
WEKNOW THEOBJECT

Subscription Details
FOR YOUR FREE SUBSCRIPTION TO OBJECTIVE VIEW
Email: objective.view@ratio.co.uk Tel: Kate Evans on 0181 579 7900 or Write to: The Editor, Objective View, c/o The Ratio
Group, 2nd Flr, 17/19 The Broadway, Ealing, London W5 2NH, or simply complete the box below and post or FAXBACK
(0181 579 9200) to The Editor at the above address)
IN ALL CASES, PLEASE SUPPLY THE FOLLOWING INFORMATION:
Name … … … … … … … … … … … … . Daytime Tel.No...… … … … … … … … .
Job Title..............................… … … … … … … … … … … … . Email Address..… … … … … … … … .
Co.. … … … … … … … … … … … … Preferred delivery: (Please tick)
Address..… … … … … … … … Hardcopy by post
… … … … … ...… … … … … … … . Zipped Word document by email
… … … … … … … … … … … ..
Postcode...… … … … … … … … .
We would appreciate your input – tell us about major areas of interest to you/your company, i.e. what topics would you like
included in our future additions, and keep us posted on any comments you might have on articles in this and future editions.

Objective View is for you! Design/Layout: Kate Harper

Editor: Mark Collins-

ObjectiveView

The Commercial Case for OO
For: Business, Project and Quality

Managers
What are the commercial motivations behind OO?

What benefits should you hope to gain from the
move to an Object Oriented approach to software

development?
See Page 5

Design Focus
For: Object Designers & Senior Technical

Staff
 Tips and discussion of object oriented design

issues.
See Page 15

Structuring Large OO Software Projects
For: Project Managers, Technical
Managers and Development Staff

 As software applications grow in size and
complexity the structure of

the source code becomes an issue in its own right.
 Robert C. Martin lays down the rules for

effective OO packaging and source structure.
See Page 17

Welcome to ObjectiveView

Welcome to the first edition of
ObjectiveView, a quarterly journal

focusing on the commercial and
technical issues surrounding object

oriented and component based software
development. Major features in this
issue take a look at the commercial

motivations for object oriented software
development, and the source code

structuring of large object-oriented
software development projects.

 Future issues will focus on a wide
variety of topics relevant to industry

based managers and developers,
including product overviews

(OO databases, ORBs, etc.), industry
news, in-depth reviews of OOA/D

techniques (use cases, object modelling,
sequence diagramming, etc.), case

studies, and so on.
We hope you’ll enjoy ObjectiveView and

look forward to hearing from you.

The Journal for Managers and Technical Staff in OO & Component Based Software

Object News – See Page 2 OMG Analysis – See Page 14

OBJECTNEWS OBJECTIVEVIEW PAGE 2

WEKNOW THEOBJECT

Object News for First Quarter,
1998

Events and Trends in Object Technology
Industry
By Dion Hinchcliffe, Editor, Object News
(www.objectnews.com)

This first quarter of 1998 was an exciting one
for the object technology community with
events demonstrating this is an industry in the
midst of huge change with the rapid shift to
Java and UML and an industry with increasing
maturity with tools in high version numbers
and stable standards (Java excepted). Notable
news included events such as the continued
maturity of the middleware business, a sharp
increase in the adoption rate of UML along
with important new releases of UML tools, the
increasingly intertwined relationship between
CORBA and Java, and the hugely successful
JavaOne conference which reinforced the
onslaught of Java into all aspects of the object
industry.

Here are some of the significant events in
the object technology industry in Q1 1998:

Common Object Request Broker
Architecture (CORBA) News

CORBA continued to enjoy an improvement in
both tools and standards in Q1. The first real
implementations of the all-important (at least
to the enterprise user) CORBA Object
Transaction Services began trickling into the
market. Both Visigenic (www.visigenic.com)
and IONA (www.iona.com) at least shipped
beta versions of OTS in Q1 and are now
shipping fully compliant OTS services for their
ORBs. In February, the Object Management
Group (www.omg.org) released the
specification for CORBA 2.2 which includes
some important new additions to the standard
including Portable Object Adapters, IDL/Java
mapping and a few other minor improvements.
In February, ORB vendor Visigenic
(www.visigenic.com) was acquired by
software maker Borland International
(www.borland.com) in a surprise move
generally applauded by analysts. Visigenic
along with IONA (www.iona.com) remain the
top two CORBA ORBs with both becoming
very active in providing products to meet the
biggest trend in CORBA during Q1 1998:
ORBs written in 100% pure Java along with
tools to support CORBA object
implementation in Java.

Component Object Model
(COM) News

COM, Microsoft’s (www.micrsoft.com)
alternative to OMG’s distributed object model,
had no revisions during Q1 1998 although
information continued to come out about
COM+, the successor to COM which now
looks to provide plug-and-play development
for all implementation languages, advanced
run-time services, and integration of Microsoft
Transaction Server into COM. In fact, very
little was heard from Microsoft outside of a
few noisy announcements about
CORBA/COM bridges, which were announced
by IONA and Expersoft (www.expersoft.com)
early in the quarter. Also announced in Q1
was that Microsoft would maintain a reference
version of COM for Solaris, the most popular
flavour of UNIX in the IT community, which
would receive the benefit of Microsoft’s full
distribution and enterprise technical support.
COM remains quite popular as a component
technology for departmental applications but it
remains unclear how much COM for Solaris,
availability of CORBA/COM bridges, and the
forthcoming COM+ will help alleviate the
Windows-only stigma that is holding it back
from enterprise-level acceptance. It is
anticipated that few new COM announcements
will be made until a COM+ beta release, which
is estimated to coincide with the Windows NT
5 beta at the end of Q2 1998 spurring
speculation that NT 5 and COM+ may be
tightly integrated. The lull-before-the-storm
pattern is typical when Microsoft is busy
readying a major new release of software.

Unified Modelling Language
(UML) News

UML made significant inroads in software
development shops since adoption by the
Object Management Group in November 1997.
This standardisation as well as a growing
familiarity with the UML and improved tools
has led to estimates that upwards of 49% of
object modelling notation users expect to adopt
UML this year as their primary notation
(Object Magazine Online questionnaire.) This
informal poll is somewhat in contrast with the
Cutter Corp.’s (www.cutter.com) Q1 1998
report titled The Corporate Use of Object
Technology
(www.cutter.com/itgroup/reports/corpuse.Htm)
which cites that 15% of all object modelling
users were utilising UML in December, 1997

OBJECTNEWS OBJECTIVEVIEW PAGE 3

WEKNOW THEOBJECT

but noted that “almost all indicate that they
will be transitioning to UML in the course of
1998
In February, 1998 Rational
(www.rational.com) the leading UML
modelling vendor and home of the so-called
Three Amigos who created UML, released a
new iteration of their flagship UML tool which
they dubbed Rose 98. Rational Rose 98 is a
significant upgrade to the Rose product line
and includes full support for all nine UML
diagrams for the first time. Rose 98 was an
important release for Rational since it’s feature
list (if not its market share) was beginning to
come under fire from rival vendors boasting
products that could seriously compete with
Rational, a relatively new phenomenon for
Rational.

Java News

Java was apparently on Internet time in Q1
1998 with many new announcements,
initiatives, products, and JDK releases. The
biggest event by far was the now famous
JavaOne conference, which brought together
the best and brightest in the industry for one of
the most exciting conferences of the year.
Scores of announcements for dozens of new
Java products including Borland’s JBuilder 2.0
and Aonix’s STP round-trip development for
Java, new APIs such as Embedded Java and
Personal Java, and the amazing Java VM on a
ring from Dallas Semiconductor. Many other
notable events in Java community in Q1 1998
that will have significant impact in the years to
come on Java application designers and
developers:
See http://java.sun.com/javaone.
• JDK 1.1 became the de facto standard

for Java applications.
• Enterprise JavaBeans specification 1.0

and development kit was released to great
industry fanfare. Enterprise JavaBeans are
server-side JavaBeans that are essentially
transactionally-aware business objects. This
allows Java to be a major player in the
middle-tier.

