User Interface Design:
Tipsand Technigues

Scott W. Ambler

Presdent, Ronin Inter national

QRONIN

Material for thispaper has been excerpted from:

The Object Primer 2" Edition,
Building Object Applications That Work,
and

Process Patterns

All written by Scott W. Ambler and published by
Cambridge University Press

http://www.ambysoft.com/user | nter faceDesign.pdf

Finalized: October 26, 2000

Copyright 1998-2000 Scott W. Ambler

Table Of Contents

1. USERINTERFACE DESIGN TIPSAND TECHNIQUES ... 1
2. PROTOTYPING. ...ttt s 4

21 PROTOTYPING TIPS AND TECHNIQUES......cocutueteteteueteteieteteiesesstessssesestsssssesssssssessssssssssssssssssssssssssssssssssssssnes 6
3. INTERFACE-FLOW DIAGRAMS ...ttt s 7
4. WHERE TO GO FROM HERE.........ooc s 9
5. SUMMARY . 10

51 GENERAL GUIDELINES.
52 SCREEN DESIGN
53 PROTOTY PINGuititeieieteteteieiete ettt bbbt a bbb bbb b e b b e b e b e b e b e b e b e b ebebebeb e b ek e b e b e b ek e b e b e b et ebebebebebebebebebenaes

6. REFERENCESAND RECOMMENDED READING..........ccoirnicsereesessis s ssneens 12

7. ABOUT THE AUTHOR ...t s 13

Copyright 1998-2000 Scott W. Ambler 1

A fundamental reality of application development isthat the user interfaceisthesystemto For most

the users. What userswant isfor developersto build applications that meet their needs peoplethe
and that are easy to use. Too many developers think that they are artistic geniuses—they user interface
do not bother to follow user interface design standards or invest the effort to make their isthe

applications usable, instead they mistakenly believe that the important thing isto makethe software.
code clever or to use areally interesting color scheme. Constantine (1995) points out that

the reality isthat agood user interface allows people who understand the problem domain

to work with the application without having to read the manuals or receive training.

Interface design isimportant for several reasons. First of all the moreintuitive the user interface the easier it
isto use, and the easier it isto usethe cheaper itis. The better the user interface the easier itistotrain
peopleto useit, reducing your training costs. The better your user interface the less help people will need
to useit, reducing your support costs. The better your user interface the more your userswill like to useit,
increasing their satisfaction with the work that you have done.

The point to be made isthat the user interface of an application will often make or break it. Although the
functionality that an application provides to usersisimportant, the way in which it provides that
functionality isjust asimportant. An application that isdifficult to use won't be used. Period. Itwon’'t
matter how technically superior your software is or what functionality it provides, if your usersdon’t like it
they simply won’t useit. Don’t underestimate the value of user interface design.

1. User Interface Design Tips and Techniques

In this section we will cover aseries of user interface design tips that will help you to improve the object-
oriented interfaces that you create.

1. Consistency, consistency, consistency. The most important thing that you can possibly do is make
sure that your user interface works consistently. If you can double-click onitemsin onelist and have
something happen then you should be able to double-click on itemsin any other list and have the same
sort of thing happen. Put your buttonsin consistent places on all of your windows, use the same
wording in labels and messages, and use a consistent color scheme throughout. Consistency in your
user interface allows your usersto build an accurate mental model of the way that it works, and accurate
mental models lead to lower training and support costs.

2. Set standardsand stick to them. The only way that you’ll be able to ensure consistency within your
application isto set design standards and then stick to them. The best approach isto adopt an
industry standard and then fill any missing guidelines that are specific to your needs. Industry
standards, such asthe ones set by IBM (1993) and Microsoft (1995), will often define 95%-99% of what
you need. By adopting industry standards you not only take advantage of the work of othersyou also
increase the chance that your application will look and feel like other applications that your users
purchase or have built. User interface design standards should be set during the Define Infrastructure
Stage (Ambler, 1998b).

