
Abstract
Requirements capture by scenarios and user interface
prototyping have become popular techniques. Yet, the
transition from scenarios to formal specifications is still
ill-defined, and prototyping remains weak in linking the
application domain with the user interface. Most
importantly, the prototyping and the scenario approaches
lack integration in the overall requirements engineering
process. In this paper, we suggest a process that
generates a user interface prototype from scenarios and
yields a formal specification of the application1. The
approach is based on the Unified Modeling Language
(UML), and the generated prototypes are embedded in a
user interface builder environment for further refinement.
The algorithms underlying the approach have been
implemented and applied on a number of examples.

1. Introduction
Over the past years, scenarios have received

significant attention and have been used for different
purposes such as human computer interaction analysis
[15], specification generation [1], object-oriented analysis
and design [4, 10, 17], and requirements engineering
[9,16]. A typical process for requirements engineering
based on scenarios [9] has two main tasks. The first task
consists of generating from scenarios specifications that
describe system behavior. The second task concerns
scenario validation with users by simulation and
prototyping. These tasks remain tedious activities as long
as they are not supported by automated tools.

For the purpose of validation in early development
stages, rapid prototyping tools are commonly and widely
used. Recently, many advances have been made in user
interface (UI) prototyping tools like UI builders and UI
management systems. Yet, the development of UIs is still
time-consuming, since every UI object has to be created
and laid out explicitly. Also, specifications of dialogue

controls must be added by programming (for UI builders)
or via a specialized language (for UI management
systems).

In this paper, we suggest an approach for requirements
engineering supporting the Unified Modeling Language
(UML). The approach provides a five activities process
with limited manual intervention for deriving a prototype
of the UI from scenarios and generating a formal
specification of the application. Scenarios are acquired in
the form of UML collaboration diagrams and enriched
with UI information. These diagrams are automatically
transformed, based on our previous work [13, 19], into
the UML Statechart specifications of all the objects
involved. An algorithm is applied to generate a UI
prototype from the set of obtained specifications. The
prototype is embedded in a UI builder environment for
further refinement.

Section 2 of this paper gives a brief overview of the
UML diagrams relevant for our work and introduces a
running example. Section 3 presents the five activities of
our approach. Section 4 describes in detail the fifth of
these activities, the algorithm for deriving a UI prototype
from dynamic specifications. Section 5 addresses related
work. In Section 6, we discuss several aspects of our
work. Finally, Section 7 provides some concluding
remarks and points out future work.

2. Unified Modeling Language
The UML [18] provides a syntactic notation to

describe all major views of a system using different kinds
of diagrams. In this section, we discuss the three UML
diagrams that are relevant for our approach: Use Case
diagram (UsecaseD), Collaboration diagram (CollD), and
Statechart diagram (StateD). As a running example, we
have chosen to study a part of an extended version of the
library system described in [5].

2.1. Use case diagram (UsecaseD)
The UsecaseD is concerned with the interaction

between the system and actors (objects outside the system
that interact directly with it). It presents a collection of

Generating User Interface Prototypes from Scenarios

 Mohammed Elkoutbi Ismaïl Khriss Rudolf K. Keller
 Département IRO Département IRO Département IRO

 Université de Montréal Université de Montréal Université de Montréal
 C.P. 6128, succ. Centre-ville C.P. 6128, succ. Centre-ville C.P. 6128, succ. Centre-ville
Montréal, QC H3C 3J7, Canada Montréal, QC H3C 3J7, Canada Montréal, QC H3C 3J7, Canada
 elkoutbi@iro.umontreal.ca khriss@iro.umontreal.ca keller@iro.umontreal.ca

1 This work is in part supported by FCAR and by the SPOOL project
organized by CSER (Consortium Software Engineering Research)
which is funded by Bell Canada, NSERC (Nat. Sciences and Research
Council of Canada), and NRC (Nat. Research Council of Canada).

use cases and their corresponding external actors. A use
case is a generic description of an entire transaction
involving several objects of the system. Use cases are
represented as ellipses, and actors are depicted as icons
connected with solid lines to the use cases they interact
with. One use case can call upon the services of another
use case. Such a relation is called a uses relation, and we
represent it by a directed dashed line. Figure 1 shows, as
an example, the UsecaseD for the library system. A
UsecaseD is helpful in visualizing the context of a system
and the boundaries of the system’s behavior. A given use
case is typically characterized by multiple scenarios.