• Microsoft was forced to stop using
JavaSoft’s Java-compatible logo as a result
of a court injunction requested by Sun.

• Microsoft released Visual J++ 6.0 in
early beta with the Windows Foundation
Classes, a non-portable Windows-only
application framework. The Java
community has been unhappy with this
development as it completely breaks Java’s
write-once run-anywhere model.

• Java Foundation Classes 1.1 were
released in late February and provides the
new look-and-feel for Java

• Sun made available the pre-release
specification of the Java Transaction Service
for public comment. The JTS will “[ensure]
interoperability with sophisticated
transaction resources such as transactional
application programs, resource managers,
transaction processing monitors and
transaction managers.” This will be vital for
Java to be a major contender in middle-tier
application services.

Sun made available a detailed technology
roadmap
(http://java.sun.com/pr/1998/03/pr980324-
06.html) that will allow organisations to better
determine future directions for Java
technologies and products, this much needed
document will help companies better plan their
technology strategies and enterprise object
architectures as they pertain to Java. Java
continues to be one of the more exciting
emergent object technologies. Much more
than just an object-oriented language, Java is
becoming a major technology platform for the
entire enterprise including front-end
applications, application servers, component
software, distributed systems, and much more.
Although Java still has hurdles to overcome, it
promises to be one of the most exciting places
for object technology. Look for the language
to begin to mature by Q3 1998 with the first
minor point releases of JDK 1.2 and expect
Enterprise JavaBeans to become a major
technology as big as Java itself by Q4 1998.

Method and Process News

Ever since Ivar Jacobson, Grady Booch, and
Jim Rumbaugh joined forces to created the
Unified Modelling Language, there has been
much anticipation about when they would
come out with a Unified Process. The UML is
merely an object notation and does not
describe the actual step-by-step process of
design and developing object-oriented software
itself. The Three Amigos decided it was better
to create a process-neutral modelling language
first that was not tied to any existing process
and could replace most of the notations in use
(such as OMT, Booch, etc) without affecting
the existing development process. By not
tying the notation to a process, UML could
become the Switzerland of notations, which it
has in fact become. But all the recent activity
in the UML world obscured the fact that no

OBJECTNEWS OBJECTIVEVIEW PAGE 4

WEKNOW THEOBJECT

Unified Process has emerged from the Three
Amigos, not even a proposal.
This silence was apparently broken in a back
of the magazine article in April, 1998 Object
Magazine www.objectmagazine.com) by
Rational’s Ivar Jacobson that boldly
pronounced that Objectory, Rational’s
commercial process would be the Unified
process Though many debate the wisdom of a
one-size-fits-all process, Objectory is as close
as it gets and we hope to hear more in the near
future from the Three Amigos to see how this
will turn out. Look for a forthcoming book on
Objectory from Jacobson in Q3 of 1998.

Q1 Object News Summary

C++ in Q1 1998 remained the most popular
language for developing object-oriented

applications. The Cutter Corp. estimates that
this will change by Q4 1998 and Java will
become the most popular language. CORBA
remained the most popular distributed object
model in Q1 with DCOM only representing
half of CORBA’s market share. Interest in
object technology (OT) increased in Q1 1998
and will continue to increase throughout the
year (Cutter Corp). The root cause of
increased OT acceptance is most likely due to
the fact that Internet development tools are
primarily object-based, Java is becoming the
most popular development language in the
world, and CORBA, UML, and COM are all
maturing and gaining mind share with
designers, developers, and architects. Look for
Q2 1998 to bring us JDK 1.2, COM+ beta, the
first implementations of Enterprise JavaBeans,
UML 1.2, and an increasingly popularity in
CORBA/Java solution

Don Hinchcliffe is a senior consultant with Object Systems Group (www.osgcorp.com) and Editor of
Object News (www.objectnews.com), a daily object-oriented newsletter on UML, COM, CORBA, and

methodology issues. Mr. Hinchcliffe can be reached at dhinchcliffe@objectnews.com

Mark Collins-Cope discusses the commercial motivations for adopting an object
oriented approach to software development

This article looks at the factors influencing the
cost of software development and
maintenance, and explains how by adopting
the OO approach to software development
software costs can be reduced. When
companies first venture into developing
bespoke software systems, they are often
surprised that the cost of the software
development is two or three orders of
magnitude greater than the cost of the
hardware on which the software will run. And
that’s even before they’ve considered the cost
of maintaining their systems. To explain the
reasons for these costs it is necessary for us to
take a step back and look at the issues
underlying the economics of software
engineering, looking at the two main areas of
costs:

• those that are incurred during the
development of systems,
• those that are incurred during the
maintenance of systems.
Finally, this article takes a look at the more
recent trends towards distributed systems, and
the costs associated with these

Low Level Building Blocks Equals
High Cost Of Development
There is no getting away from the fact that the
development of large software systems is one
of the most complex engineering feats
achieved by man. Programming languages
offer infinite flexibility in the way software

Development Costs

Introduction

The Commercial Case For Object Oriented
Software Development

BUSINESSPERSPECTIVES OBJECTIVEVIEW PAGE 5

WEKNOW THEOBJECT

may be built. If you ask two software
developers to write the same system, it is quite
likely that they will come up with completely
different implementations to meet the same set
of requirements. One of the reasons for this is
that the building blocks provided by traditional
programming languages are at such a low
level. Writing a piece of software with a
procedural programming language is rather
akin to building a suspension bridge out of
matchsticks and a tube of superglue: the design
possibilities are infinite but, assuming you
manage to build your bridge, you’re likely to
end up with a maintenance nightmare!
The addition of facilities to assist in the
structuring of software has been one of the
major focuses of programming language
improvement over the years, however
procedural programming languages still leave
much to be desired in this area. As the
complexity of the software systems we develop
grows (a trend which is showing no sign of
abatement - note the more recent moves
towards GUI, client/server and three-tier
systems) the ability to manage and organise the

complexity of software is becoming even more
of an imperative than it is at present. The
Object Oriented approach to software
development offers a route out of this
quandary by providing a mechanism with
which to build the higher level building blocks
necessary to manage this complexity: Objects.
An object is a well defined software building
block that provides a set of services (its
methods or operations) to its users (i.e. other
software developers) in such a way that they
can use these services without having to worry
about exactly how they work. Furthermore,
OO programming languages enable the
building block provider to define the structure
of the object (its class) leaving it to the user of
the class to create as many objects of any
particular type as they need. To see the benefit
of this, consider a high street banking system.
The system will manage thousands of
accounts, but the behaviour of each account
will be identical, providing facilities to: record
debits; record credits; print statements; and
calculate monthly charges

Account

AccountNumber
Balance
CalculateMonthlyCharges
Credit
Debit
GetBalance
PrintStatement

An Account Object
shown using the
UML analysis and
design notataion

The Object’s data or
attributes - the part of the
object where its
information is stored.

The Object services or
operations - the services that
a user of the object can
access.