3. Explaintherules. Your users need to know how to work with the application that you built for them.
When an application works consistently it means you only have to explain therulesonce. Thisisalot
easier than explaining in detail exactly how to use each and every feature in an application step by step.

4. Support both novicesand experts. Although alibrary-catalog metaphor might be appropriate for casual
users of alibrary system, library patrons, it probably isnot all that effective for expert users, librarians.
Librarians are highly trained people who are able to use complex search systemsto find informationin a
library, therefore you should consider building a set of search screens to support their unigque needs.

Visit www.ambysoft.comand www.ronin-intl.comfor more white paper s about softwar e development

10.

11

Copyright 1998-2000 Scott W. Ambler 2

Navigation between screensisimportant. If it isdifficult to get from one screen to another then your
userswill quickly become frustrated and give up. When the flow between screens matches the flow of
the work that the user istrying to accomplish, then your application will make sense to your users.
Because different users work in different ways, your system will need to be flexible enough to support
their various approaches. Interface-flow diagrams can be used during the Model Stage (Ambler, 1998b)
to model the flow between screens.

Navigation within a screen isimportant. In Western societies people read |eft to right and top to
bottom. Because people are used to this should you design screens that are also organized | eft to right
and top to bottom Y ou want to organize navigation between widgets on your screen in amanner that
userswill find familiar to them.

Word your messages and labels appropriately. Thetext that you display on your screensisaprimary
source of information for your users. |f your text isworded poorly then your interface will be perceived
poorly by your users. Using full words and sentences, as opposed to abbreviations and codes makes
your text easier to understand. Y our messages should be worded positively, imply that the user isin
control, and provide insight into how to use the application properly. For example, which message do
you find more appealing “Y ou have input the wrong information” or “ An account number should be 8
digitsin length.”? Furthermore, your messages should be worded consistently and displayed in a
consistent place on the screen. Although the messages “ The person’sfirst name must be input.” and
“An account number should be input.” are separately worded well, together they areinconsistent. In
light of the first message, a better wording of the second message would be “ The account number must
beinput” to make the two messages consistent.

Under stand your widgets. Y ou should use the right widget for the right task, helping to increase the
consistency in your application and probably making it easier to build the application in the first place.
The only way that you can learn how to use widgets properly isto read and understand the user-
interface standards and guidelines that your organization has adopted.

Look at other applicationswith a grain of salt. Unlessyou know that another application follows the
user-interface standards and guidelines of your organization, you must not assume that the application
isdoing thingsright. Althoughitisawaysagood ideatolook at the work of othersto get ideas, until
you know how to distinguish between good user-interface design and bad user-interface design you
haveto be careful. Too many devel opers make the mistake of imitating the user interface of another
application that was poorly designed.

Use color appropriately. Color should be used sparingly in your applications, and if you do useit you
must also use a secondary indicator. The problem isthat some of your users may be color blind — if
you are using color to highlight something on a screen then you need to do something else to make it
stand out if you want these people to noticeit, such as display asymbol besideit. Y ou also want to
use colorsin your application consistently so that you have acommon look and feel throughout your
application. Also, color generally does not port well between platform —what |ooks good on one
system often |ooks poor on another system. We have all been to presentations where the presenter
said “it looks good on my machine at home.”

Follow the contrast rule. If you are going to use color in your application you need to ensure that your
screens are still readable. The best way to do thisisto follow the contrast rule: Use dark text on light
backgrounds and light text on dark backgrounds. It isvery easy to read blue text on awhite
background but very difficult to read blue text on ared background. The problem isthat thereis not
enough contrast between blue and red to make it easy to read, whereasthereis alot of contrast
between blue and white.

Usefontsappropriately — Old English fonts might look good on the covers of William Shakespeare's
plays, but they arereally hard to read on ascreen. Usefontsthat are easy toread, such as serif fonts

Visit www.ambysoft.comand www.ronin-intl.comfor more white paper s about softwar e development

13.

14.

15.

16.

17.

18.

19.

