

42

3

Advanced Object Modeling

This chapter explains the advanced aspects of object modeling that you will need to model
complex and large applications. It builds on the basic concepts in Chapter 2, so you should
master the material there before reading this chapter. You can skip this chapter if you are just
interested in getting a general understanding of object modeling.

3.1 OBJECT AND CLASS CONCEPTS

3.1.1 Instantiation

Instantiation

 is the relationship between an object and its class. The notation for instantia-
tion is a dashed line from the instance to the class with an arrow pointing to the class; the
dashed line is labeled with the legend

instance

 enclosed by guillemets («»). Figure 3.1 shows
this notation for

City

 and its two instances

Bombay

 and

Prague

. Making the instantiation re-
lationship between classes and instances explicit in this way can be helpful in modeling com-
plex problems and in giving examples.

3.1.2 Class Attributes and Operations

A

class attribute

 is an attribute whose value is common to a group of objects in a class rather
than peculiar to each instance. Class attributes can be used to store default or summary data

Figure 3.1 Instantiation relationships

City

name
country

Bombay:City

name=Bombay
country=India

Prague:City

name=Prague
country=Czech Republic«instance» «instance»

3.1 OBJECT AND CLASS CONCEPTS 43

for objects. A

class operation

 is an operation on a class rather than on instances of the class.
The most common kind of class operations are operations to create new class instances. You
can denote class attributes and class operations with an underline. Our convention is to list
them at the top of the attribute box and operation box, respectively.

In most applications class attributes can lead to an inferior model. We discourage the use
of class attributes. Often you can improve your model by explicitly modeling groups and
specifying scope. For example, the upper model in Figure 3.2 shows class attributes for a
simple model of phone mail. Each message has an owner mailbox, date recorded, time re-
corded, priority, message contents, and a flag indicating if it has been received. A message
may have a mailbox as the source or it may be from an external call. Each mailbox has a
phone number, password, and recorded greeting. For the

PhoneMessage

 class we can store
the maximum duration for a message and the maximum days a message will be retained. For
the

PhoneMailbox

 class we can store the maximum number of messages that can be stored.

The upper model is inferior, however, because the maximum duration, maximum days
retained, and maximum message count has a single value for the entire phone mail system.
In the lower model these limits can vary for different kinds of users, yielding a phone mail
system that is more flexible and extensible.

3.1.3 Attribute Multiplicity

Attribute multiplicity

specifies the possible number of values for an attribute and is listed in
brackets after the attribute name. You may specify a mandatory single value

[1]

, an optional
single value

[0..1]

, an unbounded collection with a lower limit

[lowerLimit..*]

, or a collec-

Figure 3.2 Instead of using class attributes, model groups explicitly

Discouraged model

Preferred model

owner{ordered}

source
PhoneMessage

maximumDuration

PhoneMailbox

messageMaxCount
owner

Person

name

owner{ordered}

source MailCategory

categoryName

PhoneMailbox

phoneNumber

PhoneMessage

dateRecorded

owner
Person

name

msgMaxDuration
msgMaxDaysRetained
msgMaxCount

password
greeting

timeRecorded
priority
message
hasBeenReceived

maxDaysRetained
dateRecorded
timeRecorded
priority
message
hasBeenReceived

phoneNumber
password
greeting

44 Chapter 3 / ADVANCED OBJECT MODELING

tion with fixed limits

[lowerLimit..upperLimit]

. A lower limit of zero allows null values; a
lower limit of one or more forbids null values. (

Null

 is a special value denoting that an at-
tribute value is

unknown

 or

not applicable

. See Chapter 9.) If you omit attribute multiplicity,
an attribute is assumed to be single valued with nullability unspecified (

[0..1]

 or

[1]

). In Fig-
ure 3.3 a person has one name, one or more addresses, zero or more phone numbers, and one
birth date. Attribute multiplicity is similar to multiplicity for associations.

3.1.4 Candidate Keys for Classes

A

candidate key

 for a class is a combination of one or more attributes that uniquely identifies
objects within a class. (Section 3.2.3 discusses candidate keys for associations.) The collec-
tion of attributes in a candidate key must be minimal; no attribute can be discarded from the
candidate key without destroying uniqueness. No attribute in a candidate key can be null. A
given attribute may participate in multiple candidate keys.

For example, in Figure 3.4

airportCode

 and

airportName

 are two candidate keys for

Airport

. The model specifies that each

airportCode

 (such as IAH, HOU, STL, ALB) unique-
ly identifies an airport. Each

airportName

 (such as Houston Intercontinental, Houston Hob-
by, Lambert St. Louis airport, and Albany NY airport) also uniquely identifies an airport.

We indicate a candidate key for a class with the notation

CKn

 in braces next to the ap-
propriate attributes. The

n

 is a number that differentiates multiple candidate keys. For a
multi-attribute candidate key, multiple attributes have the

CKn

 designation with the same
value of

n

.
Some readers may recognize the term “candidate key” from the database literature, but

the notion of a candidate key is a logical construct, not an implementation construct. It is of-
ten helpful to be able to specify the constraint that one or more attributes taken together are
unique. Relational database managers and most object-oriented database managers can
readily enforce candidate keys.

Figure 3.3 Attribute multiplicity

Person

name [1]
address [1..*]
phoneNumber [0..*]
birthDate [1]

Figure 3.4 Candidate keys for a class

Airport

airportCode {CK1}
airportName {CK2}

3.1 OBJECT AND CLASS CONCEPTS 45

3.1.5 Domains

A

domain

 is the named set of possible values for an attribute. The notion of a domain is a
fundamental concept in relational DBMS theory, but really has broader applicability as a
modeling concept. As Figure 3.5 shows, an attribute name may be followed by a domain and
default value. The domain is preceded by a colon; the default value is preceded by an equal
sign. Some domains are infinite, such as the set of integers; others are finite. You can define
a domain intensionally (by formula), extensionally (by explicitly listing occurrences), or in
terms of another domain.

An

enumeration domain

 is a domain that has a finite set of values. The values are often
important to users, and you should carefully document them for your object models. For ex-
ample, you would most likely implement

priorityType

 in Figure 3.5 as an enumeration with
values that could include

normal

,

urgent

, and

informational

.
A

structured domain

is a domain with important internal detail. You can use indentation
to show the structure of domains at an arbitrary number of levels. Figure 3.6 shows two at-
tributes that have a structured domain. An address consists of a street, city, state, mail code,
and country. A birth date has a year, month, and day.

During analysis you can ignore simple domains, but you should note enumerations and
structured domains. During design you should elaborate your object model by assigning a

Figure 3.5 Assign a domain to an attribute rather than directly assign a data type

PhoneMessage

dateRecorded:Date
timeRecorded:Time
priority:PriorityType=NORMAL
message:LongString
hasBeenReceived:Boolean=FALSE

Figure 3.6 Structured domains

Person

name [1] : Name
address [1..*] : Address

street
city
state
mailCode
country

phoneNumber [0..*] : PhoneNumber
birthDate [1] : Date

year
month
day

46 Chapter 3 / ADVANCED OBJECT MODELING

domain to each attribute. During implementation you can then bind each domain to a data
type and length.

Domains provide several benefits:

•

Consistent assignment of data types

. You can help ensure that attributes have uniform
data types by first binding attributes to domains and then binding domains to data types.

•

Fewer decisions

. Because domains standardize the choices of data type and length,
there are fewer implementation decisions.

•

Extensibility

. It is easier to change data types when they are not directly assigned.

•

Check on validity of operations

. Finally, you can use the semantic information in do-
mains to check the appropriateness of certain operations. For example, it may not make
sense to compare a name to an address.