Reader_registration Document_registration

Reader_check

Document_check

Loan

Return

Statistics

Attendant

Manager

Figure 1: UsecaseD for the library system.

2.2. Collaboration diagram (CollD)
A scenario shows a particular series of interactions

among objects in a single execution of a use case of a
system (execution instance of a use case). Scenarios can
be viewed in two different ways: through sequence
diagrams (SequenceDs) or CollDs. Both types of
diagrams rely on the same underlying semantics, and
conversion from one to the other is possible. For our
work, we chose to use CollDs because the UML
documentation defines them more precisely than
SequenceDs.

A CollD is a graph where nodes are objects
participating in the scenario and edges represent structural
relations between objects (association, aggregation,
inheritance, etc.). Messages sent between objects are
labeled with a text string and a direction arrow. One edge
can be used to send many messages in both directions.
Each message label contains a sequence number
representing the nested procedural calling sequence
throughout the scenario, an optional widget mark (see
Section 3.1), and the message name.

Sequence numbers contain a list of sequence elements
separated by dots. Each sequence element may consist of
several parts, such as:
• a compulsory number showing the sequential position

of the message,
• a letter indicating a concurrent thread (see messages

1.11a and 1.11b in Figure 2(a)), and

• an iteration indicator * indicating that several
messages of the same form are sent to the specified
target.

For a complete definition of CollDs refer to [18].
Figures 2(a), 2(b), and 2(c) depict three scenarios

(CollDs) of the use case Loan. Figure 2(a) represents the
scenario where the loan is correctly registered, Figure
2(b) represents the case where the loan is canceled, and
Figure 2(c) shows the scenario where the user is not
registered yet in the system.

1.4[res=ok]: display_user_info() →
1.4.1: #TF#display_user_name() →
1.4.2: #TF#display_user_address() →
1.4.3: #TF#display_user_tel() →
1.8[res=ok]: display_doc_info() →
1.8.1: #TF#display_doc_title() →
1.8.2: #TF#display_doc_authors() →
1.8.3: #TF#display_doc_status() →
1.9: #TF#display_date_due() →

:Attendant

1.1: uid:=#IF#user_id_entered() →
1.2: #B#select_Enter_Button() →
1.5: did:=#IF#enter_doc_id() →
1.6: #B#select_Enter_Button() →
1.10: #B#select_Apply_Button() →

:Reader

1.7: check_document(did) →
1.11a: lend_doc(did →

↑ 1.3:res:=check_user_id(uid)

:Document

:Loan

↓ 1.11b: new_loan()

:Terminal

↑ 1: create_loan()

Legend:
#B# Button #IF# InputFiled
#L# Label #TF# TextField

Figure 2(a): Scenario regularLoan.

1.4[res=ok]: display_user_info() →
1.4.1: #TF#display_user_name() →
1.4.2: #TF#display_user_address() →
1.4.3: #TF#display_user_tel() →
1.8[res=ok]: display_doc_info() →
1.8.1: #TF#display_doc_title() →
1.8.2: #TF#display_doc_authors() →
1.8.3: #TF#display_doc_status() →
1.9: #TF#display_date_due() →

:Attendant

1.1: uid:=#IF#user_id_entered() →
1.2: #B#select_Enter_Button() →
1.5: did:=#IF#enter_doc_id() →
1.6: #B#select_Enter_Button() →
1.10: #B#select_Cancel_Button() →

:Reader

1.7: check_document(did) →

↑ 1.3:res:=check_user_id(uid)

:Document

↑ 1: create_loan()

:Terminal

Figure 2(b): Scenario cancelLoan.
:Reader

:Document:Attendant

1.1: uid:=#IF#user_id_entered() →
1.2: #B#select_Enter_Button() →

1.4[res=false]: #L#display_mess_user_error() →

↑ 1.3:res:=check_user_id(uid)

:Terminal

↑ 1: create_loan()

 Figure 2(c): Scenario errorUserLoan.

2.3. Statechart diagram (StateD)
A StateD shows the sequence of states that an object

goes through during its life cycle in response to stimuli.
Generally, a StateD may be attached to a class of objects
with an interesting dynamic behavior.