20.

Copyright 1998-2000 Scott W. Ambler 3

like Times Roman. Furthermore, use your fonts consistently and sparingly. A screen using two or
three fonts effectively looks alot better than a screen that uses five or six. Never forget that you are
using adifferent font every time you change the size, style (bold, italics, underlining, ...), typeface, or
color.

Gray thingsout, do not removethem. Y ou often find that at certain timesit is not applicable to give
your users access to all the functionality of an application. Y ou need to select an object before you can
deleteit, so to reinforce your mental model the application should do something with the Delete button
and/or menu item. Should the button be removed or grayed out? Gray it out, never removeit. By
graying things out when they shouldn’t be used people can start building an accurate mental model as
to how your application works. If you simply remove awidget or menu item instead of graying it out
then it is much more difficult for your users to build an accurate mental model because they only know
what is currently available to them, and not what isnot available. The old adage that out of sight is out
of mind is directly applicable here.

Use non destructive default buttons. It is quite common to define a default button on every screen, the
button that getsinvoked if the user presses the Return/Enter key. The problem isthat sometimes
people will accidentally hit the Enter/Return key when they do not mean to, consequently invoking the
default button. Y our default button shouldn’t be something that is potentially destructive, such as
delete or save (perhaps your user really did not want to save the object at that moment).

Alignment of fields. When a screen has more than one editing field you want to organize thefieldsin a
way that is both visually appealing and efficient. AsshowninFigure 11 have alwaysfound that the
best way to do soisto left-justify edit fields, or in other words make the | eft-hand side of each edit field
lineup in astraight line, one over the other. The corresponding labels should be right justified and
placed immediately beside the field. Thisisaclean and efficient way to organize the fields on a screen.

Justify data appropriately. For columns of datait iscommon practiceto right justify integers, decimal
aign floating point numbers, and left justify strings.

Do not create busy screens. Crowded screens are difficult to understand and hence are difficult to use.
Experimental results (Mayhew, 1992) show that the overall density of the screen should not exceed
40%, whereas local density within groupings shouldn’t exceed 62%.

Group thingson the screen effectively. Itemsthat are logically connected should be grouped together
on the screen to communicate that they are connected, whereas items that have nothing to do with each
other should be separated. Y ou can use whitespace between collections of items to group them and/or
you can put boxes around them to accomplish the same thing.

Open windowsin the center of theaction. When your user double-clicks on an object to display its
edit/detail screen then hisor her attention is on that spot. Therefore it makes sense to open the window
in that spot, not somewhere else.

Pop-up menus should not bethe only sour ce of functionality. Y our users cannot learn how to use your
application if you hide magjor functionality from them. One of the most frustrating practices of
developersisto misuse pop-up, also called context-sensitive, menus. Typically thereisaway to use
the mouse on your computer to display a hidden pop-up menu that provides access to functionality
that is specific to the area of the screen that you are currently working in.

Visit www.ambysoft.comand www.ronin-intl.comfor more white paper s about softwar e development

Copyright 1998-2000 Scott W. Ambler 4

Poor Alignment =N

Name: [
Date of Birth: [

Good Alignment 1]]

Name: [
Date of Birth: |

D: |

Figurel. Alignment of fieldsiscritical.

2. Prototyping

Prototyping (Ambler, 2001; Ambler, 19984) is aniterative analysis technique in which users are actively
involved in the mocking-up of screens and reports. The purpose of a prototype isto show people the
possible design(s) for the user interface of an application. Aswe seeinFigure 2there are four stepsto the
prototyping process:

1

Deter mine the needs of your users. The requirements of your users drive the devel opment of your

prototype as they define the business objects that your system must support. Y ou can gather these
requirementsin interviews, in CRC (class responsibility collaborator) modeling sessions, in use-case
modeling sessions, and in class diagramming sessions (Ambler 2001; Ambler, 1998a; Ambler, 1998b).

