
UML - A Universal Modeling Language?

Gregor Engels, Reiko Heckel, and Stefan Sauer

University of Paderborn, Dept. of Computer Science, D 33095 Paderborn, Germany
engels|reiko|sauer@upb.de

Abstract. The Unified Modeling Language (UML) is the de facto in-
dustrial standard of an object-oriented modeling language. It consists
of several sublanguages which are suited to model structural and be-
havioral aspects of a software system. The UML was developed as a
general-purpose language together with intrinsic features to extend the
UML towards problem domain-specific profiles. The paper illustrates the
language features of the UML and its adaptation mechanisms. As a con-
clusion, we show that the UML or an appropriate, to be defined core
UML, respectively, may serve as a universal base of an object-oriented
modeling language. But this core has to be adapted according to prob-
lem domain-specific requirements to yield an expressive and intuitive
modeling language for a certain problem domain.

Keywords: object-oriented model, UML, OCL, profile, class diagram,
interaction diagram, statechart

1 Introduction

Main objectives of the software engineering discipline are to support the com-
plex and hence error-prone software development task by offering sophisticated
concepts, languages, techniques, and tools to all stakeholders involved.

An important and nowadays commonly accepted approach within software
engineering is the usage of a software development process model where in par-
ticular the overall software development task is separated into a series of ded-
icated subtasks. A substantial constituent of such a stepwise approach is the
development of a system model. Such a model describes the requirements for the
software system to be realized and forms an abstraction in two ways (cf. Fig. 1).
First, it abstracts from real world details which are not relevant for the intended
software system. Second, it also abstracts from the implementation details and
hence precedes the actual implementation in a programming language.

Thus, the system model plays the role of a contract between a client, order-
ing a software system, and a supplier, building and delivering a software system.
Therefore, the contract has to be presented in a language which is understand-
able by both the client, generally not being a computer scientist, and the sup-
plier, hopefully being a computer scientist. This requirement excludes cryptic,
mathematical, or machine-oriented languages as modeling languages and favors
diagrammatic, intuitively understandable, visual languages.

M. Nielsen, D. Simpson (Eds.): ICATPN2000, LNCS 1825, pp. 24–38, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

UML - A Universal Modeling Language? 25

real world

system
model

program

analyse and
design

code

abstracts from

abstracts from

Figure 1. Role of System Model

Besides acting as a contract document between client and supplier of a soft-
ware system, a system model may serve as a documentation document for the
realized software system. The existence of such a documentation, which is con-
sistent with the software system, substantially facilitates any required change of
the system in the maintenance phase.

In case of missing documentation, respectively system model, a reverse trans-
formation from the software system to the system model has to be performed in
order to yield a model of the system on a more abstract and better understand-
able level where any required change can be discussed with the client and the
supplier.

Thus, the system model does not only play an important role in the for-
ward engineering process of developing software, but also in reverse engineering.
Hence techniques are studied and developed to understand and document exist-
ing legacy systems, to update their functionality or to integrate them into larger
systems. The rebuilding of a generally not existing system model for a legacy
system eases the understanding of the consequences of any system update in
contrast to dangerous ad-hoc updates of the existing system itself.

The usefulness of an abstract system model was already recognized in the
1970s, when structured methods were proposed as software development meth-
ods [23]. These methods offered Entity-Relationship diagrams [3] to model the
data aspect of a system, and data flow diagrams or functional decomposition
techniques to model the functional, behavioral aspect of a system. The main
drawbacks of these structured approaches were the often missing horizontal con-
sistency between the data and behavior part within the overall system model,
and the vertical mismatch of concepts between the real world domain and the
model as well as between the model and the implementation.

As a solution to these drawbacks, the concept of an abstract data type, where
data and behavior of objects are closely coupled, became popular within the
1980s. This concept then formed the base for the object-oriented paradigm and
for the development of a variety of new object-oriented programming languages,

26 Gregor Engels, Reiko Heckel, and Stefan Sauer

database systems, as well as modeling approaches. Nowadays, the object-oriented
paradigm has become the standard approach throughout the whole software
development process. In particular, object-oriented languages like C++ or Java
have become the de facto standard for programming. The same holds for the
analysis and design phases within a software development process where object-
oriented modeling approaches are more and more becoming the standard ones.

