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Abstract: In this paper, we suggest a requirement engineering process that
generates a user interface prototype from scenarios and yields a formal
specification of the system in form of a high-level Petri net. Scenarios are
acquired in the form of sequence diagrams as defined by the Unified Modeling
Language (UML), and are enriched with user interface information. These
diagrams are transformed into Petri net specifications and merged to obtain a
global Petri net specification capturing the behavior of the entire system. From
the global specification, a user interface prototype is generated and embedded in
a user interface builder environment for further refinement. Based on end user
feedback, the input scenarios and the user interface prototype may be iteratively
refined. The result of the overall process is a specification consisting of a global
Petri net, together with the generated and refined prototype of the user interface.
Keywords: User interface prototyping, scenario specification, high-level Petri
net, Unified Modeling Language.

1 Introduction

Scenarios have been identified as an effective means for understanding
requirements [16] and for analyzing human computer interaction [14]. A typical
process for requirement engineering based on scenarios [7] has two main tasks. The
first task consists of generating from scenarios specifications that describe system
behavior. The second task concerns scenario validation with users by simulation and
prototyping. These tasks remain tedious activities as long as they are not supported by
automated tools.
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For the purpose of validation in early development stages, rapid prototyping tools
are commonly and widely used. Recently, many advances have been made in user
interface (UI) prototyping tools like UI builders and UI management systems. Yet, the
development of UIs is still time-consuming, since every UI object has to be created
and laid out explicitly. Also, specifications of dialogue controls must be added by
programming (for UI builders) or via a specialized language (for UI management
systems).

This paper suggests an approach for requirements engineering that is based on the
Unified Modeling Language (UML) and high-level Petri nets. The approach provides
an iterative, four-step process with limited manual intervention for deriving a
prototype of the UI from scenarios and for generating a formal specification of the
system. As a first step in the process, the use case diagram of the system as defined by
the UML is elaborated, and for each use case occurring in the diagram, scenarios are
acquired in the form of UML sequence diagrams and enriched with UI information. In
the second step, the use case diagram and all sequence diagrams are transformed into
Colored Petri Nets (CPNs). In step three, the CPNs describing one particular use case
are integrated into one single CPN, and the CPNs obtained in this way are linked with
the CPN derived from the use case diagram to form a global CPN capturing the
behavior of the entire system. Finally, in step four, a prototype of the UI of the system
is generated from the global CPN and embedded in a UI builder environment for
further refinement.

In our previous work, we have investigated and implemented the generation of UI
prototypes from UML scenarios using exclusively the UML, most notably UML
Statecharts [5, 13, 21, 22]. In this Statechart-based approach, Statecharts are used to
integrate the UML scenarios and capture object and UI behavior. In the work
presented in this paper, we decided to take a Petri-net based approach, with CPNs
taking the role of UML Statecharts. We opted for Petri nets because of their strong
support of concurrency, their ability to capture and simulate multiple copies of
scenarios in the same specification, and for the wealth of available tools for analyzing,
simulating, and verifying Petri nets. A comparison of the two approaches is provided
in Section 5 of the paper.

In our approach, we aim to model separately the use case and the scenario levels.
We also want to keep track of scenarios after their integration. Thus, we need a PN
class that supports hierarchies as well as colors or objects to distinguish between
scenarios in the resulting specification. We adopted Jensen’s definition of CPN [10]
which is widely accepted and supported by the designCPN tool [3] for editing,
simulating, and verifying CPNs. Object PNs could also have been used, but CPNs are
largely sufficient for this work. In our current implementation, UI prototyping is
embedded into the Visual Café environment [23] for further refinement.

Section 2 of this paper gives a brief overview of the UML diagrams relevant to our
work and introduces a running example. In Section 3, the four activities leading from
scenarios to executable UI prototypes are detailed. Section 4 reviews related work,
and in Section 5, we discuss a number of issues related to the proposed approach.
Section 6 concludes the paper and provides an outlook into future work.



