
Jason Gorman Driving SPI with Metrics

1

© www.parlezuml.com 2006

Metrics Definitions

Jason Gorman Driving SPI with Metrics

2

© www.parlezuml.com 2006

Scope ..3

Lines of Code ...3
Cyclomatic Complexity..3
Halstead Volume ..4
Function Points...4

Quality..5
Defects per Thousand Lines of Code or per Function Point..................................5
SEI Maintainability Index..5
Lack of Cohesion of Methods ..5

Package Metrics ...6
Instability..7
Abstractness..8
Distance from Main Sequence ...9

Cost...10
Extrapolated Cost of Story ...10

Jason Gorman Driving SPI with Metrics

3

© www.parlezuml.com 2006

Scope

Lines of Code

The total number of lines of executable code (i.e., not including comments) in the
software program or module being measured

Cyclomatic Complexity

Definition #1: The number of executable paths in a process – for example, distinct
paths in a segment of code, or through a use case.

Definition #2: Cyclomatic Complexity V(G) = E – N + p

Where E is the number of edges in a graph, N is the number of nodes in the graph and
p is the number of connected components.

Example:

By inspection, there are 6 distinct paths.

chec k kettle

fil l kettle

kettle is ful l?
false

boi l water

true

out of tea bags?

shop is open?

buy tea bags borrow tea bags

Put tea bags in teapot

falsetrue

true false

Jason Gorman Driving SPI with Metrics

4

© www.parlezuml.com 2006

Halstead Volume

Halstead Volume V = N * Log(n)

Where N = program length = total number of operators N1 + total number of operands
N2, and n = program vocabulary = number of distinct operators n1 + number of
distinct operands n2

Function Points

Scope measures such as lines of code, Cyclomatic Complexity and Halstead Volume
can be applied to functional specifications. For example, they can be applied to
acceptance test scripts to help estimate the complexity of the features they are
designed to test, or to use case scenarios.

Jason Gorman Driving SPI with Metrics

5

© www.parlezuml.com 2006

Quality

Defects per Thousand Lines of Code or per Function Point

Effective bug tracking can help build a record of the known bugs within a system.
When applied against measures of software scope (e.g., lines of code or function
points), they can give an indication of the “buggy-ness” of the software.

SEI Maintainability Index

Maintainability M = 171 - 5.2 * log2(aveV) - 0.23 * aveV(g') - 16.2 * log2 (aveLOC)
+ 50 * sin (sqrt(2.4 * perCM))

The coefficients are derived from actual usage. The terms are defined as follows:

aveV = average Halstead Volume V per module

aveV(G) = average cyclomatic complexity per module

aveLOC = the average count of lines of code (LOC) per module; and, optionally

perCM = average percent of lines of comments per module

Variations:

#1: Some implementations omit comments (perCM)
#2: Some implementations use extended cyclomatic complexity (V(G’))

Lack of Cohesion of Methods

LCOM is a measure of how close methods are to the data they access. The more
attributes of a class each method accesses (or, more specifically, the more methods
that access each attribute), the lower the value of LCOM and the more cohesive the
class is said to be. It’s calculated by taking the average number of methods accessing
the attributes of a class, minus the total number of methods of that class, divided by 1
minus the number of methods.

LCOM = ((1/a * ∑ A) – m)/(1 – m)

Where a is the number of attributes of the class, ∑ A is the sum across the set of
attributes of the number of methods that access each attribute, and m is the number of
methods of the class.

Jason Gorman Driving SPI with Metrics

6

© www.parlezuml.com 2006

Example:
Account

balance
name

deposit(amount)
withdraw(amount)

void deposit(floatamount){
balance += amount;

}

void withdraw(float amount){
balance -= amount;

}

For example, the Account class shown above has two attributes (a = 2) which make up
the set {balance, name}. It has 2 methods (m = 2). The attribute balance is accessed
by 2 methods (A = 2), and the attribute name is accessed by none. So, the Lack of
Cohesion of Methods of the Account class is:

LCOM = ((½ * (2 + 0)) – 2)/(1 – 2) = -1/-1 = 1

That is to say that the Account class is not cohesive because the attribute name is not
accessed at all and therefore arguably doesn’t belong in the Account class. If we add
methods, getName() and setName() that return and change the value of the name
attribute respectively, we get:

LCOM = ((1/2 * (2 + 2)) – 4)/(1 – 4) = -2/-3 = 0.67

Meaning the Account class is more cohesive. If all the methods accessed both
attributes, LCOM would be ((1/2 * (4 + 4)) – 4)/(1-4) = 0. To be totally cohesive, a
class must therefore have every attribute accessed by every method.

Package Metrics

Cohesion

Highly dependent modules should be packaged together, so they can be released,
modified and reused together. Ideally, every module in a package should depend upon
every other module in a package, and very little on modules outside the package.

Jason Gorman Driving SPI with Metrics

7

© www.parlezuml.com 2006

A B

D

P

C

Module A depends directly or indirectly on modules B and C. There are 3 other
modules excluding A in package P, so cohesion with respect to module A is 2/3. We
can find the modules A depends on by following (navigating) the dependencies. Some
dependencies can only be navigated in one direction (denoted by an arrow -> in the
direction we can navigate). Other dependencies can be navigated in both directions.
These have no arrows at either end.

Cohesion of package P is the average of cohesion with respect to all modules in P,
which is:

(2/3 + 0/3 + 1/3 + 2/3) / 4 = 0.42

Instability

• Afferent couplings (Ca) – the number of modules in other components that
depend on modules in this component

• Efferent couplings (Ce) – the number of modules in other components this
modules in this component depends on

Instability, I = Ce / (Ca + Ce)

The more a component depends on other components, the more possible reasons it
might have to need to change. Therefore, a more stable component is one upon which
many components depend, but that depends on as few components as possible.

When I = 0, the component is said to be maximally stable. This requires zero efferent
couplings (Ce = 0) but at least one afferent coupling (Ca > 0), so components that have
no dependencies on other components but upon which other components depend are
the most stable.

When I = 1, the component is said to be maximally instable. This requires zero
afferent couplings (Ca = 0) but at least one efferent coupling (Ce > 0), so components

Jason Gorman Driving SPI with Metrics

8

© www.parlezuml.com 2006

that have no other components that depend upon them but that depend on other
components are the least stable.

Example:

A
B

C

I = 2/(0 + 2) = 1
Instable

I = 0/(2 + 0)
Stable

I = 1/(1 + 1) = 0.5
Semi-stable

Abstractness

Abstractness A = number of abstract types/total number of types

Example:

Jason Gorman Driving SPI with Metrics

9

© www.parlezuml.com 2006

{abstract }
BankAccount

DomainObject

SettlementAccount

abstractness = 2/3
Distance from Main Sequence

1

1
0

A = I

Abstractness (A)

Instabili ty (I)

Component X
distance from main sequence (D)

zone of pain

zone of uselessness

Distance from main sequence, D = |(A + I -1)|/√2

Jason Gorman Driving SPI with Metrics

10

© www.parlezuml.com 2006

Cost

Extrapolated Cost of Task

Extrapolated cost CE = (development cost of task / development cost of all tasks) *
total project cost

This can be applied per iteration, per release or per project.