The success of object-oriented modeling approaches was hindered in the be-
ginning of the 90s by the fact that surely more than fifty object-oriented modeling
approaches claimed to be the right one, the so-called object-oriented method war.
This so-called method war came to a (temporary) end by an industrial initiative
which pushed the development of the meanwhile standardized object-oriented
modeling language UML (Unified Modeling Language) [18].

UML aims at being a general purpose language. Thus, the question arises
whether UML can be termed a universal language which is usable to model all
aspects of a software system in an appropriate way. In particular, it has to be
discussed

– which language features are offered to model a certain aspect like structure
or behavior,

– whether horizontal consistency problems are resolved in order to yield a
complete and consistent model,

– whether all vertical consistency problems are resolved, such that
– real world domain-specific aspects can be modeled in an appropriate, in-
tuitive way, and that
– a transition from a UML model towards an implementation is supported.

It is the objective of this article to discuss these issues. Section 2 will provide
an overview on UML and will explain the concepts offered by UML to model sys-
tem aspects. Section 3 illustrates briefly the UML approach to define the syntax
and (informal) semantics of UML. This shows how horizontal consistency be-
tween different model elements can be achieved. In addition, extensibility mech-
anisms of UML are explained which allow to adapt UML to a certain problem
domain. Section 4 discusses current approaches to define domain-specific adapta-
tions of UML, so-called profiles. The article closes with some conclusions in sect.
5 and a reference list as well as a list of related links to get further information.

2 Language Overview

Object-oriented modeling in all areas is nowadays dominated by the Unified
Modeling Language (UML) [18]. This language has been accepted as industrial
standard in November 1997 by the OMG (Object Management Group). UML
was developed as a solution to the object-oriented method war mentioned above.
Under the leadership of the three experienced object-oriented methodologists
Grady Booch, Ivar Jacobson, and James Rumbaugh, and with extensive feedback
of a large industrial consortium, an agreement on one object-oriented modeling
language and, in particular, on one concrete notation for language constructs

UML - A Universal Modeling Language? 27

was reached in an incremental and iterative decision process. For today, UML
version 1.3 represents the currently accepted industrial standard [2,16].

Main objectives for designing the Unified Modeling Language (UML) were
the following:

– UML was intended as a general purpose object-oriented modeling language
instead of a domain-specific modeling language.

– It was intended to be complete in the sense that all aspects of a system can
be described and modeled in an appropriate way.

– It was intended to be a visual, diagrammatic language, as such a language
is generally better intuitively understandable than a textual one.

– UML was not intended to be a new language, but an appropriate reuse of
best practices of already existing modeling languages which are suited to
model certain aspects of a system.

– An important objective was to agree on a formalized syntax and standard no-
tation for modeling constructs, while an informally given semantics definition
was found to be acceptable (at least in the beginning of the standardization
process).

– As the name says, UML was only intended to be a language. A discussion
of an appropriate method or process for deploying UML was intended to be
separated from defining the language.

– Despite the fact that UML was intended to be a general purpose language,
concepts should already be included in the language which allow to adapt
the language towards particular problem domains.

As it is common in structured as well as in object-oriented modeling ap-
proaches and in order to meet all objectives stated above, the Unified Modeling
Language (UML) was defined as a family or even better Union of Modeling
Languages. In particular in order to cover all aspects of a system, several model-
ing languages are combined where each of them is suited for modeling a specific
system aspect. This means that a system model is given by a set of submodels
or views where each submodel concentrates on a specific system aspect. On the
other hand, the same aspect may be modeled from different perspectives. Thus,
the different submodels may overlap and even provide a redundant or conflicting
specification of certain system aspects. This approach of providing overlapping,
non-orthogonal sublanguages eases the specification process, as the designers
may describe the same issue incrementally by interrelating it to other issues. In
contrast, the usage of different, even non-orthogonal sublanguages for develop-
ing a system model increases the danger of inconsistencies between the different
submodels, and thus enforces additional means to handle and to prevent from
inconsistencies.

Originating from the concept of an abstract data type, the traditionally dis-
tinguished system aspects are the structural aspect and the behavioral aspect of
a system. UML follows this distinction and offers the following sublanguages to
specify structural aspects on one side and behavioral aspects on the other side.