2 Unified Modeling Language

The UML [19], which is emerging as a standard language for object-oriented
modeling, provides a syntactic notation to describe all major views of a system using
different kinds of diagrams. In this section, we discuss the three UML diagrams that
are relevant for our work: Class diagram (ClassD), Use Case diagram (UsecaseD),
and Sequence diagram (SequenceD). As a running example, we have chosen to study
a part of an extended version of the Automatic Teller Machine (ATM) system
described in [2].

2.1 Class diagram (ClassD)

The ClassD represents the static structure of the system. It identifies all the classes
for a proposed system and specifies for each class its attributes, operations, and
relationships to other objects. Relationships include inheritance, association, and
aggregation. The ClassD is the central diagram of UML modeling. Figure 1 depicts
the ClassD for the ATM system.
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Figure 1: Class diagram of the ATM system.

2.2 Use Case Diagram (UsecaseD)

The UsecaseD is concerned with the interaction between the system and actors
(objects outside the system that interact directly with it). It presents a collection of use
cases and their corresponding external actors. A use case is a generic description of an



entire transaction involving several objects of the system. Use cases are represented as
ellipses, and actors are depicted as icons connected with solid lines to the use cases
they interact with. One use case can call upon the services of another use case. Such a
relation is called a uses relation and is represented by a directed solid line. Figure 2
shows as an example the UsecaseD corresponding to the ATM system. The extends
relation, which is also defined in UsecaseDs, can be seen as a uses relation with an
additional condition upon the call. A UsecaseD is helpful in visualizing the context of
a system and the boundaries of the system’s behavior. A given use case is typically
characterized by multiple scenarios.

Identify

Deposit

<<uses>>

<<uses>>

<<uses>>Customer

Withdraw

Balance

Figure 2: Use Case diagram of the ATM system.

2.3 Sequence Diagram (SequenceD)

A scenario shows a particular series of interactions among objects in a single
execution (instance) of a use case. Scenarios can be viewed in two different ways:
through SequenceDs or collaboration diagrams. Both types of diagrams rely on the
same underlying semantics, and conversion from one to the other is possible. For our
work, we chose to use SequenceDs for their simplicity and wide use.

A SequenceD shows the interactions among the objects participating in a scenario
in temporal order. It depicts the objects by their lifelines and shows the messages they
exchange in time sequence. However, it does not capture the associations among the
objects. A SequenceD has two dimensions: the vertical dimension represents time,
and the horizontal dimension represents the objects. Messages are shown as
horizontal solid arrows from the lifeline of the object sender to the lifeline of the
object receiver. A message may be guarded by a condition, annotated by iteration or
concurrency information, and/or constrained by an expression. Constraints are used in
our work to enrich messages with UI information.

Figures 3 and 4 depict two SequenceDs of the use case Identify. Figure 3 represents
the scenario where the customer is correctly identified (regularIdentify), whereas
Figure 4 shows the case where the customer entered an incorrect pin (errorIdentify).



Figure 3: Scenario regularIdentify of the use case Identify.

Figure 4: Scenario errorIdentify of the use case Identify.

Beyond the UML standard message constraints found in SequenceDs, we define
the two additional constraints inputData and outputData. The inputData constraint
indicates that the corresponding message holds input information from the user. The
outputData constraint specifies that the corresponding message carries information
for display. Both inputData and outputData constraints have a parameter that
indicates the kind of user action. This parameter normally represents the dependency
between the message and the elements of the underlying ClassD. It may be either a
method name, one or several class attributes, or a string literal (see figures 3 and 4).

Once the analyst has specified the UI constraints of the messages in the SequenceD
at hand, this information is used to determine the corresponding widgets that will
appear in the UI prototype. Widget generation adheres to a list of rules, which is
based on the terminology, heuristics and recommendations found in [8] and which
includes the following eight items:

•  A button widget is generated for an inputData constraint with a method as
dependency, e.g., Insert_card() {inputData(ATM.insert_card)} in Figure 3.