Build the prototype. Using a prototyping tool or high-level language you devel op the screens and
reports needed by your users. The best advice during this stage of the processisto not invest alot of
time in making the code “good” because chances are high that you may just scrap your coding efforts
anyway after evaluating the prototype.

Evaluatetheprototype. After aversion of the prototypeisbuilt it needsto be evaluated. The main goal
isthat you need to verify that the prototype meets the needs of your users. I’ve always found that you
need to address three basic issues during evaluation: What's good about the prototype, what’ s bad
about the prototype, and what’ s missing from the prototype. After evaluating the prototype you'll find
that you' |l need to scrap parts, modify parts, and even add brand-new parts.

Determineif you'refinished yet. Y ou want to stop the prototyping process when you find the

evaluation processis no longer generating any new requirements, or is generating a small number of
not-so-important requirements.

Visit www.ambysoft.comand www.ronin-intl.comfor more white paper s about softwar e development

Copyright 1998-2000 Scott W. Ambler 5

Determine
needs

Build
prototype

¥

Evaluate
prototype

L |

Finished?

No

Figure2. Theiterative steps of prototyping.

Blatant Advertising — Purchase The Object Primer, 2™ Edition

|||||

The Oblect Primer

T, Lireini o oCn. oo

m i

e

The Object Primer 2™ Edition is astraightforward, easy to understand
introduction to object-oriented concepts, requirements, analysis, and design
techniques applying the techniques of the Unified Modeling Language
(UML). The Object Primer goes further to show you how to move from object
modeling to object-oriented programming, providing Java examples, and
describes the techniques of the Full Lifecycle Object-Oriented Testing
(FLOQT) methodol ogy to enable you to test all of your development artifacts.
Itisthefirst book that describes how to develop a system using object-
oriented and relational database technology end-to-end, from requirements all
the way to Javacode and aRDB design. It also putsthis material in the
context of the leading software processes, including the enhanced lifecycle for
the Unified Process, the process patterns of the Object-Oriented Software
Process (OOSP), and the best practices Extreme Programming (XP). Visit
www.ambysoft.com/theObjectPrimer.html for more details.

Visit www.ambysoft.comand www.ronin-intl.comfor more white paper s about softwar e development

Copyright 1998-2000 Scott W. Ambler 6

2.1 Prototyping Tips and Techniques

| have covered the fundamental s of the prototyping process, so now | want to share with you several tips
and techniques that you can use to create truly world-class prototypes.

1. Look for real-world objects. Good UIsallow usersto work with the real-world objects they are used to.
Therefore you should start by looking for these kinds of objects and identify how people interact with
them.

2. Work with thereal users. The best peopleto get involved in prototyping are the ones who will
actually use the application when it’s done. These are the people who have the most to gain from a
successful implementation, and these are the ones who know their own needs best.

3. Set ascheduleand stick toit. By putting a schedulein place for when you will get together with your
users to evaluate the prototype, you set their expectations and you force yourself to actually get the
work done. A win-win situation.

4. Useaprototypingtool. Invest the money in a prototyping tool that allows you to put screens together
quickly. Because you probably won't want to keep the prototype code that you write, code that’s
written quickly israrely worth keeping, you shouldn’t be too concerned if your prototyping tool
generates adifferent type of code than what you intend to develop in.

5. Get theuserstowork with the prototype. Just like you want to take a car for atest drive before you
buy it your users should be able to take an application for atest drive beforeit is devel oped.
Furthermore, by working with the prototype hands-on they will quickly be able to determine whether or
not the system will meet their needs. A good approach isto ask them to work through some use-case
scenarios using the prototype asif it isthe real system.

6. Understand theunderlying business. Y ou need to understand the underlying business before you can
develop a prototype that will support it. Perform interviews with key users, read internal documentation
of how the business runs, and read documentation about how some of your competitors operate. The
more you know about the business the more likely it isthat you’ll be able to build a prototype that
supportsit.