The formalism (notation and semantics) used in
StateDs is derived from Statecharts as defined by Harel
[6]. Any state in a StateD can be recursively decomposed
into exclusive states (or-state) or concurrent states (and-
state).

As an illustration, Figure 4 depicts the StateD of the
object Terminal. The state waitingForApplyOrCancel, for
instance, is an and-state composed of two concurrent
substates separated by a dashed line.

3. Description of the Approach
In this section, we describe the overall approach to

derive a UI prototype of a system. The approach consists
of five activities (see Figure 3), which are detailed below:
• Requirements acquisition
• Generation of partial specifications from scenarios
• Analysis of partial specifications
• Integration of partial specifications
• User interface prototype generation.

Requirements
acquisition

CollDs

UseCaseD

Generation of partial
specifications from
scenarios

StateDs

Integration of partial
specifications

Integrated
StateDs

Analysis of partial
specifications

Labelled
StateDs

User interface prototype
generation

UI Prototypes

 Figure 3: Overview of the approach.

3.1. Requirements acquisition
In this activity, the analyst first elaborates the

UsecaseD of the system (see Figure 1). Then, he or she

acquires scenarios as CollDs for each use case in the
UsecaseD. Figures 2(a), 2(b), and 2(c) show the three
sample CollDs corresponding to the use case Loan of the
library system.

Scenarios of a given use case are classified by type and
ordered by frequency of use. We have considered two
types of scenarios: normal scenarios, which are executed
in normal situations, and scenarios of exception executed
in case of errors and abnormal situations. The frequency
of use of a scenario is a number between 1 and 10
assigned by the analyst to indicate how often a given
scenario is likely to occur. In our example, the use case
Loan has one normal scenario (scenario regularLoan with
frequency 10) and two scenarios of exception (scenario
cancelLoan with frequency 3 and scenario errorUserLoan
with frequency 5).

In our example, the object Terminal is a special object
called interface object. An interface object is defined as
an object through which the user interacts with the system
to enter input data and receive results. For UI generation
purposes, messages corresponding to user interactions are
marked in the CollDs with the type of interaction objects
(i.e., widgets) that the analyst wants to find in the
resulting UI. For example in Figure 2(a), the mark #B# at
the beginning of the name of message 1.2 means that this
message corresponds to a user interaction with the Button
widget. Note that #TF# stands for Text Field as in
message 1.4.1, #IF# for Input Field as in message 1.1,
and #L# for Label as in message 1.4 in Figure 2(c).

3.2. Generation of partial specifications
from scenarios

In this activity, we repeatedly apply on each CollD the
CollD-To-StateD transformation algorithm described in
[19]. As a result, for each object and each scenario in
which it participates, a partial specification (StateD) is
obtained.

3.3. Analysis of partial specifications
In order to integrate multiple StateDs of a given object

(activity four, see Section 3.4 below), the analyst must
identify equivalent states and give them common state
names. Unique states are labeled with unique state names.

3.4. Integration of partial specifications
The objective of this activity is to integrate for each

object and each use case in which it participates all its
partial StateDs into one single StateD per use case [13].
As an example, Figure 4 shows the resultant StateD of the
Terminal object after the integration of the three scenarios
of use case Loan. Note that StateDs can be integrated
across use cases, and thus the set of “global” StateDs as
needed for subsequent design and implementation can be
easily obtained, too.

S11

Terminal
uid, did, res
scenarioList := {1, 2, 3}
dynamicScenarioList := scenarioList
transScenarioList := [{1,2,3}, {1,2,3}, {1,2, 3}, {1, 2}, {1,2},
{1,2}, {1, 2}, {1}, {1}, {1}, {1}, {1}, {3}, {2}]

T2=#IF#enter_user_id()
[sc] /sa ^did

T4=[res=ok AND sc] /#TF#display_user_name()
/ #TF#display_user_address / #TF#display_user_tel /sa

T6=#B#select_Enter_Button()
[sc] /sa → res:=Document.
check_doc_id(did)

T5=#IF#enter_doc_id()
[sc] /sa ^did

T3=#B#select_Enter_Button() [sc] /sa →
res:=Reader.check_user_id(uid)

T7=[res=ok AND sc] / #TF#display_doc_title()
/ #TF#display_doc_authors / #TF#display_doc_status
/ #TF#display_date_due /sa

S1S0 S2

S3

 T1= create_loan()[sc] /sa

S4S6 S5

S8

S9

T9=[sc] /sa
S7

T8=#B#select_Apply_Button

T10=[sc] /sa →
Document.lend_doc(did)

T11=[sc] /sa →
Loans.new_loan()

T12=[sc] /ra

T13=[res=not ok AND sc]
/#L#display_mess_user_error() /ra

T14=#B#select_Cancel_Button [sc] /sa

WaitingForApplyOrCancel

Figure 4: Resultant StateD for the Terminal object.

