
© Jason Gorman 2006
www.parlezuml.com

OO Design Principles &
Metrics

Jason Gorman

© Jason Gorman 2006
www.parlezuml.com

OO Design Goals
• Make software easier to change when we want to

– We might want to change a class or package to add new
functionality, change business rules or improve the design

– We might have to change a class or package because of a
change to another class or package it depends on (e.g., a
change to a method signature)

– Manage dependencies between classes and packages of
classes to minimise impact of change on other parts of the
software

– Minimise reasons that modules or packages might be forced to
change because of a change in a module or package it depends
upon

© Jason Gorman 2006
www.parlezuml.com

Cat Poetry

Cat Poetry Cat Poetry Between Well-defined Interfaces

© Jason Gorman 2006
www.parlezuml.com

A Hazelnut In Every Bite…
• Much of OO design is about managing

dependencies
• It is very difficult to write OO code without

creating a dependency on something
• => 99.9% of lines of code contain at least

one significant design decision
• => Anyone who writes a line of code is

defining the design

© Jason Gorman 2006
www.parlezuml.com

Every Programmer Is A
Designer!

© Jason Gorman 2006
www.parlezuml.com

Class Design
• Class Cohesion
• Open-Closed
• Single Responsibility
• Interface Segregation
• Dependency Inversion
• Liskov Substitution
• Law of Demeter
• Reused Abstractions

© Jason Gorman 2006
www.parlezuml.com

Class Cohesion
Reasoning:
Class design should reduce the need to edit multiple classes when making changes to application logic. A
fundamental goal of OO design is to place the behaviour (methods) as close to the data they operate on
(attributes) as possible, so that changes are less likely to propagate across multiple classes

Account

balance : Real

setBalance(amount : Real)
getBalance() : Real

Withdraw alTx

amount : Real
execute()

DepositTx

amount : Real
execute()

1 *

1

*
TransferTx

amount : Real
execute()

1

payer

payee

oldBalance = account.getBalance()
If(amount > 0) {

account.setBalance(oldBalance +
amount);

}

oldBalance = account.getBalance();
If(amount > 0 && amount >= oldBalance) {

account.setBalance(oldBalance -
amount);

}

payeeBalance = payee.getBalance();
payerBalance = payer.getBalance();
If(amount > 0 && amount >= payerBalance) {

payer.setBalance(payerBalance -
amount);

payee.setBalance(payeeBalance +
amount);

}

© Jason Gorman 2006
www.parlezuml.com

Class Cohesion - Refactored
Reasoning:
Class design should reduce the need to edit multiple classes when making changes to application logic. A
fundamental goal of OO design is to place the behaviour (methods) as close to the data they operate on
(attributes), so that changes are less likely to propagate across multiple classes

Account

balance : Real
withdraw(amount : Real)
deposit(amount : Real)
getBalance() : Real

Withdraw alTx

amount : Real
execute()

DepositTx

amount : Real
execute()

1 *

1

*
TransferTx

amount : Real
execute()

1

payer

payee

account.deposit(amount)

account.withdraw(amount)

payer.withdraw(amount)
payee.deposit(amount)

© Jason Gorman 2006
www.parlezuml.com

Class Cohesion Metrics
Lack of Cohesion of Methods (LCOM) = ((∑ R(A))/A) - M

A1
A2
A3
A4
…

Class has A attributes

M1
M2
M3
M4
…

Class has M methods

Each attribute A is
accessed by R(A)
methods1 – M

automation possible

“The average number of methods that
access each attribute”

TIP: An reference to an associated object is equivalent to an
attribute

© Jason Gorman 2006
www.parlezuml.com

Open-Closed
Reasoning:
Once a class is tested and working, modifying its code can introduce new bugs. We avoid
this by extending the class, leaving its code unchanged, to add new behaviour.

Classes should be open to extension, but closed to modification

Account

isSettlementAccount : Boolean
balance : Real
debt : Real

getAvailableFunds()

Pseudo-code:

float getAvailableFunds() {

if isSettlementAccount then
return balance – debt

else
return balance

}

Account

balance : Real

getAvailableFunds()

Pseudo-code:

float getAvailableFunds() {

return balance

}

modifiedmodified

© Jason Gorman 2006
www.parlezuml.com

Open-Closed - Refactored
Reasoning:
Once a class is tested and working, modifying its code can introduce new bugs. We avoid
this by extending the class, leaving its code unchanged, to add new behaviour. Classes
should be open to extension, but closed to modification

Account

balance : Real

getAvailableFunds()

Pseudo-code:

//overrides
float getAvailableFunds() {

return base.getAvailableFunds() – debt
}

Account

balance : Real

getAvailableFunds()

Pseudo-code:

float getAvailableFunds() {

return balance

}

extendedextended

SettlementAccount

debt : Real

getAvailableFunds()

© Jason Gorman 2006
www.parlezuml.com

automation possible

Open-Closed - Metrics
⇒Per successful check-in

⇒ classes extended and not modified / classes extended and/or modified

Account

isSettlementAccount : Boolean
balance : Real
debt : Real

getAvailableFunds()

Pseudo-code:

float getAvailableFunds() {

if isSettlementAccount then
return balance – debt

else
return balance

}

Account

balance : Real

getAvailableFunds()

Pseudo-code:

float getAvailableFunds() {

return balance

}

modifiedmodified

© Jason Gorman 2006
www.parlezuml.com

Single Responsibility

Account

balance : Real

deposit(amount : Real)
withdraw(amount : Real)
getBalance() : Real
toXml() : String

Responsibilities:

• model bank account
• serialise account to XML string

Two reasons why this class might need to change
• changes to domain logic
• changes to XML format

Reasoning:
Changing code in a tested class can introduce new bugs. We seek to minimise
the reasons why a class might need to change. The more different things a
class does, the more reasons it might have to change.

© Jason Gorman 2006
www.parlezuml.com

Single Responsibility - Refactored

Account

balance : Real
deposit(amount : Real)
withdraw(amount : Real)
getBalance() : Real

Responsibilities:

• model bank account

AccountXmlSerializer

toXml() : String

1 0..1

Responsibilities:

• serialise account to XML string

© Jason Gorman 2006
www.parlezuml.com

Single Responsibility - Metrics

Account

balance : Real

deposit(amount : Real)
withdraw(amount : Real)
getBalance() : Real
toXml() : String

Responsibilities:

• model bank account
• serialise account to XML string

=> responsibilities / class

by code/design inspection &
statistical sample

Q: What is a “responsibility”?

© Jason Gorman 2006
www.parlezuml.com

Interface Segregation

Account

balance : Real

deposit(amount : Real)
withdraw(amount : Real)
getBalance() : Real
toXml() : String
fromXml(xml : String)

Reasoning:
If different clients depend on different methods of the same class, then a change to one
method might require a recompile and redeployment of other clients who use different
methods. Creating several client-specific interfaces, one for each type of client, with the
methods that type of client requires, reduces this problem significantly.

FundsTransfer

amount : Real

execute()

1

1

payer

payee

*

*

BankingWebService

1

*

Uses:

deposit()
withdraw()
getBalance()

Uses:

toXml()
fromXml()

© Jason Gorman 2006
www.parlezuml.com

Interface Segregation - Refactored

Account

balance : Real

deposit(amount : Real)
withdraw(amount : Real)
getBalance() : Real
toXml() : String
fromXml(xml : String)

FundsTransfer

amount : Real

execute()

BankingWebService

<<interface>>
IAccount

deposit(amount : Real)
withdraw(amount : Real)
getBalance() : Real

1 payer

1

payee

*

*

<<interface>>
IXmlSerializer

toXml() : String
fromXml(xml : String)

1

*

© Jason Gorman 2006
www.parlezuml.com

Interface Segregation - Metrics

Account

balance : Real

deposit(amount : Real)
withdraw(amount : Real)
getBalance() : Real
toXml() : String
fromXml(xml : String)

FundsTransfer

amount : Real

execute()

1

1

payer

payee

*

*

BankingWebService

1

*

Uses:

deposit()
withdraw()
getBalance()

Uses:

toXml()
fromXml()

If type T exposes N methods, and client C uses n of them, then T’s interface is n/N
specific with respect to C.

=> Average n/N for all clients of T
automation possible

© Jason Gorman 2006
www.parlezuml.com

Dependency Inversion
Reasoning:
Much of the duplication in code comes from client objects know ing about all sorts of specialised suppliers, that
– from the client’s perspective – do similar things but in different w ays. Polymorphism is a pow erful mechanism
that underpins OO design. It allow s us to bind to an abstraction, and then w e don’t need to know what concrete
classes we are collaborating w ith. This makes it much easier to plug in new components w ith no need to
change the client code.