28 Gregor Engels, Reiko Heckel, and Stefan Sauer

classA

AttrNameA: TName

opName(p:TName1):
TName2

classD

classB*
compName

composition

inheritance

AttrNameB: TName

active class

ClassB

self.AttrNameB <=
self.compName.AttrNameA

1

OCL constraint

multiplicity

Figure 2. Class Diagram

Modeling the Structural Aspect. UML provides class and object diagrams, re-
spectively, to model all structural aspects of a system on a type and instance
level, respectively. These diagrams originate from Entity-Relationship diagrams
[3] and offer means to specify the structure of objects and the possible struc-
tural relationships between objects. Objects are described by their attributes as
well as by the signatures of operations which may change the state of an object.
Structural relationships can be described as general associations or as a weak or
strong aggregation relationship between objects, the latter kind of aggregations
being so-called compositions. In addition, objects may be specified as passive
or active objects, the latter ones having their own, permanently active thread
of control. Figure 2 shows the standard notation of UML for these language
features in an abstract example.

Allowed object societies, i.e. objects with their interrelations, may be further
restricted by additional integrity constraints. These constraints may be formu-
lated in a graphical way and attached to e.g. class diagrams (as for instance,
multiplicity constraints of relationships) or may be formulated in the more ex-
pressive textual language OCL (Object Constraint Language) [22]. OCL is based
on predicate logic and may be used in a UML model to specify integrity con-
straints or invariants for object societies, but also e.g. pre-/post-conditions for
operations. For instance, the OCL constraint in fig. 2 states that the value of
attribute AttrNameB of an object of ClassB has to be less than or equal to
the value of attribute AttrNameA of the object of ClassA reachable via the
compName link between these two objects.

UML - A Universal Modeling Language? 29

<<include>>

UseCaseD

UseCaseA UseCaseB

ActorA

Figure 3. Use Case Diagram

Modeling the Behavioral Aspect. UML offers several diagram types to model
the behavioral aspect of a system. Each of them focuses on a certain view on a
system and offers appropriate language features.

– A global, coarse-grained, sometimes also called external view on a system can
be modeled by use case diagrams. This view is restricted to the identification
of the main functionality or processes of a system, called use cases, and to
(external) actors participating in these use cases. Use cases are only described
by their name and an optional textual explanation. Use case diagrams may
be structured by include, extend, or inheritance relationships between use
cases (cf. fig. 3).
Use case diagrams have to be refined by the usage of other behavioral dia-
grams (see below) in order to describe what happens during the execution
of a use case (i.e. process).

– The behavior of single objects over time is described by state machines.
Objects have a control state (in contrast to a data state) which may change
in reaction to received events (triggering state transitions). Such an event
may be a signal or call event from another object or a time signal which
causes the object to change its state. Thus, state machines are used to model
the lifecycle of an object and provide a so-called intra-object view. State
machines in UML are based on Harel’s statecharts [11] and offer means like
concurrent and sequential composite states, history states, or junction states
to model complex behavior of an object. Figure 4 gives an abstract example
of such a state machine.
Summarizing, state machines are mainly used to model a state- and event-
based view on a system. What is missing in such a description is a model of
the cooperation and interaction between different objects in a system. This
is provided by the following three behavior diagrams where each of them
focuses on a certain aspect.

30 Gregor Engels, Reiko Heckel, and Stefan Sauer

CompositeState1

State1 State2

State3 State4

State5

initial states

event1

event2

event3

event4

final statesconcurrent composite state

Figure 4. State Machine

The inter-object view on a system, i.e. the communication between and col-
laboration of different objects, can be described by a UML activity, sequence or
collaboration diagram:

– A control-flow oriented description can be given by a UML activity diagram.
Syntactically, an activity diagram is a special form of a state machine where
states are interpreted and labelled by activities. In contrast to usual state
machines, a state change is automatically triggered when the execution of
an activity has been finished. Activity diagrams do not relate activities to
certain objects and represent mainly a procedural, possibly concurrent flow
within a system. Objects may be exchanged as in-/out-parameters between
different activities, which may be indicated by additional object flow links
between states. Figure 5 illustrates the used notations in activity diagrams.