7. Therearedifferent levelsof prototype. | liketo successively develop three different types of
prototypes of asystem: A hand-drawn prototype that shows its basic/rough functionality, an electronic
prototype that shows the screens but not the data that will be displayed on them, and then finally the
screens with data. By starting out simplein the beginning | avoid investing alot of timein work that
will most likely be thrown away. By successively increasing the complexity of the prototype asit gets
closer to the final solution, my users get a better and better idea of how the application will actually
work, providing the opportunity to provide greater and greater insight into improving it.

8. Don't spend alot of time making the code good. At the beginning of the prototyping process you will

throw away alot of your work as you learn more about the business. Therefore it doesn’t make sense
toinvest alot of effort in code that you probably aren’t going to keep anyway.

Visit www.ambysoft.comand www.ronin-intl.comfor more white paper s about softwar e development

Copyright 1998-2000 Scott W. Ambler 7

Blatant Advertising — Purchase Building Object Applications That Work today!
g Building Object Applications That Work is an intermediate-level book about
Building Object object-oriented development. It covers awide range of topics that few other
Applizations that Wark books dare to consider, including: architecting your applications so that

they’ re maintainable and extensible; OO analysis and design techniques; how
to design software for stand-alone, client/server, and distributed
environments; how to use both relational and object-oriented (OO) databases
to make your objects persistent; OO metrics, analysis and design patterns; OO
testing; OO user interface design; and a multitude of coding techniquesto
make your code robust. Visit
www.ambysoft.com/buildingObjectApplications.html for more details.

3. Interface-Flow Diagrams

To your usersthe user interface isthe system. Itisassimpleasthat. Doesitnot Interface-flow diagrams
make sense that you should have some sort of mechanismto helpyoudesigna show therdationships
user interface? User interface prototypes are one means of describing your user between the user

interface, although with prototypes you can often get bogged down in the interface components,
details of how the interface will actually work. Asaresult you often miss high- screensand reports,
level relationships and interactions between the interface objects (usually that make up your

screens) of your application. Interface-flow diagrams (Page-Jones, 1995; Ambler, application.
1998a; Ambler, 1998b; Ambler, 2001) allow you to model these high-level
relationships.

In Figure 3 we see an example of aninterface-flow diagram for an order-entry system. The boxes represent
user interface objects (screens, reports, or forms) and the arrows represent the possible flow between
screens. For example, when you are on the main menu screen you can go to either the customer search
screen or to the order-entry screen. Once you are on the order-entry screen you can go to the product
search screen or to the customer order list. Interface-flow diagrams allow you to easily gain ahigh-level
overview of the interface for your application.

Visit www.ambysoft.comand www.ronin-intl.comfor more white paper s about softwar e development

Copyright 1998-2000 Scott W. Ambler

:Main
Menu

select
customer icon

:Customer
Search
Screen

I
click

search

button
A

:Customer
List

select

select

customer customer
L |

:Customer
Edit
Screen

select
print
v
:Customer
Summary
Report

Figure 3. An interface-flow diagram for an order-entry system.

select
order icon

~a

o

rder
Entr
Screen

£

click
search——»
button

:Product
Search
Screen

I
click

search
button
¥

I
click

search

button
A

Order
List

.Customer

]

select
print

:Order
Printout

Because interface-flow diagrams offer a high-level view of the interface of asystem
you can quickly gain an understanding of how the system is expected to work. [t
puts you into a position where you can validate the overall flow of your

application’ s user interface. For example, does the screen flow make sense? 1’ m not
so sure. Why can | not get from the customer edit screen to the customer order list,
whichisalist of al the orders that a customer has ever made.

:Product
List

select
product

!

:Product
Edit
Screen

I nterface-flow
diagramsenable you
tovalidatethe design
of your user
interface.

Visit www.ambysoft.comand www.ronin-intl.comfor more white paper s about softwar e development

Copyright 1998-2000 Scott W. Ambler 9

Furthermore, why cannot | get the same sort of list from the point of view of aproduct? In some casesit
might beinteresting to find out which ordersinclude a certain product, especially when the product is back-
ordered or no longer available. Also, interface-flow diagrams can be used to determine if the user interface
has been design consistently, for examplein Figure 3 you see that to create the customer summary report
and a printed order that you select the print command. It appears from the diagram that the user interfaceis
consistent, at least with respect to printing.