3.5. User interface prototype generation
In this activity, we derive UI prototypes for all the

interface objects found in the system. Both the static and
the dynamic aspects of the UI prototypes are generated
from the StateDs of the underlying interface objects. For
each interface object, we generate from its StateDs, as
found in the various use cases, a standalone prototype.
This prototype comprises a menu to switch between the
different use cases. The different screens of the prototype
visualize the static aspect of the object; the dynamic
aspect of the object maps into the dialog control of the
prototype. In our current implementation, prototypes are
Java applications comprising each a number of frames
and navigation functionality (see Figures 5 and 9). The
details of prototype generation are described in the next
section.

4. Algorithm for User Interface
Prototype Generation

In this section, we detail the process of prototype
generation from interface object behavior specifications.
This process can be summarized in the following
algorithm (in the pseudocode, we use the “dot”-notation
known from object-oriented languages).

Let IO be the set of interface objects in the
system,
Let UC={uc1, uc2,..., ucn} be the set of use cases
of the system,
For each io in IO

For each uci in UC
If io.usedInUsecase(uci) then

sd = io.getStateDforUsecase(uci)
sd.generatePrototype()

End If
End For
io.generateCompletePrototype()

End For

The operation usedInUsecase(uci), applied to the
object io, checks if the object io participates or not in one
or more of the CollDs associated with use case uci. If the
operation returns true, the operation
getStateDforUsecase(uci) is called, which retrieves sd, the
StateD capturing the behavior of object io that is related
to this use case. From StateD sd, a UI prototype is
generated using the operation generatePrototype().

The operation generateCompletePrototype() integrates
the prototypes generated for the various use cases into one
single application. This application comprises a menu
(see Figure 5) providing as options the different use cases
in which object io participates.

 Figure 5: Menu generated for the interface object
Terminal.

The operation of prototype generation
(generatePrototype()) is composed of five operations,
which are described in the sections below:
• generating graph of transitions
• masking non-interactive transitions
• identifying user interface blocks
• composing user interface blocks
• generating the user interface from composed blocks.

4.1. Generating graph of transitions
This operation consists of deriving a directed graph of

transitions (GT) from the StateD of an interface object io
related to a use case uci. Transitions of the StateD will
represent the nodes of the GT. Edges will indicate the
precedence of execution between transitions. If transition
t1 precedes transition t2 in execution, we will have an edge
between the nodes representing t1 and t2.

A GT has a list of nodes nodeList, a list of edges
edgeList, and a list of initial nodes initialNodeList (entry
nodes for the graph). The nodeList of a GT is easily
obtained since it corresponds to the transition list of the
StateD at hand. The edgeList of a GT is obtained by
identifying for each transition t all the transitions that

enter the state from which t can be triggered. All these
transitions precede the transition t and hence define each
an edge to node t.

The following algorithm details how to get nodeList,
edgeList, and initialNodeList of the GT from a given
StateD sd.

// returns the list of transitions in StateD sd
nodeList = sd.TransitionList()

// edgeList computation:
edgeList = ∅
For each ti ∈ nodeList

s = sd.FromState(ti)
// returns the state from which
// the transition ti is originating
List = sd.inputTransitions(s)
// returns the list of transitions that
// enter the state s
For te ∈ List edgeList.addEdge(te,ti)
// case where s is an initial state of sd:
If s.type == initialState

ss=s.superState()
// returns the parent state of s
List = sd.inputTransitions(ss)
For te ∈ list

edgeList.addEdge(te,ti)
End If
// case where s is a composite state
// (and-state, or-state):
If (s.type==andState) or (s.type==orState)

List = s.transitionsInside()
// returns the list of transitions inside
// the composite state s
For te ∈ List edgeList.addEdge(te,ti)

End If
End For

// initialNodeList computation:
initialNodeList = ∅
LIS=sd.initialStates()
For each s ∈ LIS

OT = s.outputTransitions()
// returns the list of transitions that
// fan out from s
initialNodeList = initialNodeList ∪ OT

End For

Given the StateD of Terminal for the use case Loan
(see Figure 4), the above algorithm generates the GT
shown in Figure 6(a). The star character (*) is used to
mark initial nodes in the graph.