Do not confuse a domain with a class. Figure 3.7 summarizes the differences between do-
mains and classes. The objects of a class have identity, may be described by attributes, and
may have rich operations. Classes may also be related by associations. In contrast, the values
of a domain lack identity. For example, there can be many

Jim Smith

 objects, but the value

normal

has only one occurrence. Most domain values have limited operations and are not
described by attributes. During analysis we distinguish between domains and classes accord-
ing to their semantic intent, even though some domains may be implemented as classes.

Do not confuse an enumeration domain with generalization. You should introduce gen-
eralization only when at least one subclass has significant attributes, operations, or associa-
tions that do not apply to the superclass. Do not introduce a generalization just because you
have found an enumeration domain.

3.1.6 Secondary Aspects of Data

Occasionally you will encounter secondary aspects of attributes and classes that the OMT
notation does not explicitly address [Blaha-93a]. This secondary data provides relevant in-
formation, but exists in a realm apart from the essence of an application. It is important to
record secondary information without obscuring the focus of an application.

There are several kinds of secondary data for attribute values. Many scientific applica-
tions involve units of measure, such as inches, meters, seconds, and joules. Units of measure
provide a context for values and imply conversion rules. For some numerical attributes you

Figure 3.7 Classes and domains differ according to semantic intent

Classes
• A class describes objects.

• Objects have identity.

• Objects may be described by attributes.

• Objects may have rich operations.

• Classes may be related by associations.

Domains
• A domain describes values.

• Values have no identity.

• Most values are not described by attributes.

• Most values have limited operations.

• Domains do not have associations.

3.1 OBJECT AND CLASS CONCEPTS 47

must specify accuracy—whether the values are exact, approximate, or have some standard
deviation. You may wish to note the source of data—whether the values are obtained from
persons, the literature, calculations, estimates, or some other source. You may require the
time of the last update for each attribute value.

Figure 3.8 illustrates secondary data for a financial instrument. Because the value of a
financial instrument is stated for some date and currency,

valuationDate

and

currencyName

are secondary data. This is one design approach for dealing with secondary data for at-
tributes. Chapter 9 presents additional approaches.

Secondary data may also arise through policies and defaults that broadly apply to ob-
jects of various classes. Objects may have to be approved, logged, audited, distributed, and
secured. They may also require multiple versions and may be persistent. For example, man-
agers may need to approve critical data for some applications—the more important the data,
the higher the level of approval. Permanent data must be logged to avoid accidental loss;
transient objects may not be logged to speed processing. Updates to objects may necessitate
an audit trail to protect against accidental and malicious damage. Some objects can be dis-
tributed over a network, while other objects may be limited to a single location. Objects may
vary in their security level, such as none, unclassified, classified, and top secret. Some ob-
jects, such as alternative objects for an engineering design, may require versions. Other ob-
jects such as manufacturing records are not hypothetical and may not involve versions. Some
objects may be persistent and require entry in the database, while other objects may be tran-
sient and need not exist beyond the confines of computer memory.

We have chosen not to augment the OMT notation for secondary data; too many varia-
tions are only occasionally required. We often use naming conventions to convey secondary

Figure 3.8 Secondary data for attribute values

FinancialInstrument

name
currentValue
valuationDate

Bond

maturityDate
maturityValue

currencyName

Stock

quarterlyDividend

Insurance

insuranceType
annualPayment

FixedRateBond

interestRate

VariableRateBond

referenceRate
interestFormula

financialInstrumentType

bondType

48 Chapter 3 / ADVANCED OBJECT MODELING

data. Naming conventions are simple, orthogonal to notation, and enrich a model. The draw-
back is that naming conventions require discipline on the part of a modeler or a team of mod-
elers. Comments are also helpful for documenting secondary data.

3.2 LINK AND ASSOCIATION CONCEPTS

3.2.1 Multiplicity

In Chapter 2, we introduced the notion of multiplicity. For database applications it is helpful
to think in terms of minimum multiplicity and maximum multiplicity.

Minimum multiplicity

 is the lower limit on the possible number of related objects. Fig-
ure 3.9 shows several examples; the most common values are zero and one. We can imple-
ment a minimum multiplicity of zero by permitting null values and a minimum multiplicity
of one by forbidding null values. A minimum multiplicity greater than one often requires
special programming; fortunately such a minimum multiplicity seldom occurs.

A minimum multiplicity of one or more implies an existence dependency between ob-
jects. In our airline flight example (Figure 2.23) a flight reservation concerns one flight and
a flight may be reserved by many flight reservations.

Flight

 has a minimum multiplicity of
one in this association. It does not make much sense to make a flight reservation unless you
refer to a flight. Furthermore, if the airline cancels a flight, it must notify all passengers with
a corresponding flight reservation. In contrast,

FlightReservation

 has a minimum multiplic-
ity of zero in this association. You can add a flight without regard for flight reservations. Sim-
ilarly, the airline can cancel a flight reservation without affecting a flight.

Maximum multiplicity

 is the upper limit on the possible number of related objects. The
most common values are one and infinite.

Figure 3.9 Examples of minimum and maximum multiplicity

1..*

2..4

Class

Class

Class

Class

Class

OMT construct Minimum multiplicity Maximum multiplicity

1

0

0

1

2

1

infinite

1

infinite

4

3.2 LINK AND ASSOCIATION CONCEPTS 49

The choice of multiplicity depends on the application. For a multiplicity of exactly one,
consider whether the target object is truly mandatory or possibly optional; use a hollow ball
to indicate an optional target object. Furthermore, the target could be a set of objects rather
than a single object; use a solid ball to allow a set of objects. The proper choice of multiplic-
ity depends on application requirements. Be sure to review carefully whatever multiplicity
decisions you make.

3.2.2 Ternary Associations

The

degree of an association

 is the number of roles for each link. Associations may be bi-
nary, ternary, or higher degree. The vast majority are binary or qualified binary, and we de-
scribed them in Chapter 2. Ternary associations occasionally occur, but we have rarely
encountered an association of higher degree.

A

ternary association

 is an association with three roles that cannot be restated as binary
associations. The notation for a ternary association is a large diamond; each associated class
connects to a vertex of the diamond with a line. In Figure 3.10 a professor teaches a listed
course for a semester. The delivered course may use many textbooks; the same textbook may
be used for multiple delivered courses. A ternary association may have link attributes or be
treated as an association class, as in Figure 3.10.

3.2.3 Candidate Keys for Associations

Note that there are no balls next to the diamond or the classes of the ternary association in
Figure 3.10. Although we could extend multiplicity notation to accommodate ternary asso-
ciations, we prefer to use candidate keys to avoid confusion. A

candidate key

for an associ-
ation is a combination of roles and qualifiers that uniquely identifies links within an
association. Since the roles and qualifiers are implemented with attributes, we use the term
“candidate key” for both classes and associations. The collection of roles and qualifiers in a
candidate key must be minimal; no role or qualifier can be discarded from the candidate key
without destroying uniqueness. Normally a ternary association has a single candidate key

Figure 3.10 Ternary associations occasionally occur in models

Semester

CourseListing

Professor

{Candidate key for ternary association = (semesterID, professorID, courseListingID)}

roomNumber

DeliveredCourse
Textbook

50 Chapter 3 / ADVANCED OBJECT MODELING

that is composed of roles from all three related classes. Occasionally you will encounter a
ternary association with a candidate key that involves only two of the related classes.

The combination of

semesterID

,

professorID

, and

courseListingID

 is a candidate key
for

DeliveredCourse

. A professor may teach many courses in a semester and many semesters
of the same course; a course may be taught by multiple professors. The confluence of semes-
ter, professor, and course listing is required to identify uniquely a delivered course.

We indicate a candidate key for an association with a comment in braces.