Blatant Advertising — Purchase Process Patterns today!
This book presents a collection of process patterns for successfully
initiating a software project and taking it through the construction

PROC ESS phase. It provides awealth of advice for engineering requirements,

PATTERNS modeling, programming, and testing. It puts these topics in the context
Buikding Lorge-Sccle Systems Usig of aproven software process for the development of large-scale,

Objeat Technolegy mission-critical software, covering topicsthat you typically don’t find
scort wo amsine - in other books about object-oriented development such as project

management, quality assurance, risk management, and deliverables
management. Object-oriented development is hard, particularly if you
are building systems using n-tier technology such as Enterprise
JavaBeans (EJB) or even the “simple” Javaplatform, and you need to
understand the big picture to be successful. Process Patterns, and its
sister book, More Process Patterns give you that big picture. For more
information, and to order online, visit
www.ambysoft.com/processPatterns.htmi

4. Where to Go From Here

| am afirm believer that every developer — particularly analysts, prototypers, and Every developer
programmers building the user interface — should have afundamental understanding of should

human factors engineering (HFE) and the industry-standard user interface guidelines under stand the
for the platforms to which they are building. For example, Anybody developingtothe fundamentals of
Win32 platform should own and have read the Microsoft Ul guidelines (Microsoft, user interface
1995). Never forget that the user interface isthe software to your users, not the design.

database, not the network, not the cool Java code that you' re writing. Inthat light, |
would go so far asto say that if you don’t understand user interface design then you
have no business devel oping software.

So what do you need to do? First, although reading this white paper isagood start it isn’t enough, you still
need further education. | would start by taking a one or two-day overview coursein user interface design,
one that coversissues such as human factors engineering, metaphors, mental models, screen design basics,
and report design basics. If you are developing object-oriented user interfaces (OOUIs), then | highly
suggest Chapter 9 of my second book, Building Object Applications That Work (Ambler, 1998a). Second, |
would take atwo-day coursein the user interface standards for the platform that you are devel oping too.
Standards currently exist for many of the common operating systems as well as general Ul standards for
Internet development. Once again, if you can’t find a course then you’ll have to do some reading.

Visit www.ambysoft.comand www.ronin-intl.comfor more white paper s about softwar e development

Copyright 1998-2000 Scott W. Ambler 10

5. Summary

In this paper | presented several tips and techniques for designing effective user interfaces. Thelists below
summarize the key tipsfor Ul design.

5.1 General Guidelines

Be consistent in a user interface, it’s critical.

Set user interface standards and stick to them.

Choose industry standards so as to increase the chance that your applications will look and feel like
other applications developed externally to your organization.

Explain the rules of how your application works to your users. If it's consistent, then the rules should
be simple and few in number.

Support both novices and experts.

Word text consistently, positively, and in full English.

Look at other applications with agrain of salt because not everyone understands good user interface
design.

Display the objects that your users need to do their jobs on the desktop.

Think in terms of clusters of business objects and their corresponding interface objects, not in terms of
applications.

Interface objects should look, feel, and behave exactly like the real-world objects that they represent.

5.2 Screen Design

Navigation between screens and on screensare both important.

Understand your widgets so that you know how to apply them properly.

Use color sparingly and always have a secondary indicator.

Follow the contrast rule — put dark text on light backgrounds and light text on dark backgrounds.
Use fonts sparingly and consistently.

When items are unavailable gray them out, don’t remove them if you want your usersto form accurate
mental models.

Use non-destructive default buttons.

Left justify edit fields and right justify their labels.

Right justify integers, decimal-align floating point numbers, and |eft justify strings.

Don't create busy/crowded screens.

Use group boxes and whitespace to group logically related items on the screen.