– A scenario-oriented description of the interaction between objects can be
given by sequence diagrams. They originate from message sequence charts
(MSC) [12] and focus mainly on the sequence of message exchanges over
time between objects involved in a certain activity. Each object is repre-
sented by a vertical life line on which the active and passive periods of an
object are shown. Different forms of message exchange like synchronous or
asynchronous ones can be indicated by different shapes of arrows between
object life lines. Figure 6 illustrates the used notations in sequence diagrams.

– An object structure-oriented description of the interaction between objects
can be given by collaboration diagrams. They represent mainly the same in-
formation as sequence diagrams, but focus on the objects and their structural

UML - A Universal Modeling Language? 31

act1

act2 act3

act4

act5

branch

[guard2][guard1]

synch bar
(fork)

synch bar
(join)

o:ClassA

join

object

Figure 5. Activity Diagram

interrelations. Thus, the base of a collaboration diagram is an object dia-
gram where the links between objects are additionally labelled by messages
which are sent between a sending object and a receiving object. Links can
be distinguished into those based on structural relationships, parameters,
local variables, etc. The sequencing of messages is described by sequence
numbers which are attached to messages and describe a sequential, nested,
or concurrent sending of messages. Figure 7 illustrates the used notations in
collaboration diagrams.

In addition to these diagrams for modeling the structural as well as behavioral
aspects of a system, UML provides two diagram types to describe the transition
from a model to the corresonding implementation. These so-called implementa-
tion diagrams are the component diagram and the deployment diagram.

The component diagram describes the software architecture of a system which
consists of components, their interfaces and their interrelations. A component
itself encapsulates the implementation of elements as e.g. classes from the system
model.

The deployment diagram goes even one step further and describes the hard-
ware architecture of a system, consisting of nodes as physical objects and their
interrelations. The deployment diagram describes the distribution of objects and
components to nodes, and thus links the software architecture to the hardware
architecture.

Compared to the UML diagrams explained above to model the structure and
behavior of a system, these two implementation diagrams are still in a very rudi-
mentary form in the current UML version. Ongoing discussions to combine UML
with language features from the ROOM (Real-time Object-Oriented Modeling)

32 Gregor Engels, Reiko Heckel, and Stefan Sauer

o1:ClassA o2:ClassB

o3:ClassD

opB1
opD

o4:ClassB

opB2

object
creation

life line

active
(computing)

passive

(synchronous) call message

return message
activated

Figure 6. Sequence Diagram

approach [19] to model real-time, embedded systems will result in an improved,
more expressive form of these implementation diagrams.

This concludes the overview on the UML language. UML offers a lot of addi-
tional features which could not be explained in this brief overview. An example
is the package concept which allows to divide a model into smaller parts with
clearly defined dependencies and thus supports to manage huge models also. The
interested reader is referred to [2,18] and to the links to related web-sites (at the
end of this article).

o1:ClassA

o2:ClassB o3:ClassD
{new}

B1:opB1

B1.1:opDo4:ClassB

A:opB2

<<parameter>> <<parameter>>

<<local>>

opA(o2,o4)

concurrent
threads (A, B)

Sequence number (nested call)

parameter link

local link

object
creation

(synchronous) call message

Figure 7. Collaboration Diagram

3 Language Definition

The main focus of the OMG standardization effort so far was an agreement
on a commonly accepted concrete notation as well as abstract syntax for all
these diagram types of the UML. The semantics of the UML is currently only

UML - A Universal Modeling Language? 33

informally, textually defined, and its further development towards a precise se-
mantics is postponed to the next standardization phase. In this section, we will
briefly sketch the syntax definition approach followed by the OMG and explain
UML-intrinsic features to adapt UML to a problem-domain specific modeling
language.

For the definition of the abstract syntax of the UML, the OMG follows a
four-layered meta modeling approach. These four layers are the following:

– The MetaMetaModel (M3) layer provides a so-called Meta Object Facility
(MOF) to define meta models on the next lower layer. The MOF consists
of language features for defining an Entity-Relationship diagram or class
diagram as well as a constraint language to define additional integrity con-
straints.