4.2. Masking non-interactive transitions
This operation consists of removing all transitions that

do not directly affect the UI (i.e., that do not carry
widgets). These transitions are called non-interactive
transitions. All such transitions are removed from the list
of nodes nodeList and from the list of initial nodes
initialNodeList, and all edges defined by those transitions
are removed from edgeList.

When a transition t is removed from nodeList, we
remove all edges where t takes part, and we add new
edges in order to “bridge” the removed transition nodes.
If the initialNodeList list of initial transitions contains any
non-interactive transitions, they are replaced by their

successor nodes. The following pseudocode details this
operation (the update of initialNodeList is not shown):

For each t ∈ nodeList
If t.widget()=’’ then

nodeList.delete(t)
ITL=edgeList.inputEdge(t)
// returns the list of transition t i

// with (t i,t) ∈ edgeList
OTL=edgeList.outputEdge(t)
// returns the list of transitions t e

// with (t,t e) ∈ edgeList
For each t i ∈ ITL
 For each t e ∈ OTL

edgeList.addEdge(t i,t e)
edgeList.deleteEdge(t i,t)
edgeList.deleteEdge(t,t e)

 End For
End For

End If
End For

 Figure 6: (a) Transition graph for the object
Terminal and the use case Loan (GT).
(b) Transition graph after masking
non-interactive transitions (GT’).

The result of this operation on the graph of Figure 6(a)
is given in Figure 6(b).

T2

T4.1

T4.2

T4.3

T7.1

T7.2

T14

T9

T10
T11

T12

* T1

T3

T4.1

T4.2

T4.3

T5

T6

T7.1

T7.2

T8

T14

T13

* T2

(a)

(b)

T5

T6

T8

T13

T3

4.3. Identifying user interface blocks
This operation consists of constructing a directed

graph where nodes represent User Interface Blocks (UIB).
A UIB is a subgraph of GT’ consisting of a sequence of
transition nodes that is characterized by a single input and
a single output edge. The beginning and the end of each
UIB is identified from the graph GT’ based on the
following rules:
(Rule 1) An initial node of GT’ is the beginning of a

UIB.
(Rule 2) A node that has more than one input edge is the

beginning of a UIB.
(Rule 3) A successor of a node that has more than one

output edge is the beginning of a UIB.
(Rule 4) A predecessor of a node that has more than one

input edge ends a UIB.
(Rule 5) A node that has more than one output edge ends

a UIB.
Applying these rules to the graph of Figure 6(b), we

obtain the graph GB shown in Figure 7.
In this example, Rule 1 determines the beginning of B1

(T2) and Rule 5 the end of B1 (T3). Rules 3 and 5
determine the UIB B2. The UIBs B3, B4, and B5 are
generated by applying Rule 3.

 Figure 7: Graph GB resulting from UIB
identification on the graph GT’ of
Figure 6(b): elapsed view (a) and
collapsed view (b).

4.4. Composing user interface blocks
Generally, the UI blocks obtained from the previous

operation contain only few widgets and represent only
small parts of the overall use case functionality. Our
approach supports the combination of UIBs in order to
have more interesting blocks which can be transformed
into suitable graphic windows. We use the following rules
(heuristics) to merge the UIBs of a use case :
(Rule 6) Adjacent UIBs belonging to the same scenario

are merged (scenario membership).
(Rule 7) The operation of composition begins with

scenarios having the highest frequency (scenario
classification, see Section 3.1).

(Rule 8) Two UIBs can only be grouped if the total of
their widgets is less than 20 (ergonomic
criterion).

The following algorithm explains the operation of
composition.
Let uci be a given use case ∈ UC. Let GB be a
graph of UIBs that is derived from a StateD
belonging to uci

SL = uci.OrderedScenariolist()
// returns the scenario list of uci ordered by
// type and frequency
For sc ∈ SL

BL = GB.LookforUIB(sc)
// returns the list of (adjacent) UIBs
// involved in scenario sc
b = BL[1]
i = 2
While i < BL.size()

While ergonomic(b,BL[i])
// checks number of widgets < limit
// (Rule 8)

b.fusion(BL[i])
// combine the UIB BL[i]
// with its precedent UIB
GB.delete(BL[i])
// suppress B[i] from GB and update
// the edges in GB
i = i + 1

End While
B = BL[i]
i = i + 1

End While
End For

Applying this algorithm to the GB of Figure 7 results
in the graph GB’ of UIBs shown in Figure 8.