Open windows in the center of the action.

Pop-up menus shouldn’t be the only source of functionality.

Visit www.ambysoft.comand www.ronin-intl.comfor more white paper s about softwar e development

Copyright 1998-2000 Scott W. Ambler 11

5.3 Prototyping

The requirements of your users drive the development of your prototype.
During evaluation ask: What’s good about the prototype, what’s bad about the prototype, and what’s
missing from the prototype.
Stop the prototyping process when you find the evaluation processis generating few or no new
requirements.
L ook for real-world objects and identify how users work with them.
Work with the people who will use the application when it’s done.
Set a prototyping schedule and stick toit.
Use a prototyping tool.
Get the users to work with the prototype, to takeit for atest drive.
Understand the underlying business.
Don’tinvest alot of timein something that you’ll probably throw away.
Document interface objects once they have stabilized.
Develop an interface-flow diagram for your protoype
For each interface object that makes up a prototype, document
It's purpose and usage
Anindication of the other interface objectsit interacts with
The purpose and usage of each of its components

Visit www.ambysoft.comand www.ronin-intl.comfor more white paper s about softwar e development

Copyright 1998-2000 Scott W. Ambler 12

6. References and Recommended Reading

Ambler, SW. (1997). The Realities of Mapping Objects To Relational Databases. San Francisco: Miller-
Freeman Publishing, Software Development, October 1997, pp. 71-74.

Ambler, SW. (19984). Building Object Applications That Work: Your Step-By-Step Handbook for
Devel oping Robust Systems with Object Technology. New Y ork: Cambridge University Press.

Ambler, SW. (1998b). Process Patterns: Building Large-Scale Systems Using Object Technology. New
Y ork: Cambridge University Press. http://www.ambysoft.com/processPatterns.html

Ambler, SW. (1999). More Process Patterns. Delivering Large-Scale Systems Using Object Technology.
New Y ork: Cambridge University Press. http://www.ambysoft.com/moreProcessPatterns.html

Ambler, SW. & Constantine, L.L. (20008). The Unified Process Inception Phase. Gilroy, CA: CMP Books.
http://www.ambysoft.com/inceptionPhase.html .

Ambler, SW. & Constantine, L.L. (2000b). The Unified Process Elaboration Phase. Gilroy, CA: CMP
Books. http://www.ambysoft.com/elaborationPhase.html .

Ambler, SW. & Constantine, L.L. (2000c). The Unified Process Construction Phase. Gilroy, CA: CMP
Books. http://www.ambysoft.com/constructionPhase.html .

Ambler, SW. (2001). The Object Primer 2™ Edition: The Application Developer’s Guide to Object
Orientation. New Y ork: Cambridge University Press. http://www.ambysoft.com/theObjectPrimer.html .

Constanting, L. L. (1995). Constantine on Peopleware. Englewood Cliffs, NJ: Y ourdon Press.

IBM (1993). Systems Application Architecture — Common User Access Guideto User Interface Design. IBM
Corporation.

Maguire, S. (1994). Debugging the Development Process. Redmond, WA: Microsoft Press.

Mayhew, D.J. (1992). Principles and Guidelines in Software User Interface Design. Englewood CliffsNJ:
Prentice Hall.

McConnell, S. (1996). Rapid Development: Taming Wild Software Schedules. Redmond, WA: Microsoft
Press.

Microsoft (1995). The Windows I nterface Guidelines for Software Design. Redmond, WA: Microsoft Press.

Page-Jones, M. (1995). What Every Programmer Should Know About Object-Oriented Design. New Y ork:
Dorset-House Publishing.