Figure 1 - An account object using the UML notation

Having the account as a fundamental system
building block will obviously be of great
benefit in such a system, and OO programming
languages enable us to build such objects by
defining an Account class enabling the
application developer to create instances of
these Accounts (a.k.a. objects) as is necessary
for the particular application they are
developing. Note that this approach has
significant benefits over the more traditional
Cut’n’Paste approach to software
development, where an area of code is copied
when similar functionality is required in

another part of an application, not the least of
which is that it doesn’t involve copying a
multiplicity of bugs around the application as
well. The OO approach, when adopted using
appropriate development methods, encourages
re-use of code within the application. Since the
number of bugs within a system is generally
proportional to the number of lines of code
written, any approach which reduces the
number of lines of code written (and designed,
and debugged, and tested, etc.) offers cost
benefits, as well as guaranteeing more
consistent behaviour within the application.
On the related subject of code re-use across
applications (such as sharing the account

BUSINESSPERSPECTIVES OBJECTIVEVIEW PAGE 6

WEKNOW THEOBJECT

object described above across many
applications), Jeffrey S. Poulin reports in his
book Measuring Software Re-Use (Addison
Wesley) a number of impressive statistics,
some of which are detailed below:
• Nippon Electric achieved 6.7 times higher

productivity 2.8 times better quality
through a re-use programme

• GTE Corporation saved $14M in costs of
software development with re-use levels
of 14%

• Toshiba saw a 20-30% reduction in
defects per line of code with re-use levels
of 60%

• A study of nine companies showed re-use
led to 84% lower project costs (!), cycle
time reduction of 70%, and reduced
defects.

Experience is an Expensive
Commodity

Traditional software does not encourage code
re-use, for the reasons already discussed in this
article (lack of appropriate building blocks,
etc.). Obviously once an account object has
been defined, it can be re-used repeatedly, with
the consequent cost savings. However, the
concept of re-use (equals reduced costs) can be
applied at the analysis and design levels as
well as at the coding level. One relatively
recent innovation in the world of OO is the
emergence of design and analysis patterns as
an area of interest in its own right. Patterns
enable the experiences of expert developers to
be captured in a form that is easily
communicated to less experienced OO
developers, enabling them to shortcut the
‘learn from your mistakes’ approach that their
more experienced colleagues were forced to
adopt.

1 3 5 14
33

100

A
na

ly
si

s

D
es

ig
n

B
ui

ld

Te
st

A
cc

ep
ta

nc
e

Li
ve

Relative Cost
 Figure 2 - Use of a standard design pattern (“strategy”) to provide database

 independence

BUSINESSPERSPECTIVES OBJECTIVEVIEW PAGE 7

WEKNOW THEOBJECT

If the banking system we discussed earlier is
supplied by a product company to a variety of
banks, one problem they will face is that each
bank will have its own preference for relational
databases. To deal with this problem, the
 product company must provide a framework
which removes their system’s dependency on

the database. This somewhat common software
engineering problem maybe addressed by the
use of a standard design pattern culled from
the experiences of many developers (and
documented along with 20 or so other patterns
in an excellent book called ‘Design Patterns’
by Gamma et. al.)

1 3 5
14

33

100

Analysis Design Build Test Acceptance Live
Relative Cost

 Figure 3 - Relative cost of fixing the same problem across a project lifecycle

The statistics shown in Figure 3 - showing the
relative cost of fixing the same problem during
different phases of a project lifecycle - have
been available for many years, however the
costs associated with late fixes are still
common - especially on larger projects. Such
projects often exhibit what is euphemistically
known as ‘hockey stick’ behaviour, whereby
all seems to be well and the project is
apparently coming in on schedule, until late in
the day when fundamental design errors or
integration problems are revealed and the
schedule goes out of the window. Whilst not
removing the possibility of such problems
completely, the systematic use of OOA/D
techniques such as those provided by UML can
substantially reduce the chances of such errors
occurring. Three factors contribute towards
this:

It is extremely difficult to represent the design
of a procedural program without actually
writing the code - by which time any problems
are embedded into application. The UML
OOA/D notation offers a means by which the
detailed design of an (OO) application (i.e. its
classes and their inter-relationships) can be
made explicit - and hence can be reviewed by
more experienced staff during the design
process, thereby avoiding costly mistakes.
Figure two gives an example of UML in action
- showing an object model. Further notations
are available, however, detailed discussion is
beyond the scope of this article.

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6

Elapsed Months On Project

Estimated Month
Of Delivery

Estimated Delivery
Date

Figure 4 - The hockey stick project –major costs appear late in the day

1. OOA/D notation
makes design decisions

explicit

BUSINESSPERSPECTIVES OBJECTIVEVIEW PAGE 8

WEKNOW THEOBJECT

2. A good OOA/D process will use the
facilities of UML to apply consistency

and completeness cross-checks

Used with an appropriate process (i.e. work
process) UML can provide cross-checks to
enable designers to be very confident that the
design they are proposing will actually
implement the required system functionality.
The reason this is possible is that there are
logical ‘hooks’ between the design notations
provided within UML that complement and
consolidate each other, in much the same way
that an architectural plan would be
complemented and consolidated by its
corresponding electrical and plumbing plan if
one were designing a building.

3. A good OOA/D process will use the
facilities of UML to encourage code

re-use

Note also that the use of an appropriate process
with UML will also encourage intra- and inter-
project re-use of code because it will make the
opportunities for code re-use visible, and
therefore reduce the number of potential bugs
in the application. This is especially true on
multi-person projects where such opportunities
are often lost through lack of team
communication.

Maintenance Costs

costs that are consumed during system
maintenance vary, however it is not
uncommon to see estimates in the region of
70%. Reducing the cost of maintenance is
therefore a vital factor in the economics of
software development. In this section, I take a
look at some of the reasons that underlie
maintenance costs.

Traditional Software Is Inflexible and
Expensive To Change

A further problem with traditional software is
its lack of flexibility once it has been written.
One of the major causes of this inflexibility is
the ever increasing number of inter-
dependencies that grow between different parts
of the system. In this respect, procedural
programming languages have two main
components: the data and the lines of code.
The code tells the application what to do, and
data provides the raw information on which to
do it. The lines of code therefore become
inherently dependent on the data which they
use. As systems grow in size, these
dependencies become increasingly
unmanageable: a change in one part of the
system may well have an impact on many
hundreds of other parts of the system.
Introducing a small change often leads to a
large number of bugs in disparate parts of a
system, with all the associated costs.

Figures for the relative proportion of project

C o d e f r a g m e n t s

D a ta

A c h a n g e i n d a t a c a n i m p a c t m a n y
a r e a s o f t h e c o d e .

Figure 5 - Code and data inter-dependencies become unmanageable in large
systems

In effect replacing one length of metal on our
suspension bridge causes problems hundreds
of feet away. As each bug is fixed, yet further

bugs may be introduced, and so the process
continues. Eventually such systems become
unmaintainable, and must be rebuilt from

BUSINESSPERSPECTIVES OBJECTIVEVIEW PAGE 9

WEKNOW THEOBJECT

scratch. Object Oriented systems reduce the
problems associated with inter-dependencies
by packaging the code and the data that it uses
together into objects. This localises the inter-
dependencies between code and data to single
objects, and hence offers substantial cost
savings during software maintenance. But this
is not the whole story: Object Oriented

systems go much further than this in reducing
the cost of software enhancements. Object
Oriented languages have built-in facilities
(known as inheritance and polymorphism) to
enable new objects to be added to the system
perhaps years after it had been originally
written, without having to change the original
system at all.

Restricted impact of change on code changes.
Easier testing; Etc. Etc.

Figure 6 - Object oriented systems restrict the impact of change

To see how this might work, let’s go back to
our banking system example. Our account
object provided facilities for: recording debits;
recording credits; printing statements and

calculating monthly charges. Many banks have
different types of bank accounts, and whilst the
crediting, debiting and printing of statements
may be common to all types of account, the
calculation of charges is very likely to vary.