 Figure 8: Graph GB’ resulting from user interface
block composition on the graph GB of
Figure 7.

B1

+
B2

+
B3

+
B4

B5

(a)

B1

B5 B2

B3 B4

(b)

T3

T4.1

T4.2

T4.3

T5

T6

T7.1

T7.2

T8

T14

T13

*
T2

4.5. Generating the user interface from
composed blocks

In this operation, we generate for each UIB of GB’ a
graphic frame. The generated frame contains the widgets
of all the transitions belonging to the concerned UIB.
Edges between UIBs in GB’ are transformed to call
functions in the appropriate frame classes. In our current
implementation, Java code is generated that is compatible
with the interface builder of Visual Café [20]. This gives
the analyst the opportunity to customize the visual aspect
of the generated frames.

The two frames derived from the composed blocks of
the graph GB’ of Figure 8 are shown in Figure 9.

The dynamic aspect of the UI is controlled by the
behavior specification (StateD) of the underlying
interface object. Running the generated prototype means
symbolic execution of the StateD, or in our case, traversal
of the transition graph GT’. The prototype responds to all
user interaction events captured in GT’, and ignores all
other events.

To support prototype execution, a Simulation Window
is generated (Figure 10, bottom window), as well as a
dialog box to Choose Scenarios (Figure 10, middle right
window). For example, after selecting the use case Loan
from the UseCases menu (see Figure 10, top window), a
message is displayed in the simulation window that
confirms the use case selection and prompts the user to
input the user identification and to click the Enter button.
When execution reaches a node in GT’ from which
several continuation paths are possible, the prototype
displays the dialog box for scenario selection. In the
example of Figure 10, the upper selection corresponds to
the scenario errorUserLoan, and the lower one to the
scenarios regularLoan and cancelLoan. Once a path has
been selected, the traversal of GT’ continues.

 Figure 9: Frames generated for the use case Loan.

Figure 10: Prototype execution.

5. Related Work
In this section, we first review some related work in

the area of automatic generation of UIs from
specifications. Then, we address research dealing with the
simulation of specifications.

A number of methods have been suggested for
deriving the UI from specifications of the application
domain. Typically, data attributes serve as input for the
selection of interaction objects according to rules based
on style guidelines such as CUA (Common User Access)
[11]. Such methods include the Genius, Janus, and
TRIDENT approaches.

In Genius [12], the application domain is captured in
data models that are extended entity-relationship models.
The analyst defines a number of views, where each view
is a subset of entities and relationships of the overall data
model, and specifies how these views are interconnected
by means of a Petri-net based dialogue description. From
these views and dialog specifications, Genius generates
the UI. Note, however, that the specification process is
completely manual.

Janus [2] derives the different windows of a UI from
object models. Non-abstract classes are transformed into
windows, whereas attributes and methods that are
marked as irrelevant for the UI are ignored in the
transformation process. Janus does not address the
dynamic aspect of UIs.

Note that, in contrast to our approach, both Genius and
Janus use data structure specifications for UI generation,
but ignore task analysis altogether. As a consequence,
such methods are little useful for systems other than data-
oriented applications.

TRIDENT [3] leverages both task analysis and
functional requirements analysis. Task analysis proceeds
by decomposing the application into interactive tasks and
by determining task attributes such as importance and
user stereotype (user’s task experience, user’s system
experience, etc.). Functional requirements analysis builds
an entity-relationship model for the data and extracts from
task analysis the tasks that should be treated as internal
functions. An activity-chaining graph is drawn to connect
interactive tasks to data and functions. This graph serves
as the input for the selection of different windows,
referred to as presentation units. TRIDENT addresses
only the static aspect of UIs.

Simulation of specifications is supported by a variety
of methods and tools, including STATEMATE and SCR,
and the work by Koskimies et al.