3.2.4 Exclusive-Or Associations

An

exclusive-or association

 is a member of a group of associations that emanate from a
class, called the

source

 class. For each object in the source class exactly one exclusive-or
association applies. An exclusive-or association relates the source class to a

target

 class. An
individual exclusive-or association is optional with regard to the target class, but the exclu-
sive-or semantics requires that one target object be chosen for each source object. An exclu-
sive-or association may belong to only one group.

Figure 3.11 shows an example in which

Index is the source class and Cluster and Table
are target classes. This example is an excerpt from the model for the Oracle relational
DBMS. An index is associated with a table or a cluster, but not both, so a dashed line anno-
tated by or cuts across the association lines close to the target classes. Interpreting the ball
notation, a table may have zero or more indexes while a cluster has exactly one index. The
alternative model using generalization is less precise and loses a multiplicity constraint: In
the left model a cluster is associated with one index; in the right model a cluster can be as-
sociated with many indexes (via inheritance).

3.2.5 Qualified Associations

In Section 2.2.6, we introduced the notion of qualification and presented the most common
situation, a single qualifier that reduces the maximum multiplicity of the target role from
“many” to “one.” Qualification does not affect the minimum multiplicity of an association.
We now present more complex forms of qualification.

Figure 3.11 Exclusive-or associations can yield a more precise model

Index

Cluster Table

or

Exclusive-or associations

IndexedItem

Cluster Table

Index

Less precise model

3.3 AGGREGATION 51

A qualifier selects among the objects in the target set and usually, but not always, reduc-
es effective multiplicity from “many” to “one.” In Figure 3.12 “many” multiplicity still re-
mains after qualification. A company has many corporate officers, one president, and one
treasurer but many directors and many vice presidents. Therefore, the combination of a com-
pany and office can yield many persons.

A qualification cascade is a series of consecutive qualified associations. Qualification
cascades are encountered where an accumulation of qualifiers denotes increasingly specific
objects. For example, in Figure 3.13 a city is identified by the combination of a country
name, state name, and city name.

A compound qualifier consists of two or more attributes that combine to refine the mul-
tiplicity of an association. The attributes that compose the compound qualifier are “anded”
together. Figure 3.14 shows a compound qualifier. Both the node name and edge name are
required to locate a connection for a directed graph.

3.3 AGGREGATION

Aggregation is a kind of association, between a whole, called the assembly, and its parts,
called the components [Blaha-93b]. Aggregation is often called the “a-part-of” or “parts-ex-
plosion” relationship and may be nested to an arbitrary number of levels. Aggregation bears
the transitivity property: If A is part of B and B is part of C, then A is part of C. Aggregation
is also antisymmetric: If A is part of B, then B is not part of A. Transitivity lets you compute

Figure 3.12 Qualification need not yield a target multiplicity of “one”

Company Personoffice
officer

cityNamestateName State City

Figure 3.13 A qualification cascade denotes increasingly specific objects

CountrycountryNameEarth

Figure 3.14 A compound qualifier refines the multiplicity of an association

DirectedGraph

Node Edge

nodeName

Connection
2

edgeName

52 Chapter 3 / ADVANCED OBJECT MODELING

the transitive closure of an assembly—that is, you can compute the components that directly
and indirectly compose it. Transitive closure is a term from graph theory; the transitive clo-
sure of a node is the set of nodes that are reachable by some sequence of edges.

As Figure 3.15 shows, aggregation is drawn like an association with a small diamond
added next to the assembly end. A book consists of front matter, multiple chapters, and back
matter. Front matter, in turn, consists of a title page and a preface; back matter consists of
multiple appendixes and an index.

Having presented this example, we hasten to add that aggregation does not specify order.
An assembly is a collection of components without any implied order. It just so happens that
a book has a well-known and simple order of parts; the back matter follows the chapters,
which follow the front mater. If the model had to capture component order, you would have
to include comments, as we describe later in Section 3.7, or use a generic class, as described
in Chapter 4.

Aggregation is often encountered with problems that involve bills-of-material. A bill-of-
material is a report that lists each part on a separate line; the lines of the report are ordered
by traversing the components in depth-first order starting from the root assembly. Each line
may be indented according to its level in the hierarchy. Sibling parts (parts with the same par-
ent) may be further ordered by some other criteria. Figure 3.16 shows a bill-of-material with
two levels of parts. In practice, bills-of-material are often nested more deeply.

An aggregation relationship is essentially a binary association, a pairing between the as-
sembly class and a component class. An assembly with many kinds of components corre-
sponds to many aggregations. We define each individual pairing as an aggregation so that we
can specify the multiplicity of each component within the assembly. This definition empha-
sizes that aggregation is a special form of association. An aggregation can be qualified, have
roles, and have link attributes just like any other association.

For bill-of-material problems the distinction between association and aggregation is
clear. However, for other applications it is not always obvious if an association should be
modeled as an aggregation. To determine if an association is an aggregation, test whether the
“is-part-of” property applies. The asymmetry and transitivity properties must also hold for
aggregation. When in doubt about whether association or aggregation applies, the distinction
is not important and you should just use ordinary association.

Index

Figure 3.15 Aggregation is a kind of association with additional semantic properties

Chapter

Book

FrontMatter

TitlePage

BackMatter

Preface Appendix

3.3 AGGREGATION 53

3.3.1 Physical versus Catalog Aggregation

It is important to distinguish between physical and catalog aggregation. Physical aggrega-
tion is an aggregation for which each component is dedicated to at most one assembly. Cat-
alog aggregation is an aggregation for which components are reusable across multiple
assemblies. As an example, consider physical cars (items with individual serial numbers) and
car models (Ford Escort, Mazda 626). Customer service records refer to physical cars, while
design documents describe car models. The parts explosion for a physical car involves phys-
ical aggregation, and the parts explosion for a car model involves catalog aggregation.

Figure 3.17 shows the canonical relationship between catalog aggregation and physical
aggregation. A catalog part may describe multiple physical parts. Each catalog part and
physical part may contain lesser parts. A catalog part may belong to multiple assemblies, but
a physical part may belong to at most one assembly. (The text in braces is a constraint, which
we describe later in Section 3.7.)

Catalog parts may have a quantity specified within a context of usage. For example, two
screws of a given type may be used for the windshield wiper assembly of a car and four
screws of the same type used for the glove box assembly. A role, such as windshield wiper
assembly and glove box assembly, may be specified to differentiate the various uses of a part.
A series of roles provides a unique path for navigating a catalog-aggregation lattice.

A physical aggregation tree may also have quantities specified for parts. Parts with in-
dividual serial numbers always have a quantity of one, since each part must be individually
noted. In contrast, other parts are interchangeable, such as nuts and bolts taken from a bin.

Figure 3.16 Aggregation often occurs with problems that involve bills-of-material

Bill-of-Material
Level Part num Name Quantity
------- ----------- -------------- -----------

01 LM16G Lawn mower 1
02 B16M Blade 1
02 E1 Engine 1
02 W3 Wheel 4
02 D16 Deck 1

Figure 3.17 Relationship between catalog aggregation and physical aggregation

Describes

Contains Contains

PhysicalPart

serialNumber [0..1]

CatalogPart

modelNumber

quantityquantity
assembly

component

assembly

component

{The catalog parts and physical parts aggregations must be acyclic.}

role

54 Chapter 3 / ADVANCED OBJECT MODELING

Interchangeable physical parts have identity in the real world, but the corresponding physical
aggregation model may not preserve this identity.

The instances for physical aggregation form a collection of trees. Each part belongs to
at most one assembly. The part at the root of the tree does not belong to any assembly, and
all other parts within the tree belong to exactly one assembly.

In contrast, the instances for catalog aggregation form a directed acyclic graph. (The
term “acyclic” means that you cannot start with a part and traverse some sequence of com-
ponents and reach the starting part.) An assembly may have multiple components and a com-
ponent may belong to multiple assemblies, but there is a strict sense of direction concerning
which part is the assembly and which part is the component (antisymmetry).