Account

AccountNumber
Balance
CalculateMonthlyCharges
Credit
Debit
GetBalance
PrintStatement

CurrentAccount

CalculateMonthlyCharges

HighInterestSavingsAccount

CalculateMonthlyCharges

Current account
specialises the
operations on
Account

High interest savings
account specialises the
operations on Account

Account object
provides a
template for the
behaviour of
other specialised
accounts.

Figure 7 - Account object template from which more specialised objects can be
derived

To deal with this, Object Oriented systems
enable us to define a ‘template’ objects, which
Outline the services provided by all accounts,
and then to refine special accounts which may

deviate in their implementation of specific
services. The banking system will define a
template Account Object which will enable
special refined accounts (for example: ‘high

BUSINESSPERSPECTIVES OBJECTIVEVIEW PAGE 10

WEKNOW THEOBJECT

interest savings’ accounts; ‘current’ accounts)
to vary the implementation of some or all of
the services. Thus a ‘high interest savings’
account would not apply charges at all whilst a
‘current’ account would undoubtedly apply a
set of exorbitant charges for the privilege of
letting us get at our own money. Let us
suppose our banking system has been built and
usefully in service for a couple of years. One
day, someone in the marketing department
dreams up the new concept of the “save and
borrow flex-account”. Needless to say, this
account has a whole different approach to
charges, and even allows customers to become
overdrawn without first asking permission (at a
price, of course). The banking system
obviously needs to be updated to deal with the
new type of account. To do this, the Object
Oriented developer refines a new type of
account from the basic template. The ‘save and
borrow flex-account’ shares the original
implementation of the crediting and printing
statement facilities, but redefines the services
for debiting and calculating charges to take
account of its individual peculiarities. The new
account object thus defined is ‘plugged into’
the existing system, and hey presto, everything
works as if the ‘save and borrow flex-
account’had been part of the original system in
the first place.

Traditional Software Structure
Doesn’t Reflect The Real World

One final problem with traditional software. Its
structure (or lack of it) means that it doesn’t
reflect the problem domain (real world) to
which it applies. This lack of continuity

between the problem domain and the software
structure means that often, what seems to the
user of the software to be a small change in the
systems functionality frequently costs a
disproportionate amount to implement. Whilst
most users would realise that turning a banking
system into an aircraft maintenance system
would be a costly exercise, they may be
somewhat dismayed (to say the least), that
adding a new type of account is going to cost
half as much again as the original system. As
we have already seen (see figure 7), a good
Object Oriented system, produced using the
appropriate Object Oriented Analysis and
Design (OOA/D) techniques, are structured
such that the program code written will have a
strong relationship to the real world situations
it models. Rather than rewriting half of the
system, adding a new account becomes a
simple operation.

Costs Into The Future

So far, this article has argued the commercial
case for Object Oriented software development
by showing how it improves on the
engineering deficiencies that underpin the
economics of traditional software
development. As the new millennium
approaches, the trends of systems development
will become more and more focused on
client/server and three-tier systems: enabling
users to access their systems from their
desktop PCs, whilst also providing the benefits
offered by monolithic systems (shared data,
shared facilities, greater computational power,
etc).

C l i e n t S e r v e r

C o d e f r a g m e n t s

D a t a

Figure 8 - Trying to distribute a traditional application can be nigh on
impossible

Whilst developing current systems is merely
uneconomic using traditional software
development approaches, developing multi-tier
systems can become nigh on impossible.

The building blocks provided by Object
Oriented systems provide the basis by which
systems may be distributed: the facilities
provided by an object on one machine may be

BUSINESSPERSPECTIVES OBJECTIVEVIEW PAGE 11

WEKNOW THEOBJECT

accessed via the object’s interface (its services
or operations) from another machine. The
object comes to the rescue by providing the
building block upon which inter-machine
communication can be based. In fact, although
extra design work is necessary, it is interesting
to note that the problem domain structure of a

well analysed system (called the problem
domain object model) will remain largely
unchanged regardless of whether the system is
implemented as a monolithic, client/server or
three-tier system.

Client Server

BankAccount

TurnAttributesIntoTable
SaveDetailsToDatabase

SaveAndBorrowFlexAccoun

SaveDetailsToDatabase

LilyExecutiveAccoun

SaveDetailsToDatabase

DatabaseInterface

TurnAttributesIntoTable

OracleDatabaseInterface

TurnAttributesIntoTable

InformixDatabaseInterfac

TurnAttributesIntoTable

1 1

Figure 9 - Objects provide a natural mechanism on which to base distributed
systems

The Millennium Bug

No article on software costs would be
complete without at least a brief (although in
this case slightly tongue-in-cheek) look at the
millennium bug. As I’m sure most of the world
now knows, the millennium bug is caused by
systems treating dates as two-digit numbers -
and consequently failing when the year turns
from ‘99’ to ‘00’. Had such systems been
developed using an Object Oriented approach,
the date would have been a fundamental

system object, providing services to set the
date value; compare dates; print the date in a
certain format, etc. Even if the designer of this
object had had the lack of foresight to store
dates as two digits, this would have been fixed
by simply modifying the internals of the date
object and relinking the system (which of
course used the same date object whenever a
date was needed) - thus solving the whole
millennium bug problem in less than half a
days work

MilleniumBugDateObject

two digit date
Compare
GetDate
SetDate
...

MilleniumFixDateObject

four digit date
Compare
GetDate
SetDate
...

change the internals of
the Date object and plug
in the new version to the
application

Figure 10 - The Millennium Bug is fixed in half a day!!!

BUSINESSPERSPECTIVES OBJECTIVEVIEW PAGE 12

WEKNOW THEOBJECT

Conclusions
This article has looked at the costs associated
with software development and how an Object
Oriented approach to software development
can help to reduce these costs. To summarise,
object oriented software development can:
• provide higher level building blocks that

reduce costs by encouraging re-use and
reducing the inter-dependencies with a
piece of software that often underlie high
maintenance costs

• help in the transfer of knowledge between
more and less experienced software
developers through the use of ‘patterns’
reducing the cost of learning

• provide a framework to ease the extension
of system, reducing the cost of
enhancements

• assist in bringing the cost of changing
systems more in line with users’
expectations.

For larger projects, the use of industry standard
analysis and design notation (UML) in
conjunction with an appropriate development
process can also reduce the cost of
communication errors between analysts,
designers and developers - the same notation is
used by all aspects of the development team.
Some words of warning. Although Object
Orientation would not be possible without
programming languages that support it (C++,
Java, etc.), there is much more to the
commercially effective use of OO than simply
changing programming languages:
• staff must undergo a fundamental change

in mindset to use OO successfully, in
particular ‘not invented here’ syndrome
may often lead to some of the commercial

benefits of OO being lost (it is often much
more cost effective to buy standard objects
than to build them yourself)

• OO must be used at all stages of the
project lifecycle - there is little point using

 an OO development language at the end of
 a traditional analysis and/or design cycle
• management must ‘buy-in’ to the change

to the OO philosophy, and in particular
must set the commercial objectives of
the change - the reduction of software
costs - and ensure during analysis/design
reviews that the appropriate decisions are
being made with respect to these
objectives

• migration to OO must be structured and
planned to ensure its effectiveness.

There are also some tricky dilemmas to
overcome: the software needs of one project
may be different to the needs of the
organisation as a whole - extra costs will be
involved if the objects developed in one
project are to be used on a cross-organisational
basis; the short and long term objectives of
software development are often at odds with
each other - getting the project completed (on
time and to budget) in the short term vs.
designing in the hooks necessary for to cut
down longer term enhancement costs.
Many commercial products are now jumping
on the ‘object’ bandwagon. Be sure to check
them all out thoroughly. If they don’t provide
the facilities discussed in this paper (many
don’t) then you won’t get the commercial
benefits.