STATEMATE [7] is a commercial tool, which provides
graphical and diagrammatic languages for describing a
system under development in three different views:
structural, functional, and behavioral. Behavioral views
are captured by StateDs. The tool supports system
simulation for verification purposes as well as automatic
code generation. UI generation is not supported. We
consider STATEMATE as a complementary tool in
respect to our approach: StateDs synthesized by a tool
such as ours may be passed to STATEMATE for
simulation and analysis, and conversely, StateDs of
interface objects specified with STATEMATE may be
complemented with a UI prototype using our approach.

The SCR method [8] suggests a tabular notation for
specifying requirements and provides a set of tools for
simulation and for automatic error detection. The formal
model of specifications is the classic state machine model,
and therefore, in contrast to StateDs, concurrency is not
supported. The SCR simulator tool allows for the
integration of UIs; yet, the UIs must be constructed
manually using a GUI builder.

Koskimies et al. [14], finally, present an algorithm for
synthesizing state machines (StateDs) from a set of
scenarios (the differences to our synthesis algorithm are
detailed in [19]). They propose an approach for design
called design by animation. During the simulation of the
synthesized state machines, new scenarios are generated
which may in turn fuel the synthesis of more
comprehensive state machines. Scenario generation can
be supported via a UI, which must be crafted manually.

6. Discussion of Approach
Below, we discuss our approach in respect to the

following points: scope and limitations, rapid and
evolutionary prototyping, validation, and practicality.

Scope and limitations of approach
The scope of our approach is threefold: (1) it proposes

a process for requirements engineering compliant with the

UML, (2) it provides automatic support for building
object specifications, and (3) it supports UI prototyping.
Yet, at least three limitations apply. First, the analyst has
the manual task of eliciting scenarios of the system and of
labeling the generated partial StateDs. Second, our
approach may be applied to windows and widgets
interfaces, yet fails to support in its current form
alternative UI paradigms. Finally, verification of
characteristics such as coherence, completeness, etc. is
not supported. Rather, we have to rely on external tools
such as STATEMATE to verify the specifications.

Rapid and evolutionary prototyping
In the proposed framework, we aim at rapid

prototyping for the purpose of end user validation at an
early stage of development. The generated prototype
serves as a vehicle for evaluating and enhancing the UI
and the underlying specification. Since the prototype is
generated in Java source code, it can be evolved at the
code level towards the target application, to cover data
and functional aspects. Since our framework is embedded
in the UML, these aspects are provided as class diagrams
and activity diagrams, respectively, that may be
transformed into Java classes by use of a CASE tool.

Validation of approach
The three algorithms (see Sections 3.2, 3.4, and 3.5)

that constitute the core of our approach have all been
implemented in Java. For scenario acquisition and for the
presentation of the resulting specifications, we have
adopted two textual formats. The analyst may eventually
be shielded from these formats by graphical editors for
CollDs and StateDs, like the ones found in commercial
CASE tools. The Java code generated for the UI
prototype is fully compatible with the interface builder of
Visual Café [20].

Note that the three algorithms have polynomial
complexity. Our approach has been successfully applied
to a number of examples such as the library system
presented in this paper, a gas station simulator, an ATM
(Automatic Teller Machine) system [17], and a filing
system. On the average, one hour per scenario was spent
to convert an informal scenario description into a newly
generated UI prototype. For instance, in the case of the
ATM example, comprising two use cases with a total of
five scenarios, half a day’s work yielded the overall UI
prototype, as well as the complete set of StateDs of all
interface and non-interface objects involved. We estimate
that coding the prototype and synthesizing the StateDs by
hand would have taken us double the time or more.

Practicality of approach
Our vision of a professional tool that supports our

approach is a CASE tool supplying, beyond the
functionality of the algorithms of the approach, graphical
editors for the UML diagrams needed, as well as a
“widget tool” for the specification by direct manipulation

of UI information within CollDs. Furthermore, such a tool
may support a wider range of widget types than is
currently being provided. At the conceptual level, to
further practicality, the activity of analysis of partial
object specifications (see Section 3.3) should be
automated, and the rules for UI generation (see Sections
4.3 and 4.4) may be refined.

7. Conclusion and Future Work
The work presented in this paper proposes a new

approach to the generation of UI prototypes from
scenarios. The most interesting features lie in the
automation brought upon by the deployed algorithms, in
the support of scenarios that accommodate concurrent
behavior, and in the derivation of executable prototypes
that are embedded in a UI builder environment for
refinement. The obtained prototypes can be used for
scenario validation with end users and can be evolved
towards the target application.