UndoCommand

execute()

RedoCommand

execute()

EditCommand

execute()

Application
EDIT : Integer = 1
UNDO : Integer = 2
REDO : Integer = 3

doAction(actionKind : Integer)

1

1

1

Pseudo-code:

void doAction(int actionKind) {

switch actionKind {

case EDIT:
editCommand.execute()

case UNDO:
undoCommand.execute()

case REDO:
redoCommand.execute()

}
}

© Jason Gorman 2006
www.parlezuml.com

Dependency Inversion - Refactored

UndoCommand

execute()

RedoCommand

execute()

EditCommand

execute()

Application

doAction(actionKind : Integer)

Pseudo-code:

void doAction(int index) {

commands[index].execute()
}

Command

execute()

*
commands

{ordered}

© Jason Gorman 2006
www.parlezuml.com

Dependency Inversion - Metrics
=> dependencies on abstractions / total dependencies

UndoCommand

execute()

RedoCommand

execute()

EditCommand

execute()

Application
EDIT : Integer = 1
UNDO : Integer = 2
REDO : Integer = 3

doAction(actionKind : Integer)

1

1

1

Pseudo-code:

void doAction(int actionKind) {

switch actionKind {

case EDIT:
editCommand.execute()

case UNDO:
undoCommand.execute()

case REDO:
redoCommand.execute()

}
}

automation possible

© Jason Gorman 2006
www.parlezuml.com

Liskov Substitution
Reasoning:
Dynamic polymorphism is a pow erful mechanism that allow s us to invert dependencies, reducing duplication
and making change much easier. All OO design principles depend upon polymorphism, but w e must ensure
that any type can be substituted for any of its subtypes at run-time w ithout having any adverse effect on the
client. Subtypes must obey all of the rules that apply to their super-types – pre-conditions for calling methods,
post-conditions of methods called, and invariants that alw ays apply betw een method calls.

Account

balance : Real

withdraw(amount : Real)

SettlementAccount

debt : Real

<<constraint>>

context Account::withdraw(amount : Real)
pre: balance >= amount

withdraw(amount : Real)

<<constraint>>

context SettlementAccount::withdraw(amount : Real)
pre: balance - debt >= amount

FundsTransfer

amount : Real

execute()

1

1

payer

payee

*

*

Pseudo code:

void execute() {

If payer.getBalance() > amount then
payer.withdraw(amount)
payee.deposit(amount)

else
alert(“Payer has insufficient funds”)

} client unwittingly
breaks pre-condition!!!

© Jason Gorman 2006
www.parlezuml.com

Liskov Substitution - Refactored

Account
balance : Real
/ availableFunds = balance
withdraw(amount : Real)

SettlementAccount
debt : Real
/ availableFunds = balance - debt

<<constraint>>

context Account::withdraw(amount : Real)
pre: availableFunds >= amount

withdraw(amount : Real)

FundsTransfer

amount : Real

execute()

1

1

payer

payee

*

*

Pseudo code:

void execute() {

If payer.getAvailableFunds() > amount then
payer.withdraw(amount)
payee.deposit(amount)

else
alert(“Payer has insufficient funds”)

}

pre-condition holdspre-condition holds

© Jason Gorman 2006
www.parlezuml.com

by code/design inspection &
statistical sample

Liskov Substitution - Metrics

Account

balance : Real

withdraw(amount : Real)

SettlementAccount

debt : Real

<<constraint>>

context Account::withdraw(amount : Real)
pre: balance >= amount

withdraw(amount : Real)

<<constraint>>

context SettlementAccount::withdraw(amount : Real)
pre: balance - debt >= amount

FundsTransfer

amount : Real

execute()

1

1

payer

payee

*

*

Pseudo code:

void execute() {

If payer.getBalance() > amount then
payer.withdraw(amount)
payee.deposit(amount)

else
alert(“Payer has insufficient funds”)

}

=> every class should pass all of the unit tests for all of its super-types

© Jason Gorman 2006
www.parlezuml.com

Law of Demeter
Reasoning:
Objects should only collaborate with their nearest neighbours – the less they depend on the
interfaces of “friends of a friend”, the less reasons they might have to have to change. This
means avoiding long navigations and deferring knowledge of interactions with objects that
aren’t directly related to your nearest neighbours.

FundsTransfer

amount : Real

execute(amount : Real)

Account Customer
payee

1 1
holder

**

Pseudo code:

void execute() {

If payee.getHolder().isMonitored() then
// send record to police

payer.withdraw(amount)
payee.deposit(amount)

}

payer 1

*

monitored : Boolean

getHolder() : Customer isMonitored() : Boolean

© Jason Gorman 2006
www.parlezuml.com

Law of Demeter - Refactored
Reasoning:
Objects should only collaborate with their nearest neighbours – the less they depend on the
interfaces of “friends of a friend”, the less reasons they might have to have to change. This
means avoiding long navigations and deferring knowledge of interactions with objects that
aren’t directly related to your nearest neighbours.