Further information on all of the topics
discussed in this article (including other
whitepapers)can be found on the Ratio Group
website at www.ratio.co.uk.
.

Mark Collins-Cope is Technical Director of Ratio Group Ltd., a consultancy and training company
specialising in helping companies migrate effectively to an OO approach to software development.
For further information contact Kate Evans of Ratio Group on 0181 579 7900 (fax 0181 579 9200,

email katee@ratio.co.uk)

ADVERTISMENT OBJECTIVEVIEW PAGE 13

WEKNOW THEOBJECT

Ratio Group 1998 Public Course Schedule

June July
Dates Course Cost Dates Course Cost
1-5 OO C++ Programming

Workshop
£1,195 6 - 10 OO C++ Programming

Workshop
£1,195

8-12 OOA/D Using UML £1,250 13-17 OO Java Development
Workshop

£1,250

15-19 Design Patterns £1,250 20-24 OOA/D Using UML £1,250
22-26 Implementing Patterns in

C++
£1,250

September October
Dates Course Cost Dates Course Cost
7 OO Concepts Overview £300 5-9 OO C++ Programming

Workshop
£1,195

8 OOA/D Using UML
Overview

£300 12-16 OOA/D Using UML £1,250

9 OO Project Management £300 19-23 Implementing Patterns
in C++

£1,250

14-18 OO C++ Programming
Workshop

£1,250

21-25 Design Patterns £1,250

November December
Dates Course Cost Dates Course Cost
2 OO Concepts Overview £300 7-11 OOA/D Using UML £1,250
3 OOA/D Using UML

Overview
£300 14-18 OO C++ Programming

Workshop
£1,195

4 OO Project Management £300
9-13 OO C++ Programming

Workshop
£1,250

16-20 OO Java Development
Workshop

£1,250

Please contact Ratio Group for details on:
• free seminars (object oriented analysis and design);
• special discounts (e.g. for the headstart programme);
• in-house courses;
• or further details on our object oriented computer based training

programme;

For further information contact
Kate Evans on 0181-579-7900 or email Katee@Ratio.co.uk

OMGANALYSIS OBJECTIVEVIEW PAGE 14

WEKNOW THEOBJECT

OMG Analysis
by Eric Leach, OMG's UK Representative

1998 has been a momentous year so far for the
CORBA community. Over 600 organisations
throughout the world have now publicly
proclaimed their adoption or use of CORBA
(ourworld.compuserve.com/homepages/eric_le
ach). Over 70 of them reveal details of how
they are using CORBA on OMG's Web site
(www.omg.org). OMG membership is now
some 830 strong, making it the largest
software consortium the world has ever seen.
Over 500 delegates from over 25 countries
attended OMG's most recent Technical
Meeting, held in Manchester, UK, March 30 to
April 3, 1998.

Specifications which reached the final
voting stage at Manchester included Currency,
Business Object Component Architecture
(BOCA), Notification Service (for telecoms)
and Lexicon Query Service Interface (for
healthcare). The Currency specification is one
of the first Common Business Objects defined
as part of OMG's efforts to standardise
domain-specific and cross-domain software
components. The BOCA specification
leverages the existing CORBA and UML
infrastructure to provide a framework for
distributed business applications. The BOCA
describes the constructs and types used to build
a business object system, while an optional
Component Definition Language (CDL) built
on OMG IDL enhances the expression of
business concepts in object definitions.

Common Business Objects such as
the Currency object fit into the BOCA, where
they assemble naturally into smoothly running
integrated applications. BOCA concepts build
upon a forthcoming OMG technical
specification for distributed components, to be
issued later this year. In April, OMG
announced new specifications for Java-to-
OMG IDL and OMG IDL-to-Java mappings
that make it easier for developers to write Java
applications that can run across heterogeneous
environments.

CORBA in Telecoms and
Manufacturing

CORBA in telecoms is enjoying spectacular
growth and OMG recently announced a
collaborative agreement with the
Telecommunications Information Network
Architecture Consortium (TINA-C). TINA-C

is an association of more than 40 of the world's
largest telecom network providers.

Global One (a joint venture by
Deutsche Telekom, France Telecom and
Sprint) is currently trialling a CORBA-based
implementation of the TINA-C architecture.
The trial will run to the end of 1998. And
what is likely to be the largest CORBA in
Telecoms conference in the world will take
place in London in June (see
www.iir.co.uk/CORBA).

In April, OMG announced new
specifications for Java-to-OMG IDL and OMG
IDL-to-Java mappings that make it easier for
developers to write Java applications that can
run across heterogeneous environments. At the
OMG Salt Lake City TM in February, OMG
membership approved a Product Data
Management (PDM) Specification. The PDM
specification provides a standard interface and
object framework on which to develop
interoperability solutions. An imminent
conference which showcases this specification
is "Lifecycle '98" which takes place later this
month in Birmingham, UK
(www.ourworld.compuserve.com/homepages/e
ric_leach). OMG also announced new partners
in Southern Europe and Washington, DC,
USA.
Genesis Development Corporation
(www.gendev.com) was appointed in February
as the OMG liaison office for Southern
Europe, based in Milan, Italy. It will focus its
efforts in France, Italy, Spain, Portugal and
Greece. In January, The OBJECTive
Technology Group - The OTG
(www.theotg.com) – was appointed as OMG's
Government Liaison Office in the Washington
DC area.

CORBA Products Blitz
In the marketplace IONA Technologies
(www.iona.com) decided to licence
Microsoft's COM software. Over the years,
IONA has consistently publicly denigrated
Microsoft's object/component products, but has
seemingly finally given in to customer
pressure to try to make COM/CORBA
interworking as seamless as possible -
alternatively, one could take the view that
Microsoft has decided to collaborate closely
with the progenitors of the largest CORBA

OMGANALYSIS OBJECTIVEVIEW PAGE 15

WEKNOW THEOBJECT

implementation community. ICL released its
elegant COM2CORBA software bridge in
March, but has not seen fit to actually licence
COM. In March ICL also announced the
availability of a free Java ORB - J2. Also
announced was a soon to be available J2
upgrade, called J3. Buying J3 will give users
unique CORBA compliant secure transactional
capabilities. Borland completed its acquisition
of Visigenic, renamed itself Inprise
(www.inprise.com/(BORL)) and gave very
strong public support for CORBA.
Inprise's commitment to CORBA is important
as it offers CORBA-integrated, industry
leading development tools (JBuilder, Delphi
and C++Builder) to desktop developers.
Cisco's massive business-to-business
Internetowroking Product Center (IPC) is
undergoing a rewrite from C/Perl/CGI
technology to CORBA with the help of Alta
Software. Cisco's IPC drives the Web's
premier electronic commerce site
At the UK's Butler Component Based
Development (CBD) Forum meeting in April,

IBM revealed more details on reference sites
for its Component Broker software, including
Swiss Bank and Volvo. IBM also announced
it was in the final stages of implementing 9
CORBAservices.
The trend for platform providers to incorporate
third-party ORBs into their products became
more pronounced in 1998. Following
companies such as Oracle, BEA Systems and
Inprise (formerly Borland), Hewlett-Packard
(www.hp.com) decided to drop its ORB Plus
products in favour of IONA's Orbix. Orbix
will be integrated with HP-UX this Autumn.
NEC also revealed that it too would adopt
Orbix in preference to its home grown ORB.
In the embedded operating software arena,
Integrated Systems Inc. (www.isi.com) - the
clear market leader, with over 25 million
installations - announced in early May that it
would CORBA-enable its RTOS software.
Highlander Communications is porting
Inprise's VisiBroker for C++ to Integrated
Systems' psoSystem

Eric Leach, OMG's UK Representative

.