The notation clearly indicates whether physical or catalog aggregation applies. With
physical aggregation the assembly class has a multiplicity of “one” or “zero or one.” With
catalog aggregation the assembly class has a multiplicity of “many.”

3.3.2 Extended Semantics for Physical Aggregation

Physical aggregation bears properties in addition to transitivity and antisymmetry.

• Propagation of operations. Propagation is the automatic application of some property
to a network of objects when the property is applied to some starting object. With ag-
gregation some operations of the assembly may propagate to the components with pos-
sible local modifications. For example, moving a window moves the title, pane, and bor-
der. For each operation and other propagated qualities, you may wish to specify the ex-
tent of propagation [Rumbaugh-88].

• Propagation of default values. Default values can also propagate. For example, the
color of a car may propagate to the doors. It may be possible to override default values
for specific instances. For example, the color of a door for a repaired car may not match
the body.

• Versioning. A version is an alternative object relative to some base object. You can en-
counter versions with hypothetical situations, such as different possibilities for an engi-
neering design. With aggregation, when a new version of a component is created, you
may want to trigger automatically the creation of a new version of the assembly.

• Composite identifiers. The identifier of a component may or may not include the iden-
tifier of the assembly.

• Physical clustering. Aggregation provides a basis for physically clustering objects in
contiguous areas of secondary storage for faster storage and retrieval. Components are
often accessed in conjunction with an assembly. Composite identifiers make it easier to
implement physical clustering.

• Locking. Many database managers use locking to facilitate concurrent, multiuser access
to data. The database manager automatically acquires locks and resolves conflicts with-
out any special user actions. Some database managers implement efficient locking for
aggregate trees: A lock on the assembly implies a lock on all components. This is more
efficient than placing a lock on each affected part.

3.3 AGGREGATION 55

3.3.3 Extended Semantics for Catalog Aggregation

Catalog aggregation has fewer properties than physical aggregation, but it is still important
to recognize so that you do not confuse it with physical aggregation. For example, propaga-
tion is not helpful with catalog aggregation, because a component could have multiple, con-
flicting sources of information. Propagation across catalog aggregation is too specialized and
unusual a topic for us to devise a general solution. Catalog aggregation still observes the ba-
sic properties of transitivity and antisymmetry.

With catalog aggregation a collection of components may imply an assembly. This sit-
uation is commonly encountered with structured part names in bills-of-material. Figure 3.18
shows a hypothetical object diagram for a lawn mower with two sample bills-of-material.
The model number of a lawn mower is a structured name consisting of the prefix “LM” fol-
lowed by two characters indicating the blade length followed by one character denoting a gas
or electric engine. In this example, the blade length and engine type are sufficient to identify
a lawn mower uniquely.

Note that the object model does not capture the constraint that a collection of compo-
nents implies one assembly. The object diagram in Figure 3.18 states that a lawn mower has
“many” multiplicity with respect to each component. In other words, the engine design is
useful for multiple lawn mower designs; a blade design applies to multiple lawn mower de-
signs; and so on. You could add a comment to the object model if you wanted to note that
some components taken together imply a single lawn mower design.

Figure 3.18 Structured part names for catalog aggregation

quantity

Blade

bladeNumber
bladeLength
hasMulching

Engine

engineNumber
engineType
manufacturer
horsepower

Wheel

wheelNumber
wheelType
wheelDiam

Deck

deckNumber
deckMaterial
deckWidth

Bill-of-Material
Level Part num Name Quantity
------- ----------- -------------- -----------
01 LM16G Lawn mower 1

02 B16M Blade 1
02 E1 Engine 1
02 W3 Wheel 4
02 D16 Deck 1

Bill-of-Material
Level Part num Name Quantity
------- ----------- --------------- -----------
01 LM16E Lawn mower 1

02 B16M Blade 1
02 E1E Engine 1
02 W3 Wheel 4
02 D16 Deck 1

LawnMower

modelNumber

56 Chapter 3 / ADVANCED OBJECT MODELING

3.4 GENERALIZATION

3.4.1 Abstract and Concrete Classes

A concrete class is a class that can have direct instances. In Figure 3.19 Stock, Bond, and
Insurance are concrete classes because they have direct instances. FinancialInstrument also
is a concrete class because some FinancialInstrument occurrences (such as real estate) are
not in the listed subclasses. The legend concrete below the class name indicates a concrete
superclass.

An abstract class is a class that has no direct instances. The descendant classes can also
be abstract, but the generalization hierarchy must ultimately terminate in subclasses with di-
rect instances. In Figure 3.20 Person is an abstract class but the subclasses Manager and In-
dividualContributor are concrete. The legend abstract indicates an abstract superclass. You
may define abstract operations for abstract classes. An abstract operation specifies the sig-
nature of an operation while deferring implementation to the subclasses. The signature of an
operation specifies the argument types, the result type, exception conditions, and the seman-
tics of the operation. The notation for an abstract operation is the legend {abstract} following
the operation name.

3.4.2 Generalization versus Other Object-Modeling Constructs

Figure 3.21 shows how generalization differs from association. Both generalization and as-
sociation involve classes, but association describes the relationship between two or more in-
stances, while generalization describes different aspects of a single instance.

Stock InsuranceBond

FinancialInstrument
concrete

Figure 3.19 Concrete classes

Figure 3.20 An abstract class

Person

Manager IndividualContributor

managerialStatus

abstract

3.4 GENERALIZATION 57

During analysis, associations are more important than generalization. Associations add
information. Associations transcend class encapsulation boundaries and can have a broad
impact on a system. In contrast, generalization eliminates duplications of shared properties
(consolidates), but does not change the instances that conform to the model.

During design, generalization becomes more significant. Developers tend to discover
data structure during analysis and behavior during design. Generalization provides a reuse
mechanism for concisely expressing behavior and including code from class libraries. Judi-
cious reuse reduces development time and substitutes carefully tested library code for error-
prone application code.

Figure 3.22 shows how generalization differs from aggregation. Both generalization and
aggregation give rise to trees through transitive closure, but generalization is the “or” rela-
tionship and aggregation is the “and” relationship. In the figure, a bond is a fixed-rate bond
or a variable-rate bond. A book comprises front matter and many chapters and back matter.
Generalization relates classes that describe different aspects of a single object. Aggregation
relates distinct objects that compose an assembly.

Figure 3.23 shows how generalization differs from instantiation. Some modelers erro-
neously introduce an object as a subclass in a generalization. Generalization does not deal
with individual objects; generalization relates classes—the superclass and the subclasses. In-
stantiation relates an instance to a class.

A common mistake is to confuse a subclass with a role. Figure 3.24 shows the difference
between a subclass and a role. A subclass is a specialization of a class; a role is a usage of a
class. By definition, a subclass pertains to only some superclass instances. There is no such
constraint with a role; a role may refer to any or all instances. Figure 3.24 shows roles and

FixedRateBond VariableRateBond

Bond

Figure 3.21 Generalization versus association

Generalization Association

origin

destination

Airport Flight
Description

FixedRateBond VariableRateBond

Bond

Generalization

Figure 3.22 Generalization versus aggregation

Aggregation

FrontMatter Chapter BackMatter

Book

58 Chapter 3 / ADVANCED OBJECT MODELING

subclasses for the class Person. Pilot and FlightAttendant are modeled as subclasses, since
they have different attributes and associations. In contrast, employee is merely a role for a
Person; pilot and copilot are roles for Pilot; and leadAttendant is a role for FlightAttendant.