•  An enabled textfield widget is generated in case of an inputData constraint
with a dependency to an attribute of type String, Real, or Integer, e.g.,
Enter_pin() {inputData(Account.password)} in Figure 3.
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•  A group of radio buttons widgets are generated in case of an inputData
constraint with a dependency to an attribute of type Enumeration having a size
less than or equal to 6, e.g., Select_op() {inputData(Transaction.kind)} in
Figure 3.

•  An enabled list widget is generated in case of an inputData constraint with a
dependent attribute of type Enumeration having a size greater than 6 or with a
dependent attribute of type collection.

•  An enabled table widget is generated in case of an inputData constraint with
multiple dependent attributes.

•  A disabled textfield widget is generated for an outputData constraint with a
dependency to an attribute of type String, Real, or Integer.

•  A label widget is generated for an outputData constraint with no dependent
attribute, e.g., Pin_error() {outputData("Pin Incorrect")} in Figure 4.

•  A disabled list widget is generated in case of an outputData constraint with a
dependent attribute of type Enumeration having a size greater than 6 or with a
dependent attribute of type collection.

•  A disabled table widget is generated in case of an outputData constraint with
multiple dependent attributes.

3 Description of Approach

In this section, we detail the iterative process for deriving a system UI prototype
from scenarios using the UML and CPNs. Figure 5 presents the sequence of
activities involved in the proposed process.
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Figure 5: Activities of the proposed process.

In the Scenario Acquisition activity, the analyst elaborates the UsecaseD, and for
each use case, he or she elaborates several SequenceDs corresponding to the scenarios
of the use case at hand. The Specification Building activity consists of deriving CPNs
from the acquired UsecaseD and SequenceDs. During Scenario Integration, CPNs



corresponding to the same use case are iteratively merged to obtain an integrated CPN
of the use case. Integrated CPNs serve as input to both the CPN Verification and the
UI Prototype Generation activities. During Prototype Evaluation, the generated
prototype is executed and evaluated by the end user. In the CPN Verification activity,
existing algorithms can be used to check behavioral properties.

In the following subsections, we will discuss in detail the four activities of the UI
prototyping process: scenario acquisition, specification building, scenario integration,
and UI prototype generation. The CPN verification activity is discussed in [4].

3.1 Scenario acquisition

In this activity, the analyst elaborates the UsecaseD capturing the system
functionalities, and for each use case, he or she acquires the corresponding scenarios
in form of SequenceDs. For instance, the UsecaseD of the ATM system is shown in
Figure 1, and two SequenceDs of the use case Identify are given in figures 3 and 4.

Scenarios of a given use case are classified by type and ordered by frequency of
use. We have considered two types of scenarios: normal scenarios, which are
executed in normal situations, and scenarios of exception executed in case of errors
and abnormal situations. The frequency of use (or the frequency of execution) of a
scenario is a number between 1 and 10 assigned by the analyst to indicate how often a
given scenario is likely to occur. In our example, the use case Identify has one normal
scenario (scenario regularIdentify with frequency 10) and a scenario of exception
(scenario errorIdentify with frequency 5). This classification and ordering is used for
the composition of UI blocks [5].

3.2 Specification building

This activity consists of deriving CPNs from both the acquired UsecaseD and all
the SequenceDs. These derivations are explained below in the subsections Use case
specification and scenario specification.

3.2.1 Use case specification
The CPN corresponding to the UsecaseD is derived by mapping use cases into

places. The transition leading to one place (Enter) corresponds to the initiating action
of the use case. A place Begin is always added to model the initial state of the system.
After a use case execution, the system will return, via an Exit transition, back to its
initial state for further use case executions. The place Begin may contain several
tokens to model concurrent executions. Figure 6 depicts the CPN derived from the
ATM system’s UsecaseD (Figure 2).

In a UsecaseD, a use case can call upon the services of another one via the relation
uses. This relation may have several meanings depending on the system being
modeled. Consider a use case Uc1 using a use case Uc2. Figure 7(a) shows the general
form of this relation. The use case Uc1 is decomposed into three sub-use cases: Uc11

represents the part of Uc1 executed before the call of Uc2, Uc12 represents the part of
Uc1 that is concurrently executed with Uc2, and Uc13 represents the part executed after



the termination of Uc2. Note that one or two of these three sub-use cases may be
empty. The figures 7(a) through 7(g) depict the eight possible mappings.