Design Focus

Design Tips: The Ellipse-Circle Dilemma
Yonat Sharon summarises discussion Object Oriented Design issues.

Is a Circle a Kind-of an Ellipse?
Source Comp.Object.

Maybe an ellipse is an extension of circle?
This is an instance of two more general
problems:
• Should the OO model (Ellipse class and

Circle class) of an application match the
Real World model (mathematical concepts
of ellipse and circle)?

• Does similarity between classes always
implies inheritance?

Russ McClelland wrote:
A circle is an ellipse, ask any mathematician,
the real question is can a circle be modelled in
software exactly as it's defined in the real
world. Yes, just because an ellipse has two
foci, and a circle apparently has one, doesn't

mean that we need to create an independent
circle class, they both have the same attributes.
It is an optimisation to remove the second
focus for circles.

Terry Richards then noted that: Nobody
says a line is an ellipse, nobody says a point is
an ellipse, so why say that a circle is an
ellipse?

Roger T. was quick to reply:
Because a circle, in every way, meets the
definition of an ellipse.
That definition is:
x^2/a^2 + y^2/b^2 = 1

Robert C. Martin then pointed out the
difference between mathematics and OOD:
No! That is the geometric definition. The OO
definition of an ellipse is somewhat different.

DESIGNFOCUS OBJECTIVEVIEW PAGE 16

WEKNOW THEOBJECT

Class Ellipse
Class Ellipse
{
public:
 Ellipse(const Point& f1, const
 Point& f2);

 double Area();
 double Circumference();
 Line MajorAxis();
 Line MinorAxis();
 // and maybe some accessors and
 //mutators.
private:
 Point f1;
 Point f2;
};
This is just one possibility for the definition of
an Ellipse in an OOPL. There are an infinite
variety of others depending upon the
application in which it is to be used. Now, the
definition I used above cannot be collapsed
into a special case as you have done below.
Because the Circle ought not to have two foci.
The circle ought not to have functions that
retrieve the major and minor axes. We want
the circle class to use algorithms that are tuned
to operate on circles. We don't want to use
algorithms that are tuned for ellipses and just
happen to produce the right answer for circles
after a lot of extra work.

A circle is a state of an ellipse

If we were to use the notion of special cases
then the following logic would apply: A circle
is a state of an Ellipse. An Ellipse is really a
state of a Conic Section. A conic section is
really a state of a polynomial. A polynomial is
really a state of a generic nth order equation.
So perhaps we should have a
GenericNthOrderEquation class and then
circles, ellipses, paraboli ,hyperboli, lemnicati,
etc, etc, would all be states of this class. But I
don't think anybody would want to use such a
class.
Lex Spoon questioned the importance of the
ellipse-circle dilemma to every-day practice:
Reading through some of the complicated
descriptions in this thread, I can't help but
think about some poor programmer who "just"
wants to write a program that draws a Circle
around a smiley face. How much grief should
we put him through in the name of purity?

Robert C. Martin explained:
Don't underestimate this issue. It is not an issue
of purity, it is an issue of software engineering.

The whole circle/ellipse discussion is really an
instance of a much broader concept. That is
Programming by Contract. Every method of
every class has a set of preconditions and
postconditions. The preconditions must be true
before the function is called, otherwise the
results of the function will be undefined. The
function guarantees that the postconditions will
be true once it returns. Now, given function u
that invokes function f in some class. Function
u ensures the preconditions for f are true and
then expects the post-conditions of f to be true
once f returns
.

Object Oriented Software
Construction

However, if u invokes f on a base class b, what
can we say about the pre and post conditions of
f in d a derivative of b? Bertrand Meyer
worked all this out in the mid 80s and wrote it
down in a wonderful book called Object
Oriented Software Construction. Meyer said
that the preconditions of d::f can be no
stronger than the preconditions of b::f. That is,
derived classes cannot their users do to more
than users of b::f are already doing. Moreover,
d::f can accept fewer preconditions. This does
no harm since users of b::f will still be able to
call d::f. Also, d::f must conform to all of the
postconditions of b::f. This ensures that
functions like u can call d::f polymorphically
and still get everything they need. d::f has the
ability to add more postconditions if necessary,
but that is just gravy as far as u is concerned.
Now, consider the Circle/Ellipse problem. One
of the functions of Ellipse is StretchX(x). This
function stretches the ellipse by x units in the
X direction. The post conditions for this
function might be:
 -new horizontal length is x units longer.
 -new vertical height is unchanged.
These are reasonable postconditions for this
function, and u can depend upon them.
However, if we derive Circle from Ellipse and
then modify StretchX such that it also
increases the vertical height of the circle in
order to keep it circular, then we have violated
the postconditions of Ellipse::StretchX. This
will confuse any users (u) that call StretchX on
what they think are Ellipses. Of course these
issues are important for all classes. Every
method of every class has a set of
preconditions and postconditions. And it is
important to make sure that the methods of
derived classes expect no more than the bases,
and deliver no less than the bases. This is just
another way of stating the Liskov Substitution
Principle (LSP).

DESIGNFOCUS OBJECTIVEVIEW PAGE 17

WEKNOW THEOBJECT

Compiled by Yonat Sharon from comp.object. See. http://www.kinetica.com/ootips for more ootips.

Design Tips: Observer Pattern

Problem: How to keep multiple
views of a single object in sync

with the object?
Frank Prindle asked: In MS Windows 95 or
Windows NT, one can easily launch many
independently developed applications which
each display a slider/scale widget showing the
soundcard volume, for example. If the volume
is changed by moving any of these
sliders/scales, all the other sliders/scales
IMMEDIATELY reflect the change. Is there a
commonly used programming method
whereby, if an object has visual representations
in one or more windows [...], that when the
value of that object changes [...], all its visual
representations are informed of, and display

the new value? From the book Design
Patterns by Gamma, Helm, Johnson &
Vlissides: The Observer pattern describes how
to establish these relationships. The key
objects in this patterns are subject and
observer. A subject may have any number of
dependent observers. All observers are notified
whenever the subject undergoes a change in
state. In response, each observer will query the
subject to synchronise its state with the
subject's state. This kind of interaction is also
known as publish-subscribe. The subject is the
publisher of notifications. It sends out these
notifications without having to know who
observers are. Any number of observers can
subscribe to receive notifications.

Compiled by Yonat Sharon from discussions on the comp.object
Usenet group.

 See http://www.kinetica.com/ootips for further details and
more object oriented tips

Granularity
As software applications grow in size and complexity the structure of

the source code becomes an issue in its own
right. Robert C. Martin lays down the rules for effective OO source structure

and packaging

Granularity

As software applications grow in size and
complexity they require some kind of high
level organisation. The class, while a very
convenient unit for organising small
applications, is too finely grained to be used as
an organisational unit for large applications.
Something “larger” than a class is needed to
help organise large applications. Several major
methodologists have identified the need for a

larger granule of organisation. Booch, uses the
term “class category” to describe such a
granule, Bertrand Meyer refers to “clusters”,
Peter Coad talks about “subject areas”, and
Sally Shlaer and Steve Mellor talk about
“Domains”. In this article we will use the
UML 0.9 terminology, and refer to these
higher order granules as “packages”. The term
“package” is common in Ada and Java circles.
In those languages a package is used to
represent a logical grouping of declarations
that can be imported into other programs.

DESIGNFOCUS OBJECTIVEVIEW PAGE 18

WEKNOW THEOBJECT

In Java, for example, one can write several
classes and incorporate them into the same

package. Then other Java programs can
‘import’ that package to gain access to those
classes.