3.5 MULTIPLE INHERITANCE

Multiple inheritance permits a class to inherit attributes, operations, and associations from
multiple superclasses, which, in turn, lets you mix information from two or more sources.
Single inheritance organizes classes as a tree. Multiple inheritance organizes classes as a di-
rected acyclic graph. Multiple inheritance brings greater modeling power but at the cost of
greater complexity.

3.5.1 Multiple Inheritance from Different Discriminators

Multiple inheritance can arise through different bases (different discriminators) for special-
izing the same class. In Figure 3.25 a person may be specialized along the bases of manage-

FixedRateBond VariableRateBond

Bond

Generalization

Figure 3.23 Generalization versus instantiation

Instantiation

Stock

name
valueIBM:Stock

name=IBM
value=100

GE:Stock

name=GE
value=60

«instance» «instance»

Figure 3.24 Subclass versus role

Airline

airlineName Person

name
birthDate

PilotFlight
pilot

copilot flightRating

Flight
Attendant

leadAttendant

employee
FlightDescription

departureDate

flightNumber

3.5 MULTIPLE INHERITANCE 59

rial status (manager or individual contributor) and employment status (fulltime or parttime).
Whether a person is a manager or not is independent of employment status. Four subclasses
are possible that combine managerial status and employment status. The figure shows one,
FullTimeIndividualContributor.

3.5.2 Multiple Inheritance without a Common Ancestor

Multiple inheritance is possible, even when superclasses have no common ancestor. This of-
ten occurs when you mixin functionality from software libraries. When software libraries
overlap or contradict, multiple inheritance becomes problematic.

Figure 3.26 shows an excerpt of a model for a chess game. A chess program looks ahead
from the current board position and examines multiple search trees to determine the most
promising next move for actual play. You may wish to store the actual moves in a database
for reconsideration at some later date or in order to replay a game from an intermediate point.
In contrast, the exploration of the search space may be regarded as transient and unimportant
to store.

In Figure 3.26 each SearchTree may be a MoveSubtree or a PossibleMove. Each Move-
Subtree, in turn, is composed of lesser SearchTrees. Such a combination of object-modeling

FullTimeIndividualContributor

Figure 3.25 Multiple inheritance from different discriminators

Person

Manager Individual
Contributor

FullTime
Employee

PartTime
Employee

employmentStatusmanagerialStatus

Figure 3.26 Multiple inheritance without a common ancestor

{ordered}
ChessGame

PersistentObjectSearchTree

MoveSubtree PossibleMove ActualMove

{ordered}

PossibleSuccessorMoves

2..*

Move

60 Chapter 3 / ADVANCED OBJECT MODELING

constructs can describe a tree of moves of arbitrary depth. Each Move may be a PossibleM-
ove or an ActualMove. PossibleMove and ActualMove inherit common behavior from the
Move superclass. ActualMove and ChessGame are the classes with the objects that we want
to store permanently. In our model persistent objects must inherit from PersistentObject, as
with the ODMG standard [Cattell-96]. In Figure 3.26 both PossibleMove and ActualMove
use multiple inheritance.

3.5.3 Workarounds for Multiple Inheritance

Several workarounds are possible if you wish to avoid the complexity of multiple inherit-
ance. Workarounds often make it easier to understand and implement a model.

• Factoring. Figure 3.27 avoids multiple inheritance by taking the cross product of the
orthogonal bases of person (managerialStatus, employmentStatus) from Figure 3.25.
The disadvantages are that you lose conceptual clarity and the reuse of similar code is
more cumbersome.

• Fragmenting a subclass. You may fragment a subclass into multiple classes—one for
each superclass. For example, we could restate Figure 3.26 as Figure 3.28. The disad-
vantages are that objects are broken into multiple pieces and the added classes are often
artificial and difficult to define.

• Replacing generalization with associations. You can replace a generalization with
several exclusive-or associations. Figure 3.29 shows the result of doing this to the model
in Figure 3.26. This option is most viable for a generalization with few subclasses. The
disadvantages are the loss of identity and more cumbersome reuse of operations. Also,
exclusive-or associations are not supported by most languages and database managers,
so you may need to write application code to enforce exclusivity.

FullTime
Manager

PartTime
Manager

employmentStatus

FullTime
IndividualContributor

PartTime
IndividualContributor

employmentStatus

Figure 3.27 Multiple inheritance workaround: factoring

Person

ManagerIndividualContributor

managerialStatus

Manager

3.6 PACKAGES 61

3.6 PACKAGES

You can fit an object model on a single page for many small and medium-sized problems.
However, you will need to organize the presentation of large object models. A person cannot
understand a large object model at a glance. Furthermore, it is difficult to get a sense of per-
spective about the relative importance of portions of a large model. You must partition a large
model to allow comprehension.

A package is a group of elements (classes, associations, generalizations, and lesser
packages) with a common theme. A package partitions a model, making it easier to under-
stand and manage. Large applications may require several tiers of packages. Packages form
a tree with increasing abstraction toward the root, which is the application, the top-level
package. As Figure 3.30 shows, the notation for a package is a box with the addition of a tab.
The purpose of the tab is to suggest the enclosed contents, like a tabbed folder.

There are various themes for forming packages: dominant classes, dominant relation-
ships, major aspects of functionality, and symmetry. For example, many business systems

Figure 3.28 Multiple inheritance workaround: fragmenting a subclass

{ordered}
Chess

PersistentObjectSearchTree

Move Possible Actual

{ordered}

PossibleSuccessorMoves

2..*

Move

Subtree Move Move
Search
Move Game

Chess
Move

Figure 3.29 Multiple inheritance workaround: replacing generalization with exclusive-or associations

or

{ordered}
ChessGame

PersistentObjectSearchTree

MoveSubtree PossibleMove ActualMove

{ordered}

PossibleSuccessorMoves

2..*

Move

62 Chapter 3 / ADVANCED OBJECT MODELING

have a Customer package or a Part package; Customer and Part are dominant classes that are
important to the business of a corporation and appear in many applications. In an engineering
application we used a dominant relationship, a large generalization for many kinds of equip-
ment, to divide an object model into packages. Equipment was the focus of the model, and the
attributes and relationships varied greatly across types of equipment. An object model of a
compiler could be divided into packages for lexical analysis, parsing, semantic analysis, code
generation, and optimization. Once some packages have been established, symmetry may sug-
gest additional packages.

On the basis of our experience in creating packages, we can offer the following tips:

• Carefully delineate each package’s scope. The precise boundaries of a package are a
matter of judgment. Like other aspects of modeling, defining the scope of a package re-
quires planning and organization. Make sure that class and association names are unique
within each package, and use consistent names across packages as much as possible.

• Make packages cohesive. There should be fewer associations between classes that ap-
pear in different packages than between classes that appear in a single package. Classes
may appear in multiple packages, helping to bind them, but ordinarily associations and
generalizations should appear in a single package.

• Define each class in a single package. The defining package should show the class
name, attributes, and possibly operations. Other packages that refer to a class can use a
class icon, a box that contains only the class name. This convention makes it easier to
read object diagrams because a class is most prominent in its defining package. It en-
sures that readers of the object model will not become distracted by possibly inconsis-
tent definitions or be misled by forgetting a prior class definition. This convention also
makes it easier to develop packages concurrently.

3.6.1 Logical Horizon

You can often use a class with a large logical horizon as the nucleus for a package. The log-
ical horizon [Feldman-86] of a class is the set of classes reachable by one or more paths ter-
minating in a combined multiplicity of “one” or “zero or one.” A path is a sequence of
consecutive associations and generalization levels. When computing the logical horizon, you
may traverse a generalization hierarchy to obtain further information for a set of objects. You
may not, however, traverse to sibling objects, such as by going up and then down the hierarchy.
The logical horizons of various classes may, and often do, overlap. In Figure 2.23 on page
28 the logical horizon of FlightDescription is Airport, Airline, and AircraftDescription. The
logical horizon of Airport is the empty set.

