would you expect users of XP to customise
it to their own circumstances? What typical
customisations have you encountered? Are there
any you would recommend personally, and in what
circumstances?

[Bob] One of the demands that XP makes on its
teams is that they continuously review the process
and evolve it. If a practice gets in the way, change
the practice. Geographic separation is a case where
some of the XP practices have to be customized.

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 38

WeKnow TheObject

You have to get creative with pair programming.
You can use cute tools like NetMeeting so that both
parties see the same screen on their individual
workstations, and each can take control of the
program. You can use delayed pairing, such that
one person writes the code and another reviews and
refactors it.

One customization I have used, and that we are
likely to see become very prevalent in the Java and
C++ world, is the integration of dependency
management principles into XP. Java, and
especially C++, incur a high price for mismanaged
dependencies. As I said before, a poor dependency
structure can make refactoring intractable.

[Mark] What form is this integration likely to take?

[Bob] Extra refactoring rules. Currently we have
the Once and Only Once rule, and rules related to
readability. Integrating the dependency
management rules will simply extend this list.

[Mark] There's something of a habit in the software
development industry of new approaches being
touted as the solution to the 'software crisis'. Cynics
may see XP as just another passing fashion. How
would you respond to that?

[Bob] I respect healthy scepticism. It counters the
failings of over-enthusiasm. So, to the sceptics I
say, thank you for keeping everybody honest.

I expect, however, that anyone who is vocal in their
scepticism would also be putting lots of effort into
verifying that their skepticism was more than just
their own prejudice. I would be expecting them to
take a serious look at the data and coming to
reasoned conclusions. It is my belief that upon
investigation most sceptics will lose *some* of their
scepticism.

[Mark] To round off, how would you summarise
projects that are or are not appropriate for XP?

[Bob] The project that is appropriate for XP is the
project being developed by a team that wants to go
fast, produce high quality software, work reasonable
hours, and keep their customers happy. They have
to like each other well enough to stay in close
contact with each other for long periods of time.
And they have to be disciplined enough to follow
the rules, even when the pressure starts to mount.

[Mark] Bob, thank you very much… ,

[Bob] You are quite welcome.

R A T I O I S P R O U D T O S P O N S O R

“Enterprise Architecture - Patterns - Components”
Mont Saint-Michel / Saint-Malo l Normandy / Brittany, France

5-8 JUNE 2000

KEYNOTE PRESENTATIONS TO INCLUDE:

Bertrand Meyer
Inventor of

Design by Contract

James O. Coplien
Founder of the

Patterns Movement

Ian Graham
"Requirements Engineering,

an OO Approach"
as well as…

HANDS-ON TUTORIALS l WORKSHOPS l TECHNICAL PAPER PRESENTATIONS
DISCUSSION GROUPS l PRODUCT DEMONSTRATIONS

Visit http://www.tools.com/europe
for full programme and registration details

TOOLS… the major series of international conferences entirely devoted to Objects

TOOLS
Europe 2000

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 39

WeKnow TheObject

Object Mentor, Inc. www.objectmentor.com

Better Software —
By lecture, demonstration and by example
Training • Mentoring • Development

for accelerated project success

Our goal at Object Mentor is to improve
the skills of your development team within
the constraints of your project's goals and
deadlines. Your success is our success. We
apply that philosophy with each customer, on
each project. Through years of working with a
diverse set of software development teams, we
have developed a flexible set of service
offerings that can be matched to your
organization's current skill set, required skill
set, and project budget and deadlines.

The process of developing a team's skill
involves a number of steps, including formal
instructor-led training, individual self-study and
practice, and mentoring by experts to reinforce

the skills being developed. Many organizations
have software development experts, but these
engineers are required to lead development
projects and rarely have enough time to spend
with other team members. Delays become
inevitable while the team thrashes and struggles
to learn the technology and apply it at the same
time.

Object Mentor fills the gap. Our training,
mentoring, development, and on-line
services will develop, lead and support the
team to project completion. Thrashing is
minimized because your Object Mentor will
lead the team forward. In the process, we
develop the team's skills, leaving the team
with the expertise to support the project on
going and tackle increasingly complex software
projects in the future.

Is a heavyweight process slowing you down?
OBJECT M ENTOR has a better way . . .

TRA INING COURSES:
• Extreme Programming (XP)
• Principles of OOAD with UML
• Advanced OOAD and Design Patterns
• Programming in Java: From UML to Code
• Object-Oriented Design in C++
• Object-Oriented Overview for Managers

A ll courses are offered as public courses
in the U.S.A and on-site courses
throughout the world.

XP Immersion Training
with Kent Beck, Martin Fowler, Ron Jeffries,

and Robert C. Martin

see www.objectmentor.com for details.

WWW.RATIO.CO.UK OBJECTIVEVIEW – ISSUE 4 PAGE 40

WeKnow TheObject

W E K N O W T H E O B J E C T O F

TRAINING
Excellence in Object and Component Training

The following courses are offered both in-house and on a regular public schedule basis.

Email info@ratio.co.uk or call Ratio Sales on +44 (0)20 8579 7900 for
more information.

Object-Oriented Analysis &
Design using UML

This course gives you a practical understanding of
the major techniques of the UML (Unified Modelling
Language) object-oriented analysis and design
notation, and how these techniques can be applied
to improve quality and productivity during the
analysis and design of computer systems.

What they thought…

“Thanks for this! Everybody is buzzing after
the course. Thanks to you and your team for
all of your efforts, particularly the lecturer,

who has an excellent manner and just knows
his stuff inside out.”

Chris McDermott, Polk Ltd.

Component-Based Design
using UML

This course gives you a firm understanding how to
analyse and design extensible and customisable re-
usable business (domain) oriented components, and
how to assemble such components to create bespoke
applications. The course has a clear focus on the
architectural aspects of component-based design.

What they thought…
“Patterns were particularly useful as were

the hints & tips & tricks that were sprinkled
throughout. It was also very useful to be

shown *why* some of the techniques we use
are good; up until now we’ve been choosing

the techniques based on instinct.”
Phil Harris, Silicon Dreams

Object-Oriented
Programming in C++

This course will leave students with a firm
understanding of the C++ language and its
underlying object-oriented principles. Attendance on
the course will enable participants to make an
immediate and productive contribution to project
work.

Object-Oriented
Programming in Java

This course will give you a practical understanding
of the major features of the Java development
environment and language, both in the context of
web applets, and in the context of stand-alone
applications. Students will leave the course able to
start productive work immediately.

What they thought…
“This has been a worthwhile exercise. The

course was concise ... well focused via
examples and practical sessions”

Course delegate, MTI Trading Systems

 “Things were explained clearly, in simple
terms and with relevant examples.”

Course delegate, Primark

What they thought…
 “I particularly liked the hands-on

implementation of the Java language theory
in an extendable example.”
Graham Hoyle, Tetra Ltd.

“Really good course, well presented, well
informed, lots of leads to wider ideas, etc.”
Roy Turner, Silver Platter Information Ltd.