Designing with Packages
In the UML, packages can be used as
containers for a group of classes. By grouping
classes into packages we can reason about the
design at a higher level of abstraction. The
goal is to partition the classes in your
application according to some criteria, and
then allocate those partitions to packages. The
relationships between those packages
expresses the high level organisation of the
application. But this begs a large number of
questions.
1. What are the best partitioning criteria?
2. What are the relationships that exist between
packages, and what design principles govern
their use?
3. Should packages be designed before classes
(Top down)? Or should classes be designed
before packages (Bottom up)?
4. How are packages physically represented?
In C++? In the development environment?
5. Once created, to what purpose will we put
these packages?
To answer these questions, I have put together
several design principles which govern
the creation, interrelationship, and use of
packages.
.
The Reuse/Release Equivalence

Principle (REP)
The Granule of reuse is the granule of
release. Only components that are
released through a tracking system can

be effectively reused. This granule is the
package.
Reusability is one of the most often claimed
goals of OOD. But what is reuse? Is it reuse
if I snatch a bunch of code from one program
and textually insert it into another? It is reuse
if I steal a module from someone else and link
it into my own libraries? I don’t think so.
The above are examples of code copying; and
it comes with a serious disadvantage:
you own the code you copy! If it doesn’t work
in your environment, you have to change it.
If there are bugs in the code, you have to fix
them. If the original author finds some bugs in
the code and fixes them, you have to find this
out, and you have to figure out how to make
the changes in your own copy. Eventually the
code you copied diverges so much from the
original that it can hardly be recognised. The
code is yours. While code copying can make
it easier to do some initial development; it does
not help very much with the most expensive
phase of the software lifecycle, maintenance.
I prefer to define reuse as follows. I reuse code
if, and only if, I never need to look at the
source code (other than the public portions of
header files). I need only link with static
libraries or include dynamic libraries.
Whenever these libraries are fixed or
enhanced, I receive a new version which I can
then integrate into my system when
opportunity allows. That is, I expect the code I
am reusing to be treated like a product. It is not
maintained by me. It is not distributed by me. I
am the customer, and the author, or some other
entity, is responsible for maintaining it. When
the libraries that I am reusing are changed by
the author, I need to be notified. Moreover, I
may decide to use the old version of the library
for a time. Such a decision will be based upon
whether the changes made are important to me,
and when I can fit the integration into my
schedule. Therefore, I will need the author to

A2

X Base Class

P1

P2

Derived

A1

Directional
Association

Aggregation
ByReference

Aggregation
By Value

Bi-directional Association

Inheritance

dependency

DESIGNFOCUS OBJECTIVEVIEW PAGE 19

WEKNOW THEOBJECT

make regular releases of the library. I will also
need the author to be able to identify these
releases with release numbers or names of
some sort. Thus, I can reuse nothing that is not
also released. Moreover, when I reuse
something in a released library, I am in effect a
client of the entire library. Whether the
changes affect me or not, I will have to
integrate with each new version of the library
when it comes out, so that I can take advantage
of later enhancements and fixes. And so, the
REP states that the granule of reuse can be no
smaller than the granule of release. Anything
that we reuse must also be released. Clearly,
packages are a candidate for a releasable
entity. It might be possible to release and track
classes, but there are so many classes in a
typical application that this would almost
certainly overwhelm the release tracking
system. We need some larger scale entity to act
as the granule of release; and the package
seems to fit this need rather well.

The Common Reuse Principle
(CRP)

The classes in a package are reused
together. If you reuse one of the classes
in a package, you reuse them all.

This principle helps us to decide which classes
should be placed into a package. It states that
classes that tend to be reused together belong
in the same package. Classes are seldom
reused in isolation. Generally reusable classes
collaborate with other classes that are part of
the reusable abstraction. The CRP states that
these classes belong together in the same
package. A simple example might be a
container class and its associated iterators.
These classes are reused together because they
are tightly coupled to each other. Thus they
ought to be in the same package. The reason
that they belong together is that when an
engineer decides to use a package a
dependency is created upon the whole
package. From then on, whether the engineer
is using all the classes in the package or not,
every time that package is released, the
applications that use it must be revalidated and
re-released. If a package is being released
because of changes to a class that I don’t care
about, then I will not be very happy about
having to revalidate my application.
Moreover, it is common for packages to have
physical representations as shared libraries or
DLLs. If a DLL is released because of a
change to a class that I don’t care about, I still
have to redistribute that new DLL and
revalidate that the application works with it.

Thus, I want to make sure that when I depend
upon a package, I depend upon every
class in that package. Otherwise I will be
revalidating and redistributing more than is
necessary, and wasting lots of effort.

The Common Closure Principle
(CCP)

The classes in a package should be closed
together against the same kind of
changes. A change that affects a package
affects all the classes in that package.

More important than reusability, is
maintainability. If the code in an application
must change, where would you like those
changes to occur: all in one package, or
distributed through many packages? It seems
clear that we would rather see the changes
focused into a single package rather than have
to dig through a whole bunch of packages and
change them all. That way we need only
release the one changed package. Other
packages that don’t depend upon the changed
package do not need to be revalidated or re-
released. The CCP is an attempt to gather
together in one place all the classes that are
likely to change for the same reasons. If two
classes are so tightly bound, either physically
or conceptually, such that they almost always
change together; then they belong in the same
package. This minimises the workload related
to releasing, revalidating, and redistributing
the software. This principles is closely
associated with the Open Closed Principle
(OCP). For it is “closure” in the OCP sense of
the word that this principle is dealing with. The
OCP states that classes should be closed for
modification but open for extension. As I have
disussed in a previous article that described the
OCP, 100% closure is not attainable. Closure
must be strategic. We design our systems such
that the are closed to the most likely kinds of
changes that we foresee. The CCP amplifies
this by grouping together classes which cannot
be closed against certain types of changes into
the same packages. Thus, when a change in
requirements comes along; that change has a
good chance of being restricted to a minimal
number of package

The Acyclic Dependencies
Principle (ADP)

The dependency structure between
packages must be a directed Acyclic

DESIGNFOCUS OBJECTIVEVIEW PAGE 20

WEKNOW THEOBJECT

graph (DAG). That is, there must be no
cycles in the dependency structure.

Have you ever worked all day, gotten some
stuff working and then gone home; only to
arrive the next morning at to find that your
stuff no longer works? Why doesn’t it work?
Because somebody stayed later than you! I call
this: “the morning after syndrome”. The
“morning after syndrome” occurs in
development environments where main
developers are modifying the same source
files. In relatively small projects with just a
few developers, it isn’t too big a problem. But
as the size of the project and the development
team grows, the mornings after can get pretty
nightmarish. It is not uncommon for weeks
to go by without being able to build a stable
version of the project. Instead, everyone keeps
on changing and changing their code trying to
make it work with the last changes that
someone else made. The solution to this
problem is to partition the development
environment into releasable packages. The
packages become units of work which are the
responsibility of an engineer, or a team of
engineers. When the responsible engineers get
a package working, they release it for use by
the other teams. They give it a release number
and move it into a directory for other teams to

use. They then continue to modify their
package in their own private areas. Everyone
else uses the released version. As new releases
of a package are made, other teams can decide
whether or not to immediately adopt the new
release. If they decide not to, they simply
continue using the old release. Once they
decide that they are ready, they begin to use
the new release. Thus, none of the teams are at
the mercy of the others. Changes made to one
package do not need to have an immediate
affect on other teams. Each team can decide
for itself when to adapt its packages to new
releases of of the packages they use. This is a
very simple and rational process. And it is
widely used. However, to make it work you
must manage the dependency structure of the
packages. There can be no cycles. If there are
cycles in the dependency structure then the
“morning after syndrome” cannot be avoided.
I’ll explain this further, but first I need to
present the graphical tools that the UML 0.9
uses to depict the dependency structures of
packages. Packages depend upon one another.
Specifically, a class in one package may
#include the header file of a class in a
different package. This can be depicted on a
class diagram as a dependency relationship
between packages (See Figure 1).