Figure 3.31 shows the computation of the logical horizon for FlightReservation.

Figure 3.30 Notation for a package

PackageName

3.6 PACKAGES 63

• (a) We start with FlightReservation.

• (b) Each FlightReservation has a Flight, Seat, and TripReservation.

• (c) A TripReservation implies an Agent and a Ticket. A Flight implies a FlightDescrip-
tion and an Aircraft. A Seat implies a SeatDescription.

• (d) A Ticket implies a FrequentFlyerAccount and a Customer; an Agent leads to Trave-
lAgent and an AirlineAgent via generalization. The FlightDescription implies an Air-
port, Airline, and AircraftDescription.

Figure 3.31 Computing the logical horizon for FlightReservation

City

Flight

Serves

origin

destination
AircraftDescription

Aircraft

departureDate

Airport

FlightReservation

passenger

Airline

FlightDescription

SeatDescription

Seat

TripReservation

{ordered}

CustomerTicket

TravelAgent

Agent

AirlineAgent

BaggageClaimTicket

FrequentFlyerAccount

employer

employer

TravelAgency

flightNumber
accountNumber

seatNumber

(a)(b)(c)(d)(e)

64 Chapter 3 / ADVANCED OBJECT MODELING

• (e) A TravelAgent has a TravelAgency as an employer. Thus the logical horizon of
FlightReservation includes every class in the diagram except City and Baggage-
ClaimTicket.

When computing the logical horizon, you should disregard any qualifiers and treat the asso-
ciations as if they were unqualified. The purpose of the logical horizon is to compute the ob-
jects that can be inferred from some starting object.

3.6.2 Example of Packages

Figure 3.32 shows a model for an airline information system with packages organized on a
functional basis. (We are elaborating the model presented in Figure 2.23.) The reservations
package records customer booking of airline travel. Flight operations deals with the actual
logistics of planes arriving and departing. The aircraft information package stores seating
layout and manufacturing data. Travel awards tracks bonus free travel for each customer; a
person may submit a frequent flyer account number at the time of a reservation, but does not
receive credits until after taking the flight. Baggage handling involves managing bags in con-
junction with flights and accommodating errant pieces of luggage. Crew scheduling involves
scheduling to staff flight needs. The subsequent diagrams elaborate all packages except
CrewScheduling.

Figure 3.33 describes the Reservations package. A trip reservation consists of a se-
quence of flight reservations, where each flight reservation refers to a specific flight. Some-
times another flight is substituted for a booked flight because of equipment problems,
weather delays, or customer preference. The passenger may reserve a seat for each flight. A
trip reservation is made on some date; the passenger must purchase a ticket within a certain
number of days or the reservation becomes void. The airlines use record locators to find a
particular trip reservation quickly and unambiguously. A trip is reserved by an agent, who
either works for an airline or a travel agency. The frequent flyer account may be noted for a
passenger. Although the structure of the model does not show it, the owner of the frequent
flyer account must be the same as the passenger. We directly associate TripReservation with
FrequentFlyerAccount and Customer, because a customer can make a reservation and spec-
ify a frequent flyer account before a ticket is even issued. Multiple payments may be made
for a trip, such as two credit-card charges. Payment may also be made by cash or check.

Figure 3.34 describes the FlightOperations package. An airport serves many cities, and
a city may have multiple airports. Airlines operate flights between airports. A flight descrip-

Figure 3.32 A partial high-level object model for an airline information system

CrewSchedulingFlightOperations TravelAwards

BaggageHandlingReservations AircraftInformation

3.6 PACKAGES 65

FrequentFlyerAccount

Figure 3.33 An object model for the Reservations package

Ticket

fare

Airline

Seat

Agent

agentName

TravelAgent

TravelAgency

agencyName

TripReservation

recordLocator
dateReserved

FlightReservation

fareCode

Customer

customerName
address
phoneNumber

Flight

Payment

paymentType
amount
creditCardNumber
date

AirlineAgent

passenger

{ordered}

employer
employer

{The owner of the frequent flyer account must be the same as the passenger.}

bookedFlight

substituteFlight

Figure 3.34 An object model for the FlightOperations package

Aircraft

FlightDescription

scheduledDepartTime
scheduledDuration
frequency
startEffectiveDate
stopEffectiveDate

Airport

airportCode
airportName

City

cityName

AircraftDescription

Flight

actualDepartTime
actualDuration
isCancelled

Airline

airlineCode
airlineName

Serves

actualOrigin actualDestination

scheduledDestination

scheduledOrigin

flightNumber

departureDate

66 Chapter 3 / ADVANCED OBJECT MODELING

tion refers to the published description of air travel between two airports. In contrast, a flight
refers to the actual travel made by an airplane on a particular date. The frequency indicates
the days of the week for which the flight description applies. The start and stop effectivity
dates bracket the time period for which the published flight description is in effect. The ac-
tual origin, destination, departure time, and duration of a flight can vary because of weather
and equipment problems.

Figure 3.35 presents a simple model of the AircraftInformation package. Each aircraft
model has a manufacturer, model number, and specific numbering for seats. The seat type
may be first class, business, or coach. Each individual aircraft has a registration number and
refers to an aircraft model.

Figure 3.36 describes the TravelAwards package. A customer may have multiple fre-
quent flyer accounts. Airlines identify each account with an account number. An account
may receive numerous frequent flyer credits. Some frequent flyer credits pertain to flights;
others (indicated by creditType) concern adjustments, redemption, long distance mileage,
credit card mileage, hotel stays, car rental, and other kinds of inducements to patronize a
business.

Figure 3.37 describes the BaggageHandling package. A customer may check multiple
bags for a trip and receives a claim ticket for each bag. Sometimes a bag is lost, damaged, or

Figure 3.35 An object model for the AircraftInformation package

SeatDescription

seatType

SeatAircraft

registrationNumber

AircraftDescription

manufacturer
modelNumber

seatNumber

seatNumber

Figure 3.36 An object model for the TravelAwards package

FrequentFlyerActivity

date
description
actualMileage
bonusMileage

FlightActivityFlight OtherActivity

creditType

owner

accountNumber

Airline

FrequentFlyerAccount

accountStartDate
currentBalance
dateOfBalance Customer

3.7 DERIVED DATA AND CONSTRAINTS 67

delayed, in which case the customer completes a baggage complaint form for each problem
bag.

3.7 DERIVED DATA AND CONSTRAINTS

Derived data is data that can be completely determined from other data. Classes, attributes,
and associations can all be derived. The underlying data can, in turn, be base data or further
derived. Do not confuse our use of the term “derived” with the C++ derived class. A C++
derived class refers to the subclass of a generalization; it has nothing to do with OMT’s
meaning of derived data.

As a rule, you should not show derived data during analysis unless the data appears in
the problem description. During design you can add derived data to improve efficiency and
ease implementation. During implementation you can compute derived data on demand from
constituent data (lazy evaluation) or precompute and cache it (eager evaluation). Derived
data that is precomputed must be marked as invalid or recomputed if constituent data is
changed.

The notation for derived data is a slash preceding the name of the attribute, class, asso-
ciation, or role. Figure 3.38 shows an example of a derived attribute for airline flight descrip-
tions. Exercise 3.8 illustrates derived associations.

Figure 3.37 An object model for the BaggageHandling package

BaggageClaimTicket

claimNumber

BaggageComplaint

baggageComplaintNumber
date
description
resolution

AirlineAgent

Ticket

claimProcessor

Figure 3.38 A derived attribute

FlightDescription

scheduledDepartTime
scheduledDuration
/scheduledArrivalTime
frequency
startEffectiveDate
stopEffectiveDate

68 Chapter 3 / ADVANCED OBJECT MODELING

A constraint is a functional relationship between modeling constructs such as classes,
attributes, and associations. A constraint restricts the values of data. You may place simple
constraints in the object model. You should specify complex constraints in the functional
model.