Pseudo code:

void execute() {

If payee.isHolderMonitored() then
// send record to police

payer.withdraw(amount)
payee.deposit(amount)

}

FundsTransfer

amount : Real

execute(amount : Real)

Account Customer
payee

1 1
holder

**

payer 1
*

monitored : Boolean

getHolder() : Customer
isHolderMonitored() :Boolean

isMonitored() : Boolean

Pseudo code:

boolean isHolderMonitored() {

return holder.isMonitored()
}

© Jason Gorman 2006
www.parlezuml.com

Law of Demeter - Metrics
⇒ average depth of navigation

FundsTransfer

amount : Real

execute(amount : Real)

Account Customer
payee

1 1
holder

**

Pseudo code:

void execute() {

If payee.getHolder().isMonitored() then
// send record to police

payer.withdraw(amount)
payee.deposit(amount)

}

payer 1

*

monitored : Boolean

getHolder() : Customer isMonitored() : Boolean

automation possible

© Jason Gorman 2006
www.parlezuml.com

Reused Abstractions
Reasoning:
In test-driven development, abstractions are discovered by looking for similarities between
classes or interfaces. Designers should distinguish between bone fide abstractions and
indirection. A bone fide abstraction incorporates shared elements of two or more types into a
single, shared abstraction to which both types conform. When we create arbitrary
abstractions (e.g., interfaces for mock object tests), we create an extra maintenance burden
with no pay off in term so removal of duplication.

In simpler terms, abstractions should be extended or implemented by more than one class.

CashAccount CurrentAccount SavingsAccount

Account

AccountImpl

Account

CustomerImpl

CustomerAbstraction Indirection

© Jason Gorman 2006
www.parlezuml.com

Reused Abstractions - Metrics
For an abstract class or interface T, which is extended or implemented by N classes or
interfaces, such that N > 1

CashAccount CurrentAccount SavingsAccount

Account

AccountImpl

Account

CustomerImpl

CustomerAbstraction Indirection

automation possible

N = 3 N = 1 N = 1

© Jason Gorman 2006
www.parlezuml.com

Package Design
• Cohesion

– Release-Reuse Equivalency
– Common Closure
– Common Reuse

• Coupling
– Acyclic Dependencies
– Stable Dependencies
– Stable Abstractions

© Jason Gorman 2006
www.parlezuml.com

Release-Reuse Equivalency

banking

Reasoning:
When developers reuse* a class, they do not want to have to recompile their
code every time that class changes. There must be a controlled release process
through which the class can be reused. In .NET, the unit of release is the
assembly, so the unit of reuse is the assembly. It is for this reason that classes
that are highly dependent – and therefore will be reused together - must be
packaged in the same assembly.

The unit of reuse is the unit of release

FundsTransfer

amount : Real

execute(amount : Real)

Account Customer
pay ee

1 1

holder

**

pay er 1

*

monitored : Boolean

getHolder() : Customer
isHolderMonitored() :Boolean

isMonitored() : Boolean

© Jason Gorman 2006
www.parlezuml.com

Common Closure

banking

Reasoning:
A software application will be made up of many packages, and a change in one
package can force changes to other packages. This increases the overhead of
the build and release cycle, so seek to minimise package dependencies by
grouping dependent classes together.

Classes that change together, belong together.

FundsTransfer

amount : Real

execute(amount : Real)

Account Customer
pay ee

1 1

holder

**

pay er 1

*

monitored : Boolean

getHolder() : Customer
isHolderMonitored() :Boolean

isMonitored() : Boolean

© Jason Gorman 2006
www.parlezuml.com

Common Reuse

banking

Reasoning:
If packages are highly cohesive then a dependency on a package is a
dependency on every class in that package.

Classes that aren’t reused together, don’t belong together.

FundsTransfer

amount : Real

execute(amount : Real)

Account Customer
pay ee

1 1

holder

**

pay er 1

*

monitored : Boolean

getHolder() : Customer
isHolderMonitored() :Boolean

isMonitored() : Boolean

© Jason Gorman 2006
www.parlezuml.com

Package Cohesion Metrics

banking

FundsTransfer

amount : Real

execute(amount : Real)

Account Customer
pay ee

1 1

holder

**

pay er 1

*

monitored : Boolean

getHolder() : Customer
isHolderMonitored() :Boolean

isMonitored() : Boolean

⇒ Class C depends directly or indirectly on N classes in the same
package P
⇒ There are M classes in P
⇒ Common reuse & common closure with respect to C is N/(M – 1)
⇒ Package cohesion for P is the average of N/(M – 1) across all classes
in P

Except w hen M <= 1, in w hich case package cohesion is zero (as opposed to 0 / (1 – 1)
which would be undefined!)

automation possible

© Jason Gorman 2006
www.parlezuml.com

Acyclic Dependencies
Reasoning:
To build and release a package, we must first build and release the packages it
depends on. If somehow the package depends indirectly on itself, then you
create a potentially much longer build and release cycle.