As future work, we aim to provide automatic support
for verification of scenarios and specifications.
Furthermore, we want to address the formal specification
of data in order to eliminate the manual activities of our
approach and to allow for the generation of interaction
objects from data specifications.

References

[1] J. S. Anderson, and B. Durney, “Using Scenarios in Deficiency-

driven Requirements Engineering”, Requirements Engineering’93, IEEE

Computer Society Press, 1993, pp. 134-141.

[2] H. Balzert, “From OOA to GUIs: The Janus System”, IEEE

Software, 8(9), February 1996, pp. 43-47.

[3] F. Bodart, A.-M. Hennebert, J.-M. Leheureux, I. Provot, and J.

Vanderdonckt, “A Model-based Approach to Presentation: A

Continuum from Task Analysis to Prototype”, Proceedings of the

Eurographics Workshop on Design, Specification, Verification of

Interactive Systems, Carrara, Italy, June 1994, Focus on Computer

Graphics, Springer-Verlag, Berlin, pp.77-94.

[4] G. Booch, Object Oriented Analysis and Design with Applications,

Benjamin/Cummings Publishing Company Inc., Redwood City, CA,

1994.

[5] H-E. Eriksson, and M. Pinker, UML-Toolkit, John Wiley and Sons,

1998.

[6] D. Harel, “Statecharts: A visual formalism for complex systems”,

Science of Computer Programming, 8, June 1987, pp. 231-274.

[7] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R.

Sherman, A. Shtull-Trauring, and M. Trakhtenbrot, “STATEMATE: A

Working Environment for the Development of Complex Reactive

Systems”, IEEE Transactions on Software Engineering, (16)4, April

1990, pp. 403-414.

[8] C. Heitmeyer, J. Kirby, B. Labaw, and R. Bharadwaj, “SCR*: A

Toolset for Specifying and Analyzing Software Requirements”, Proc. of

the 10th Annual Conference on Computer-Aided Verification, (CAV’98),

Vancouver, Canada, 1998, pp. 526-531.

 [9] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, and C. Chen,

“Formal approach to scenario analysis”, IEEE Software, (11)2, March

1994, pp. 33-41.

[10] I. Jacobson, M. Christerson, P. Jonson, and G. Overgaard, Object-

Oriented Software Engineering: A Use Case Driven Approach,

Addison-Wesley, 1992.

[11] IBM, Systems Application Architecture: Common User Access –

Guide to User Interface Design – Advanced Interface Design Reference,

IBM, 1991.

[12] C. Janssen, A. Weisbecker, and U. Ziegler, “Generating User

Interfaces from Data Models and Dialogue Net Specifications”, Proc. of

the Conference on Human Factors in Computing Systems (CHI’93),

Amsterdam, The Netherlands, April 1993, pp. 418-423.

[13] I. Khriss, M. Elkoutbi, and R. K. Keller, “Automating the Synthesis

of UML Statechart Diagrams from Multiple Collaboration Diagrams”,

Proc. of the Intl. Workshop on the Unified Modeling Language UML:

Beyond the Notation, Mulhouse, France, June 1998, pp. 115-126bis.

[14] K. Koskimies, T. Systa, J. Tuomi and T. Mannisto, “Automatic

support for modeling OO software”, IEEE Software, 15(1),

January/February 1998, pp. 42-50.

[15] B. A. Nardi, “The Use Of Scenarios In Design”, SIGCHI Bulletin,

24(4), October 1992.

[16] C. Potts, K. Takahashi and A. Anton, Inquiry-Based Scenario

Analysis of System Requirements, Technical Report GIT-CC-94/14,

Georgia Institute of Technology, 1994.

[17] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,

Object-oriented Modeling and Design, Prentice-Hall, Inc., 1991.

[18] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling

Language Reference Manual, Addison Wesley, Inc., 1999.

[19] S. Schönberger, R. K. Keller and I. Khriss, Algorithmic Support for

Transformations in Object-Oriented Software Development, Technical

Rep. GELO-83, Univ. de Montréal, Montréal, Qc, Canada, April 1998.

[20] Symantec, Inc, Visual Café for Java: User Guide, Symantec, Inc.,

1997.