A “good” model should capture many constraints with its very structure. In fact, the
ability of a model to express important constraints is one measure of the quality of a model.
(See Exercise 2.13.) Most object models require several iterations to strike a proper balance
between rigor, simplicity, and elegance. However, sometimes it is not practical to express all
important constraints with the structure of a model. For example, in Figure 3.33 we found it
difficult to express structurally that the owner of the frequent flyer account must be the same
as the passenger. In Figure 3.17 we specified that the catalog parts and physical parts aggre-
gations must be acyclic.

Constraints are denoted by text in braces (“{” and “}”). The text of a constraint should
clearly indicate the affected data. Similarly, comments are also delimited by braces. We often
use comments to document the rationale for subtle modeling decisions and convey important
enumerations.

Sometimes it is useful to draw a dotted arrow between classes or associations to indicate
the scope of a constraint. For example, in Figure 3.39 a table has many columns; the primary
key columns are a subset of the overall columns.

3.8 ADVANCED PRACTICAL TIPS

The following list summarizes the practical aspects of the object-modeling constructs de-
scribed in this chapter.

• Class attributes. Try to avoid class attributes in your models. Often you can restructure
a model, both avoiding class attributes and making the model more precise. (Section
3.1.2)

• Domains. Specify domains for attributes instead of data types. Domains promote uni-
form assignment of data types and convey additional semantic information. (Section
3.1.5)

• Enumeration domains. Do not create unnecessary generalizations for attributes of enu-
meration domain. Only specialize a class when the subclasses have distinct attributes,
operations, or associations. (Section 3.1.5)

Figure 3.39 A subset constraint between associations

primaryKeyField

Column{subset}

Define {ordered}

Table

3.9 CHAPTER SUMMARY 69

• N-ary associations. Try to avoid general ternary and n-ary associations. Most of these
can be decomposed into binary associations, with possible qualifiers and link attributes.
(Section 3.2.2)

• Aggregation. Consider aggregation when the “is-part-of” relationship holds. An aggre-
gation must satisfy the transitivity and antisymmetry properties. Be careful not to con-
fuse physical and catalog aggregation. (Section 3.3)

• Roles. Do not confuse classes with roles. A role is a use of a class in an association; a
class may assume various roles. Do not introduce multiple classes in a model when there
really is just one class with multiple roles. It is a good practice to label a class with its
intrinsic name rather than a role name. (Section 3.4.2)

• Multiple inheritance . Try to avoid multiple inheritance during analysis because it is of-
ten confusing. Multiple inheritance is more helpful during design because of the need to
mixin orthogonal aspects of objects. (Section 3.5)

• Large models. Organize large models so that the reader can understand portions of the
model at a time, rather than the whole model at once. Packages are useful for organizing
large models. (Section 3.6)

• Constraints. You may be able to restructure an object model to improve clarity and cap-
ture additional constraints. Use comments to express constraints that are awkward to
represent with object-model structure. Also add comments to document modeling ratio-
nale and important enumeration values. (Section 3.7)

3.9 CHAPTER SUMMARY

Classes may have attributes and operations whose value is common to a group of objects. We
advise that you restructure your object models to minimize use of class attributes. Attribute
multiplicity specifies whether an attribute may be single or multivalued and whether an at-
tribute is optional or mandatory. A domain is the set of possible values for an attribute. Dur-
ing design you should assign a domain to each attribute, instead of just directly assigning a
data type.

The degree of an association is the number of distinct roles for each link. The vast ma-
jority of associations are binary or qualified binary. Ternary associations occasionally occur,
but we have rarely encountered an association of higher degree.

A qualification cascade is a series of consecutive qualified associations. Qualification
cascades often occur where an accumulation of qualifiers denotes increasingly specific ob-
jects.

Aggregation is a kind of association in which a whole, the assembly, is composed of
parts, the components. Aggregation is often called the “a-part-of” or “parts-explosion” rela-
tionship and may be nested to an arbitrary number of levels. Aggregation bears the transitiv-
ity and antisymmetry properties. Do not confuse physical and catalog aggregation. With
physical aggregation each component is dedicated to at most one assembly. With catalog ag-
gregation components are reusable across multiple assemblies.

70 Chapter 3 / ADVANCED OBJECT MODELING

Generalization superclasses may or may not have direct instances. A concrete class can
have direct instances; an abstract class has no direct instances. Multiple inheritance permits
a class to inherit attributes, operations, and associations from multiple superclasses. Multiple
inheritance brings greater modeling power but at the cost of greater conceptual and imple-
mentation complexity.

You will need multiple pages of diagrams to express object models for large problems.
Large object models can be organized and made tractable with packages. Packages partition
an object model into groups of tightly connected classes, associations, and generalizations.

Figure 3.40 lists the key concepts for this chapter.

CHANGES TO OMT NOTATION

This chapter has introduced the following changes to the notation in [Rumbaugh-91] for
compatibility with the UML notation [UML-98]. These changes are in addition to those from
Chapter 2.

• Instantiation . The notation for instantiation is a dashed line from the instance to the
class with an arrow pointing to the class; the dashed line is labeled with the legend in-
stance enclosed by guillemets («»).

• Class attribute and class operation. You can indicate class attributes and class opera-
tions with an underline.

• Exclusive-or association. You can use a dashed line annotated by the legend “or” to
group exclusive-or associations.

• Compound qualifier. You may use more than one attribute as the qualifier for an asso-
ciation.

• Abstract and concrete classes. You can indicate these by placing the legend abstract
or concrete below the class name.

• Package. The notation for a package is a box with the addition of a tab.

Figure 3.40 Key concepts for Chapter 3

abstract class
aggregation
association degree
attribute multiplicity
candidate key
catalog aggregation
class attribute
class operation
concrete class
constraint

derived association
derived attribute
derived class
domain
enumeration domain
exclusive-or association
instantiation
logical horizon
maximum multiplicity
minimum multiplicity

multiple inheritance
package
path
physical aggregation
qualification cascade
secondary data
signature
structured domain
ternary association

BIBLIOGRAPHIC NOTES 71

• Derived data. Classes, attributes, and associations can all be derived. A slash in front
of a name denotes derived data.

We have made some further minor notation extensions of our own.

• Attribute multiplicity . You can specify the number of values for an attribute within
brackets after the attribute name. You may specify a mandatory single value [1] , an op-
tional single value [0..1], an unbounded collection with a lower limit [lowerLimit..*] ,
or a collection with fixed limits [lowerLimit..upperLimit].

• Candidate key. You can specify a candidate key for a class with the notation {CKn}
next to the participating attributes.

• Structured domain. You can use indentation to show the structure of domains.

BIBLIOGRAPHIC NOTES

Chapter 4 of [Booch-94] presents an insightful treatment of inheritance in the context of the
broader classification literature.

This chapter contains much new material that complements our earlier book [Rum-
baugh-91]. Our most significant improvements are in the areas of domains, secondary data,
and aggregation.

REFERENCES

[Blaha-93a] Michael Blaha. Secondary aspects of modeling. Journal of Object-Oriented Program-
ming 6, 1 (March 1993), 15–18.

[Blaha-93b] Michael Blaha. Aggregation of Parts of Parts of Parts. Journal of Object-Oriented Pro-
gramming 6, 5 (September 1993), 14–20.

[Booch-94] Grady Booch. Object-Oriented Analysis and Design with Applications. Reading, Massa-
chusetts: Benjamin/Cummings, 1994.