Visit www.ambysoft.comand www.ronin-intl.comfor more white paper s about softwar e development

Copyright 1998-2000 Scott W. Ambler 13

7. About the Author

Scott W. Ambler is President of Denver-based Ronin International. Scott isthe author of The Object Primer
2" Edition (1995, 2001), Building Object Applications That Work (1998), Process Patterns (1998) and More
Process Patterns(1999), and co-author of The Elements of Java Style (2000) all published by Cambridge
University Press. Heisalso co-editor with Larry Constantine of the Unified Process book series from CMP
books, including The Unified Process Inception Phase (Fal 2000), The Unified Process Elaboration Phase
(Spring 2000), and The Unified Process Construction Phase (Summer 2000) all of which focus on best
practices to enhance the Unified Process. He has worked with OO technology since 1990 in variousroles:
Process Mentor, Business Architect, System Analyst, System Designer, Project Manager, Smalltalk
Programmer, Java Programmer, and C++ Programmer. He has also been active in education and training as
both aformal trainer and as an object mentor. Scott is a contributing editor with Software Devel opment
(www.sdmagazine.com) and writes columns for Computing Canada (www.plesman.conm). He can be
reached viae-mail at scott.ambler@ronin-intl.com

Visit www.ambysoft.comand www.ronin-intl.comfor more white paper s about softwar e development

Copyright 1998-2000 Scott W. Ambler 14

Index
A
ANaAlYSIS PAILEINS.....cveereeeereeeereererereee e 7
ATChItECIUIE ..o 7
Author
(oo 01 = o1 11 oo PSR 13
B
Book
Building Object Applications That Work 7
Process Patterns..........covvvvrvnnnsnnenesenesenens 9
The Object Primer.......cooccceveveeerereseeererseseneens 5
Business rules
and PrototyPing ...coeveeeeeeerereseenesesssesnesesessnenens 6
C
Lo o] ORI 2
Consistency
USEr INLEIfaCecvveecce e 1
Contrast rule
D
DatabasesS.......cccvcrverenrcrrereee s
Default button...........
Design patterns........
Distributed design
E
Error MeSSage.......ccovuvevrineinreeeres s
Extreme Programming
F
Field alignment.........ccocoevvvevvnnesrsrese s 3
FLOOT .ttt sssseanes 5
FONES ... 3
Full Lifecycle Object-Oriented Testing................. 5
I
Interface-flow diagram..........ccvevveneeeneceniennienns 7
EXAMPIE ... s 7
M
= 1o 7
o
Object databases.......ccovverrerereeerreneeereseeeerereneens 7
Object-Oriented Software Process..........ococvvenene 5
Object-oriented user interface
PrOtOtYPING ..ovueeeerreeerreeerseeee s sesessesenseenne 4

OOSP.....cererereeeresese st seseens 5
OOUI ottt sesssseseens 9
P
POP-UP MENU.......ocriecrecre e 3
Portability
F=1010 oo] o SO 2
Prototyping
and interface-flow diagramsccoccevevvevcrnenees 7
[EVEIS Of ... 6
OOUIS...cureeerereeerersiresessessessssessssessesessssssssssssssssesns 4
SEEPS OF .o 4
tipsand teChNiQUESc.cceuverernerrererreserreeneenne 6
{00 70] = 6
R
Relational databases.........ccecvverveverreneeererenseeenenens 7
S
SCreen NAVIgatiON......c.cccceevereceereeses s 2
Standard
USEr INLEIfaCecvveecce e 1
T
Testing
user interface flow.......cocccccivvecccceseceeesecees 8
TraiNiNg COUISES.....oumumerrrirrrrierreressesssssssessssssssnsens 9
U
Unified Modeling Language
UNified ProCeSS........coccueereercneressistesessesessessesesens
User interface (Ul)
SCreen NAVIgatioN.........ccceveveeeeereeeeeeseeee s
User interface design
field alignment......................
screen navigation................
StANAArdS......ccceeeeceeecce s
the contrast rulecccceecevevecereseceeeeee e
tips and techniques
use of color
use of fonts
use of pop-up menus
Users
EXPEITS.c.eieeeereere e 1
NOVICES ..ottt ssesns 1
X
KPP ettt 5

Visit www.ambysoft.comand www.ronin-intl.comfor more white paper s about softwar e development