Figure 6: CPN derived from the UsecaseD of the ATM system.

A relation of type (g) between Uc1 and Uc2 means that Uc2 precedes Uc1. This implies
that Uc1 is not directly accessible from the place Begin. So the transitions from the
place Begin to the place representing Uc1 must be substituted for an Enter transition
into Uc2 and an Enter transition from Uc1 into Uc2. In the ATM system (Figure 1), all
three uses relations are of type (g), and the initial CPN (Figure 7) must be updated
accordingly (Figure 9(a)).

.

Figure 7: Possible mappings of the uses relation (Uc1, Uc2).

The designCPN tool, which we adopted in our work, allows for the refinement of
transitions, but does not support the refinement of places. Therefore, in order to
substitute the use cases, which are represented as places, for CPNs representing
integrated scenarios (see Subsection 3.3), the CPN obtained after processing the uses
relation (Figure 8(a)) requires adaptation: each subnet Enter → placei → Exit is
substituted for a simple transition representing the use case underlying placei (cf.
dashed ellipse in Figure 8(a)), and intermediary places such as endIdentify are inserted
(see Figure 8(b)).
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Figure 8: CPN of the UsecaseD of the ATM system after (a) processing the uses relation,
and (b) adaptation to designCPN.

3.2.2 Scenario specification
For each scenario of a given use case, the analyst builds an associated table of

object states. This table is directly obtained from the SequenceD of the scenario by
following the exchange of messages from top to bottom and identifying the changes
in object states caused by the messages. For example, tables 1 and 2 show the object
state tables associated with the scenarios regularIdentify (Figure 3) and errorIdentify
(Figure 4). In such tables, a scenario state is represented by the state vector of the
objects participating in the scenario (column Scenario state in Table 1 and 2, resp.).

3.3 Analysis of partial specifications

The previous activity generates StateDs with unlabeled states. In respect to the
fourth activity, the analyst must add state names to the generated StateDs. In fact, our
algorithm is based on state names as we will see later. He can also add structural
informations like grouping states. Figures 5a, 5b and 5c show some added
informations to the StateDs generated for the object Terminal (Figure 4a, 4b and 4c).

The result of this step is a set of StateDs SD’ which is the same as SD plus
additional textual and structural informations.

Table 1: Object state table associated with the scenario regularIdentify.

(a) (b)

               Objects

Messages

Customer ATM Bank Account Scenario state

Insert_card Present Card_in void void S1={Present, Card_in,
void, void}

Enter_pin Present Pin-entered void void S2={Present, Pin_entered,
void, void}

Connect Present Pin-entered Connected void S3={Present, Pin_entered,
Connected, void}

Check Present Pin-entered Connected Checked S4={Present, Pin_entered,
Connected, Checked}

Pin_ok Present Pin-entered Valid_pin Checked S5={Present, Pin_entered,
Valid_pin, Checked}

Card_ok Present Valid-card Valid_pin Checked S6={Present, Vaild_card,
Valid_pin, Checked}

Select_op Present Selection Valid_pin Checked S7={Present, Selection,
Valid_pin, Checked}

Confirm Present Confirmation Valid_pin Checked S8={Present,Confirmation,
Valid_pin, Checked}

Deposit Balance

Enter Exit Enter Exit Enter Exit

Withdraw

Enter Exit

Begin

Identify

Identify

Begin

endIdentify

Withdraw Deposit Balance



Table 2: Object state table associated with the scenario errorIdentify.

From each object state table, a CPN is generated by transforming scenario states
into places, and messages into transitions (see figures 9 and 10)2. Each scenario is
assigned a distinct color, e.g., rid for the regularIdentify scenario, and eid for the
errorIdentify scenario. All CPNs (scenarios) of the same use case will have the same
initial place (state) which we call B in figures 9 and 10. This place will serve to link
the integrated CPN (see below) with the CPN modeling the UsecaseD of the system
(Figure 8(b)).