– The MOF is used on the MetaModel (M2) layer to define a concrete meta
model for a modeling language. This meta model consists of a concrete class
diagram with additional integrity constraints which defines the allowed ab-
stract syntax features of a modeling language and their interrelations. Thus,
the meta model defines the abstract syntax of a modeling language.

– A concrete UML model is an element of the Model (M1) layer and is an
instance of the meta model layer M2.

– Finally, a conrete runtime extension of a UML model is an element of the
Objects (M0) layer and is an instance of the model layer M1.

Thus, the UML meta model on layer M2 is specified as an instance of the
meta-meta model of layer M3 by a UML class diagram together with OCL
constraints, i.e., partly deploying the UML itself. While the class diagram part
defines the abstract context-free syntax, the OCL constraints define the context-
sensitive syntax of UML. By providing one overall meta model for all sublan-
guages of the UML, the horizontal consistency problem between different sub-
models is resolved. Particularly, the OCL constraints, also called well-formedness
rules, take care that the different submodels written in different sublanguages of
UML are syntactically well integrated.

This agreement on a well-defined abstract as well as concrete syntax to-
gether with a (yet informally) defined semantics has the advantage that all users
of UML have the same understanding of a system model described by UML. The
disadvantage of such an approach is that one has to agree on a general-purpose
language with high-level language features which might not be expressive enough
to model problem-domain specific details in an appropriate, intuitive way. There-
fore, two types of language extensions have been discussed within the OMG to
adapt the UML to problem-domain specific needs [17]. These are the heavyweight
and the lightweight extension mechanisms.

The heavyweight extension mechanism is provided by the MOF which means
that it is possible in principle to change and adapt the UML by modifying the
UML metamodel on layer M2. As the name says, this kind of extension has great
impact on the UML language and, therefore, is not possible for an individual
user of UML.

34 Gregor Engels, Reiko Heckel, and Stefan Sauer

In contrast to this, the lightweight extension mechanisms are built-in mecha-
nisms of UML and allow any individual modeler to tailor the UML to her needs.
This provides the opportunity to adapt the UML to the requirements of a certain
problem domain by tailoring the general-purpose, universal UML to a problem
domain-specific modeling language. As this tailoring means that the syntax as
well as the semantics of UML constructs might be changed, it is obvious that
it has to be done with great care. Thus, it is unlikely and not intended that an
individual user starts to adapt the UML. It will be mainly the task of, e.g., a
user group or a tool vendor, to propose and to do such an adaptation of the
UML for a specific problem domain. The result of such an adaptation is a UML
dialect which is termed a UML profile.

Three lightweight extension mechanisms are distinguished for the UML. These
are constraints, tagged values, and stereotypes.

– Constraints are expressed in the OCL (Object Constraint Language) and
specify additional restrictions on a UML system model. They are comparable
to integrity constraints in the database field and can be added to any model
part in an UML system model.

– Tagged values are pairs of strings - a tag string and a value string - which
can be added to any model element in a UML system model. This feature
allows to attach additional information to a UML system model which can
not directly be expressed by UML language features.

– The most powerful and thus most heavily discussed extension mechanism are
stereotypes. Stereotypes allow to give existing UML model elements an ad-
ditional classification, and thus to tailor them for a specific purpose. Stereo-
typed model elements of UML are indicated by an additional annotation
or they may even have a different concrete notation. Stereotypes can range
from modification of concrete syntax to redefinition of original semantics of
model elements (cf. [1]).

Summarizing, it can be stated that the abstract and concrete syntax of UML
has been formally defined by following a four-layered meta model approach. In
addition, lightweight extension mechanisms are provided to adapt the general-
purpose UML to a specific problem domain.

4 Language Adaptations

The main advantage and at the same time the main drawback of UML is that it is
a general-purpose language. This objective of the UML designers automatically
yielded a language which is not capable of providing features which are appro-
priate to express problem domain-specific situations. This drawback of being a
general-purpose language and, in addition, the lacking of a precise semantics
has been identified by the UML standardization groups and has led to estab-
lishing corresponding task groups and related RFPs (Request For Proposals) by
the OMG (cf. [14]) to overcome these shortcomings. It has to be expected that

UML - A Universal Modeling Language? 35

Controller View

Communication

Model

Figure 8. MVCC Architecture

further versions of UML as well as proposals for domain-specific profiles will be
developed and published within the next years.