[Cattell-96] RGG Cattell, editor. The Object Database Standard: ODMG-93, Release 1.2. San Fran-
cisco, California: Morgan-Kaufmann, 1996.

[Feldman-86] P Feldman and D Miller. Entity model clustering: Structuring a data model by abstrac-
tion. Computer Journal 29, 4 (August 1986), 348–360.

[Rumbaugh-88] James Rumbaugh. Controlling propagation of operations using attributes on relations.
OOPSLA’88 as ACM SIGPLAN 23, 11 (November 1988), 285–296.

[Rumbaugh-91] J Rumbaugh, M Blaha, W Premerlani, F Eddy, and W Lorensen. Object-Oriented
Modeling and Design. Englewood Cliffs, New Jersey: Prentice Hall, 1991.

[UML-98] The following books are planned for the Unified Modeling Language:
Grady Booch, James Rumbaugh, and Ivar Jacobson. UML User’s Guide. Reading, Massachu-
setts: Addison-Wesley.
James Rumbaugh, Ivar Jacobson, and Grady Booch. UML Reference Manual. Reading, Massa-
chusetts: Addison-Wesley.
Ivar Jacobson, Grady Booch, and James Rumbaugh. UML Process Book. Reading, Massachu-
setts: Addison-Wesley.

72 Chapter 3 / ADVANCED OBJECT MODELING

EXERCISES

3.1 (2) Add domains to the object model in Figure E2.1.

3.2 (3) Figure 3.16 is an example of catalog aggregation. Construct an instance diagram for Figure
3.17 using the instances in Figure 3.16. Assume that the role shown in Figure 3.17 is normal.

3.3 (3) The object model in Figure E3.1 describes a reporting hierarchy within a company. Change
the object model to accommodate matrix management (where a person may report to more than
one manager).

3.4 (7) Extend the object model in Figure E3.1 to track the evolution of the reporting hierarchy over
time. The reporting hierarchy changes as persons join and leave a company. The hierarchy also
changes due to promotions and demotions.

3.5 (4) What is the logical horizon of Statement in Figure E2.1?

3.6 (4) What is the logical horizon of City in Figure 3.34?

3.7 (5) What is the logical horizon of OtherActivity in Figure 3.36? You should also consider rela-
tionships for the other packages in Section 3.6.2.

3.8 (7) Add the following derived information to extend your answer to Exercise 2.16: age, grand-
parent, ancestor, descendant, aunt, uncle, sibling, and cousin.

3.9 (9) Construct an object model that describes the baseball statistics listed in Figure E3.2. Use any
baseball knowledge you may have. Even if you are unfamiliar with the game of baseball, this
exercise is still useful. For legacy applications, it is not uncommon to be given examples of data
structure with little explanation. We have chosen data that illustrates most multiplicity combi-
nations that would be found in a more comprehensive set of data. Note that the St. Louis Browns
moved at the end of the 1953 season and became the Baltimore Orioles; the Philadelphia Ath-
letics moved at the end of the 1954 season and became the Kansas City Athletics.

3.10 (9) Prepare an object model for the game of hearts. A game of hearts typically involves four
players. The objective of the game is to play a series of hands and score the fewest points. There
are two phases to each hand: exchanging cards and then playing cards.

The following cycle must be observed for exchanging cards. For the first hand each player
passes three cards to the player on the left (and receives three cards from the player on the right).
For the second hand each player passes three cards to the right. Each player passes three cards

Figure E3.1 An object model for the management hierarchy in a corporation

IndividualContributorManager

Person

name
title

EXERCISES 73

Figure E3.2 Sample baseball statistics

Team Statistics

Year League City
Team
name

Win Loss Manager Save ERA AB HR RBI BA

1953 Amer. St. L Browns 54 100 Marty Marion 24 4.48 5264 112 522 .249

1953 Amer. Phil. Athletics 59 95 Jimmy Dykes 11 4.67 5455 116 588 .256

1953 Amer. Det. Tigers 60 94 Fred Hutchinson 16 5.25 5553 108 660 .266

1955 Amer. Balt. Orioles 57 97 Paul Richards 22 4.21 5257 54 503 .240

1955 Amer. KC Athletics 63 91 Lou Boudreau 23 5.35 5335 121 593 .261

1955 Amer. Det. Tigers 79 75 Bucky Harris 12 3.79 5283 130 724 .266

1953 Natl. Phil. Phillies 83 71 Steve O’Neill 15 3.80 5290 115 657 .265

1953 Natl. St. L Cardinals 83 71 Eddie Stanky 36 4.23 5397 140 722 .273

1953 Natl. NY Giants 70 84 Leo Durocher 20 4.25 5362 176 739 .271

1955 Natl. NY Giants 80 74 Leo Durocher 14 3.77 5288 169 643 .260

1955 Natl. Phil. Phillies 77 77 Mayo Smith 21 3.93 5092 132 631 .255

1955 Natl. St. L Cardinals 17 19 Eddie Stanky 15 4.56 5266 143 608 .261

1955 Natl. St. L Cardinals 51 67 Harry Walker

Player Statistics—Batting

Year League City
Team
name

Player
Field

position
Bat
pos.

At
bat

HR RBI BA

1953 American St. Louis Browns Vern Stephens 3B R 165 4 17 .321

1953 American Chicago White Sox Vern Stephens 3B,SS R 129 1 14 .186

1953 American St. Louis Browns Bob Elliott 3B R 160 5 29 .250

1953 American Chicago White Sox Bob Elliott 3B,OF R 208 4 32 .260

1953 American Phil. Athletics Dave Philley OF,3B B 620 9 59 .303

1953 American St. Louis Browns Don Larsen P,OF R 81 3 10 .284

1955 American Detroit Tigers Al Kaline OF R 588 27 102 .340

1955 American Detroit Tigers Fred Hatfield 2B,3B,SS L 413 8 33 .232

Player Statistics—Pitching

Year League City
Team
name

Player
Pitch
pos.

IP Win Loss Save ERA

1953 American St. Louis Browns Don Larsen R 193 7 12 2 4.15

1953 American St. Louis Browns Bobo Holloman R 65 3 7 0 5.26

1953 American St. Louis Browns Satchel Paige R 117 3 9 11 3.54

1953 American Phil. Athletics Alex Kellner L 202 11 12 0 3.92

74 Chapter 3 / ADVANCED OBJECT MODELING

across for the third hand. No cards are passed for the fourth hand. The fifth hand starts the pass-
ing cycle over again with the left player. Each player chooses the cards for passing. A good
player will assess a hand and try to pass cards that will reduce his or her own likelihood of scor-
ing points and increase that for the receiving player.

The card-playing portion of a hand consists of 13 tricks. The player with the two of clubs
leads the first trick and play continues clockwise. The player who plays the largest card of the
lead suit “wins” the trick and adds the cards in the trick to his or her pile for scoring at the end
of the hand. The winner of the trick also leads the next trick. The sequence of cards in a suit
from largest to smallest is ace, king, queen, jack, and ten down to two. Each card is played ex-
actly once in a game.

If possible, a player must play the same suit as the lead card on a trick. Furthermore, on the
first trick, a player cannot play a card that scores points (see next paragraph), unless that is the
only possible play. For subsequent tricks, a player without the lead suit can play any card. A
player cannot lead hearts until they have been broken (a heart has been thrown off-suit on a pre-
ceding trick) or only hearts remain in the player’s hand.

At the end of a hand, each player’s pile is scored. The queen of spades is 13 points; each
heart counts one point; all other cards are zero points. Ordinarily, a player’s game score is in-
cremented by the number of points in that player’s pile. The exception is a shoot, when one
player takes the queen of spades and all the hearts. The player accomplishing a shoot receives
zero points, and all opponents receive 26 points. The game ends when one or more players have
a game total of at least 100 points.