Packages must not be indirectly dependent on themselves

A

B

C

D

To build and release any package
except C, we have to build and
release all packages because A, B
and D are indirectly dependent on
themselves

Class1 Class2

© Jason Gorman 2006
www.parlezuml.com

Acyclic Dependencies - Refactored
Every package structure must be a Directed Acyclic Graph

A

B

C

D

Move dependent classes into same
package

Class1Class2

© Jason Gorman 2006
www.parlezuml.com

Acyclic Dependencies - Metrics
No. of cycles in package graph
=> Should not be > 0

A

B

C

D

Class1 Class2

automation possible

© Jason Gorman 2006
www.parlezuml.com

Stable Dependencies

A

B

C

Reasoning:
There are tw o reasons why we might need to change code in a package.

1. Because we want to (because the logic or design changes)
2. Because changes in another package force us to

It is for that reason that packages should depend on packages that are more stable. Package B has tw o other packages depending upon
it. A change in package B might force us to make changes in A and C. We say that B is stable because the effort required to change code
in B w ill be higher, and therefore we’re less likely to do it. Package A depends on B and C, and therefore is more likely to have to change
because of changes in those packages. We say that B is instable.

Packages must depend on more stable packages

© Jason Gorman 2006
www.parlezuml.com

Stable Dependencies

A

B

C

Reasoning:
There are tw o reasons why we might need to change code in a package.

1. Because we want to (because the logic or design changes)
2. Because changes in another package force us to

It is for that reason that packages should depend on packages that are more stable. Package B has tw o other packages depending upon
it. A change in package B might force us to make changes in A and C. We say that B is stable because the effort required to change code
in B w ill be higher, and therefore we’re less likely to do it. Package A depends on B and C, and therefore is more likely to have to change
because of changes in those packages. We say that B is instable.

Packages must depend on more stable packages

© Jason Gorman 2006
www.parlezuml.com

Stable Dependencies -Metrics

I = 2/(2 + 0) = 1

A I = 0/(0 + 2) = 0

B

I = 1/(1+1) = 0.5

C

⇒ For a package P, efferent couplings Ce is the number of packages that classes in P depend upon
⇒ For a package P, afferent couplings Ca is the number of packages that have classes that depend

upon P
⇒ Instability, I = Ce/(Ce + Ca)

automation possible

stable

instable

© Jason Gorman 2006
www.parlezuml.com

Stable Abstractions
Reasoning:
Should all software be stable? If our goal is ease of change, then a totally stable package presents a problem. But the
Open-Closed principle offers a loophole: a stable package can be easy to extend. By making stable packages abstract,
they can easily be extended by less stable packages – w hich are easier to change. This is Dependency Inversion at the
package level.

Packages must depend on more abstract packages.

trading

StockPurchaseTx SettlementAccount

banking

Transaction Account
1*

© Jason Gorman 2006
www.parlezuml.com

Stable Abstractions - Metrics
⇒Abstractness A = abstract types / all types in package
⇒ Package X depends on set of packages S

⇒ Count of packages P in S w here abstractness of P – abstractness of X > 0 / total number of packages in S

trading

StockPurchaseTx SettlementAccount

banking

Transaction Account
1*

automation possible

© Jason Gorman 2006
www.parlezuml.com

Abstractness vs. Instability - Metrics
Reasoning:
Stable packages should be open to extension, whereas instable packages
should be easy to modify. Therefore we seek a balance between abstractness
and instability

Packages that are more stable should be more abstract

A

I

A + I = 1

automation possible

zone of pain = totally stable but
not open to extension

zone of uselessness = totally
abstract but not extended

Distance from main sequence, D = |A + I – 1| / √2

Normalised distance from main sequence, D’ = |A + I – 1|

© Jason Gorman 2006
www.parlezuml.com

References
• Design Principles & Design Patterns – Robert C. Martin, ObjectMentor 2000

– http://www.objectmentor.com/resources/articles/Principles_and_Patterns.PDF