Figure 1 - Dependencies between Packages.

Packages, in UML 9.0 are depicted as “tabbed
folders”. Dependency relationships are dashed
arrows. The arrows point in the direction of the
dependency. That is, the arrow head is placed
next to the package that is being depended
upon. In C++ terms, there is a #include
statement in a class within the dependent
package that references the header file of a
class in the package being depended upon.

Consider the package diagram in Figure 2.
Here we see a rather typical structure of
packages assembled into an application. The
function of this application is unimportant
for the purpose of this example. What is
important is the dependency structure of the
packages. Notice how this structure is a graph.
The packages are the nodes, and the
dependency relationships are the edges.
The dependency relationships have direction.
So this structure is a directed graph.

Dependent
Package Package

My
Application

My Tasks

DESIGNFOCUS OBJECTIVEVIEW PAGE 21

WEKNOW THEOBJECT

Figure 2 Package Diagram without Cycles

Now notice one more thing. Regardless of
which package you begin at, it is impossible
to follow the dependency relationships and
wind up back at that package. This structures
has no cycles. It is a directed acyclic graph.
(DAG). Now, notice what happens when the
team responsible for MyDialogs makes a new
release. It is easy to find out who is affected by
this release; you just follow the dependency
arrows backwards. Thus, MyTasks and
MyApplication are both going to be affected.
The teams responsible for those packages will
have to decide when they should integrate with
the new release of MyDialogs. Notice also that
when MyDialogs is released it has utterly no
affect upon many of the other packages in the
system. They don’t know about MyDialogs;
and they don’t care when it changes. This is
nice. It means that the impact of releasing
MyDialogs is relatively small. When the
engineers responsible for the MyDialogs
package would like to run a unit test of their
package, all they need do is compile and link
their version of MyDialogs with the version of
the Windows package that they are currently

using. None of the other packages in the
system need be involved. This is nice, it means
that the engineers responsible for MyDialogs
have relatively little work to do to set up a unit
test; and that there are relatively few variables
for them to consider. When it is time to release
the whole system; it is done from the bottom
up. First the Windows package is compiled,
tested, and released. Then MessageWindow
and Mydialogs.These are followed by Task,
and then TaskWindow and Database. MyTasks
is next; and finally MyApplication. This
process is very clear and easy to deal with. We
know how to build the system because we
understand the dependencies between its parts.

The Effect of a Cycle in the
Package Dependency Graph

Let us say that the a new requirement forces us
to change one of the classes in MyDialogs
such that it #includes one of the class headers
in MyApplication. This creates a dependency
cycle as shown in Figure 3.

My
Application

My Tasks

Database

My
Dialogs

Task

Windows

Task
Window

Message
Window

DESIGNFOCUS OBJECTIVEVIEW PAGE 22

WEKNOW THEOBJECT

Figure 3 Package Diagram with Cycles

This cycle creates some immediate problems.
For example, the engineers responsible
for the MyTasks package know that in order to
release, they must be compatible with Task,
MyDialogs, Database, and Windows.
However, with the cycle in place, they must
now also be compatible with MyApplication,
TaskWindow and MessageWindow. That is,
MyTasks now depends upon every other
package in the system. This makes MyTasks
very difficult to release. MyDialogs suffers the
same fate. In fact, the cycle has had the effect
that MyApplication, MyTasks, and MyDialogs
must always be released at the same time.
They have, in effect, become one large
package. And all the engineers who are will
be stepping all over one another since they
must all be using exactly the same release of
each other. But this is just the tip of the
trouble. Consider what happens when we want
to unit test the Mydialogs package. We find
that we must link in every other package in the
system; including the Database package. This
means that we have to do a complete build just
to unit test MyDialogs. This is intolerable. If
you have ever wondered why you have to link
in so many different libraries, and so much of
everybody else’s stuff, just to run a simple unit
test of one of your classes, it is probably
because there are cycles in the dependency
graph. Such cycles make it very difficult
to isolate modules. Unit testing and releasing
become very difficult and error prone. And
compile times grow geometrically with the
number of modules.

Breaking the Cycle

It is always possible to break a cycle of
packages and reinstate the dependency graph
as a DAG. There are two primary mechanisms.
1. Apply the Dependency Inversion Principle
(DIP). In the case of Figure 3, we could create
an abstract base class that has the interface that
MyDialogs needs. We could then put that
abstract base into MyDialogs and inherit it into
MyApplication. This inverts the dependency
between MyDialogs and MyApplication thus
breaking the cycle. See Figure 4.
2. Create a new package that both MyDialogs
and MyApplication depend upon. Move the
class(es) that they both depend upon into that
new package.

The “Jitters”

The second solution implies that the package
structure is not stable in the presence of
changing requirements. Indeed, as the
application grows, the package dependency
structure jitters and grows. Thus the
dependency structure must always be
monitored for cycles. When cycles occur they
must be broken somehow. Sometimes this will
mean creating new packages, making the
dependency structure grow.

Top Down Design

The issues we have discussed so far lead to an
inescapable conclusion. The package structure
cannot be designed from the top down. This
means that is it not one of the first things about
the system that is designed. Indeed, it seems
that it gets designed after many of the classes
in the system have been designed, and
thereafter remains in a constant state of flux.
Many should find this to be counterintuitive.

X

 My
Dialogs

 My Application

X Y

X
Server

YX

Before

After

My
Application

My Dialogs

DESIGNFOCUS OBJECTIVEVIEW PAGE 23

WEKNOW THEOBJECT

Figure 4 Breaking the Cycle with Dependency Inversion

We have come to expect that large grained
decompositions are also high level functional
decompositions. When we see a large grained
grouping like a package dependency structure,
we feel that it ought to some-how represent the
function of the system. Yet this does not seem
to be an attribute of package dependency
diagrams. In fact, package dependency
diagrams have very little do to with describing
the function of the application. Instead, they
are a map of how to build the application. This
is why they aren’t designed at the start of the
project. There is no software to build, and so
there is no need for a build map. But as more
and more classes accumulate in the early
stages of implementation and design, there is a
growing need to map out the dependencies so
that the project can be developed without the
“morning after syndrome”. Moreover, we want

to keep changes as localised as possible, so we
start paying attention to the common closure
principle and collocate classes that are likely to
change together. As the application continues
to grow, we start becoming concerned about
creating reusable elements. Thus the Common
Reuse Principle begins to dictate the
composition of the packages. Finally, as cycles
appear the package dependency graph jitters
and grows. If we were to try to design the
package dependency structure before we had
designed any classes, we would likely fail
rather badly. We would not know much about
common closure, we would be unaware of any
reusable elements, and we would almost
certainly create packages that produced
dependency cycles. Thus the package
dependency structure grows and evolves with
the logical design of the system.

Conclusions

Managing a complex project using packages
and their interdependencies is one of the most
powerful tools of OOD. By creating packages
that conform to the three principles described

in this paper, we set the stage for robust,
maintainable, and reusable software.
Packages are the units that focus change, that
enable reuse, and that provide the unit of
release that prevents developers from
interfering with each other.

This article is an extremely condensed version of a chapter from Robert Martin’s new book: Patterns and
Advanced Principles of OOD, to be published soon by Prentice Hall.

This article was written by Robert C. Martin of Object Mentor Inc. Copyright (C) 1997 by Robert C.
Martin and Object Mentor Inc. All rights reserved. Object Mentor Inc, 14619 N. Somerset Circle,

Green Oaks, IL, 60048, USA phone: 847.918.1004 fax:847.918.1023
 email:oma@oma.com web:http://www.oma.com