As an example of such a problem domain, we discuss the requirements for
applications in the field of embedded, interactive software systems. Such software
systems are typical for today’s software systems and can be found, for instance,
in banking terminals, as infotainment software in advanced automotive systems,
or in production control systems. These systems support on one hand a window-
based user interface and at the same time the connection to hardware compo-
nents. Often, these software systems have to obey real-time constraints, too, in
order to react to events caused by the user or an embedded system component
appropriately.

A closer look at the architecture of those systems shows that the classical
Model-View-Controller (MVC) architecture [15] has to be extended to a Model-
View-Communication-Controller (MVCC) architecture [20] where the commu-
nication between the different components is treated as a first-class object, too
(cf. fig. 8).

Summarizing, a modeling language which offers appropriate support for all
aspects of such an interactive, embedded system has to provide language features
to model

– the model part, i.e., the problem domain specific objects,
– the view part, i.e., the user interface of the system,
– the communication part, i.e., the interaction between the different con-

stituents of the system, and
– the controller part which might include a real-time behavior.

In addition, appropriate means should be provided to model the component-
based style of the software architecture which reflects the hardware architecture
of those embedded systems.

A comparison with the language features of UML shows that the language
elements are mainly suited to describe the model part. Specific language features
are missing in the UML to specify the user interface and particularly the layout
of a user interface, to specify the interaction between different components in a
fine-grained way, or to specify real-time aspects.

36 Gregor Engels, Reiko Heckel, and Stefan Sauer

This observation caused several groups to work on the development of specific
profiles. A prominent example is the work on a profile for component-based, real-
time systems based on ROOM [19]. Ongoing own research work comprises the
investigation of fine-grained modeling of interaction [7] based on SOCCA [5,6],
and the development of a profile for multimedia applications which, in particular,
supports the modeling of the layout of the user interface [21].

5 Conclusion and Perspectives

In this paper, we have discussed the role of a system model within the software
development process and the appropriateness of the Unified Modeling Language
(UML) as a language to specify these system models. In particular, we have
illustrated the main features of the sublanguages of the UML to model structural
as well as behavioral aspects of a system.

UML has been designed as a general-purpose language, but also as a lan-
guage which can easily be extended to a problem domain-specific language. The
development of so-called problem domain-specific profiles is supported by UML-
intrinsic extension mechanisms as constraints, tagged values, and particularly
stereotypes.

Thus, returning to the question posed in the title of this paper, whether the
U in UML can also be interpreted as universal, the following can be concluded:

At first glance, UML is a union of modeling languages as several already ex-
isting modeling languages have been gathered under one umbrella. But it is more
than a disjoint union of these languages, as due to the definition of one com-
mon meta model for all sublanguages, an integration, at least on the syntactical
level, has taken place. Thus, the UML can be termed a unified language on the
abstract syntax level, but also on the concrete syntax level, since an agreement
on concrete notations has taken place, too.

Discussing the question, whether the UML is a universal language which can
be deployed for modeling all of today’s software systems, it has to be concluded
that the UML forms an ideal base for any problem domain-specific language. But
the UML can not fulfill the role of a universal language which should or could
be deployed in any problem domain. In order to provide intuitive and expressive
modeling features for a certain domain, UML has to be extended and adapted
by appropriate profiles.

This conclusion is also reflected by ongoing research and development work
in the UML field. In particular, it is currently discussed which constituents of the
UML belong to a core UML which then might serve as the base for developing
problem domain-specific profiles [9].

Besides that, the embedding of the UML into the software development pro-
cess is an important topic. This includes the definition of a software process
model [13,4] as well as techniques to transform a UML model into a correspond-
ing implementation in a programming language [8].

UML - A Universal Modeling Language? 37

References

1. St. Berner, M. Glinz, St. Joos: A Classification of Stereotypes for Object-Oriented
Modeling Languages. In [10], 249-264.

2. G. Booch, J. Rumbaugh, I. Jacobson: The Unified Modeling Language User Guide.
Addison-Wesley, Reading, MA, 1999.

3. P. Chen: The Entity-Relationship Model - Toward a Unified View of Data. ACM
Transactions on Database Systems, 1(1), 1976, 9-36.

4. D. D’Souza, A. Wills: Objects, Components, and Frameworks with UML - the
Catalysis Approach. Addison-Wesley, 1998.

5. G. Engels, L.P.J. Groenewegen: SOCCA: Specifications of Coordinated and Co-
operative Activities. In A. Finkelstein, J. Kramer, B.A. Nuseibeh (eds.): Software
Process Modelling and Technology. Research Studies Press, Taunton, 1994, 71-102.

6. G. Engels, L.P.J. Groenewegen, G. Kappel: Object-Oriented Specification of Coor-
dinated Collaboration. In N. Terashima, Ed. Altman: Proc. IFIP World Conference
on IT Tools, 2-6 September 1996, Canberra, Australia. Chapman & Hall, London,
1996, 437-449.

7. G. Engels, L.P.J. Groenewegen, G. Kappel: Coordinated Collaboration of Objects.
In M. Papazoglou, St. Spaccapietra, Z. Tari (eds.): Object-Oriented Data Modeling
Themes. MIT Press, Cambridge, MA, 2000.

8. G. Engels, R. Hücking, St. Sauer, A. Wagner: UML Collaboration Diagrams and
Their Transformation to Java. In [10], 473-488.

9. A. Evans, St. Kent: Core Meta-Modelling Semantics of UML: The pUML Ap-
proach. In [10], 140-155.

10. R. France, B. Rumpe (eds.): �UML� ’99 - The Unified Modeling Language -
Beyond the Standard. Second Intern. Conference. Fort Collins, CO, October 28-
30, 1999. LNCS 1723. Springer, Berlin, 1999.

11. D. Harel: Statecharts: A Visual Formalism for Complex Systems. Science of Comp.
Prog., 8 (July 1987), 231-274.

12. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS,
Geneva, 1996.

13. I. Jacobson, G. Booch, J. Rumbaugh: The Unified Software Development Process,
Addison-Wesley, Reading, MA, 1999.

14. C. Kobryn: UML 2001: A Standardization Odyssey. CACM, 42(10), October 1999,
29-37.

15. G.E. Krasner, S.T. Pope: A cookbook for using the model-view-controller user in-
terface paradigm in Smalltalk-80. Journal of Object-Oriented Programming, 1(3),
August/September 1988, 26-49.

16. Object Management Group. OMG Unified Modeling Language Specification, Ver-
sion 1.3. June 1999.

17. Object Management Group, Analysis and Design Platform Task Force. White Pa-
per on the Profile Mechanism, Version 1.0. OMG Document ad/99-04-07, April
1999.

18. J. Rumbaugh, I. Jacobson, G. Booch: The Unified Modeling Language Reference
Manual. Addison-Wesley, Reading, MA, 1999.

19. B. Selic, G. Gullekson, P. Ward: Real-Time Object-Oriented Modeling. Wiley, New
York, 1994.

20. St. Sauer, G. Engels: MVC-Based Modeling Support for Embedded Real-Time
Systems. In P. Hofmann, A. Schürr (eds.): OMER Workshop Proceedings, 28-
29 May, 1999, Herrsching (Germany). University of the German Federal Armed
Forces, Munich, Technical Report 1999-01, May 1999, 11-14.

38 Gregor Engels, Reiko Heckel, and Stefan Sauer

21. St. Sauer, G. Engels: Extending UML for Modeling of Multimedia Applications. In
M. Hirakawa, P. Mussio (eds.): Proc. 1999 IEEE Symposium on Visual Languages,
September 13-16, 1999, Tokyo, Japan. IEEE Computer Society 1999, 80-87.

22. J. Warmer, A. Kleppe: The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley, Reading, MA, 1998.

23. E. Yourdon, L.L. Constantine: Structured Design: Fundamentals of a a Discipline
of Computer Program and Systems Design. Prentice-Hall, Englewood Cliffs, NJ,
1979.

LINKS
www.omg.org - OMG home page
www.cs.york.ac.uk/puml - precise UML group
www.rational.com/uml/index.jtmpl - UML literature
uml.shl.com - UML RTF home page

	Introduction
	Language Overview
	Language Definition
	Language Adaptations
	Conclusion and Perspectives