Figure 9: CPN corresponding to the regularIdentify scenario.

                                                          
2 For readability, we do not show screen dumps produced by designCPN, but replace them with

CPNs redrawn by hand.
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               Objects

Messages

Customer ATM Bank Account Scenario state

Insert_card Present Card_in void void S1={Present, Card_in, void,
void}

Enter_pin Present Pin-entered void void S2={Present, Pin_entered,
void, void}

Connect Present Pin-entered Connected void S3={Present, Pin_entered,
Connected}

Check Present Pin-entered Connected Checked S4={Present, Pin_entered,
Connected, Checked}

Invalid_pin Present Pin-entered Invalid_pin Checked S9={Present, Pin_entered,
Invalid_pin, Checked}

Invalid_card Present Invalid-card Invalid_pin Checked S10={Present,Invalid_card,
Invalid_pin, Checked}

Pin_error Present Invalid_pin Invalid_pin Checked S11={Present, Invalid_pin,
Invalid_pin, Checked}

Eject_card Present Idle Invalid_pin Checked S12={Present, Idle,
Invalid_pin, Checked}



Figure 10: CPN corresponding to the errorIdentify scenario.

Note that in scenario specification, only the building of the object state tables is
manual. The rest of the operation is fully automatic.

The next activity of the approach, scenario integration, requires as input serialized
CPNs. Since designCPN uses SGML as interchange format and since conversion
tools between SGML, XML, and Java are readily available, we decided to represent
CPNs in XML. In our current implementation, we use the transformation scheme as
depicted in Figure 11. Using the designCPN tool, the analyst will edit and then save
the use case CPN and all scenario CPNs into the textual SGML format. Then, the SX
tool [1] is used to do the conversion from SGML to rough XML (RXML), and the
XJParse Java program [9] to convert RXML into XML.

Figure 11: Generation of CPNs in XML format from UsecaseD and SequenceDs.

3.3 Scenario integration

In this activity, we aim to merge all CPNs corresponding to the scenarios of a use
case Uci, in order to produce an integrated CPN modeling the behavior of the use
case. Our algorithm is based on a preliminary version presented in [6]. It takes an
incremental approach to integration. Given two scenarios with corresponding CPNs
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CPN1 and CPN2, the algorithm merges all places in CPN1 and CPN2 having the same
names. The merged places will have as color the union of the colors of the two
scenarios. Then, the algorithm looks for transitions having the same input and output
places in the two scenarios and merges them with an OR between their guard
conditions. In the following, we describe the algorithm in pseudocode, using the
“dot”-notation known from object-oriented languages.

Uci.IntergrateScenarios()
scList = Uci.getListOfScenarios();
// returns the list of scenarios of the use case Uci

uc_cpn = getXML(scList[0]);
// returns the XML file corresponding to the scenario scList[0].
i=1;
while (i < scList.size())

sc_cpn = getXML(scList(i));
sc_cpn = makeUniqueID( uc_cpn, sc_cpn);
uc_cpn = merge(uc_cpn,sc_cpn);
i = i + 1;

end
end Uci.IntergrateScenarios

XML identifies each element in a CPN (place, transition, edge, etc.) by a distinct
identifier (ID). Before integrating two scenarios, the method makeUniqueID checks if
both the two input files uc_cpn and sc_cpn comprise distinct IDs. In case they share
common IDs, makeUniqueID will modify the IDs of sc_cpn by adding the maximum
ID of uc_cpn to all IDs of sc_cpn.

Merging (integrating) two scenarios whose CPNs have the colors [sc1] and [sc2],
respectively, will produce a CPN with the list [sc1,sc2] as color. The operation of
merging follows the steps described below:

merge(uc_cpn,sc_cpn)
uc_cpn.addPlaces(sc_cpn)
// adds in uc_cpn places of sc_cpn that do not exist in uc_cpn 
for each t in sc_cpn.getListOfTransitions()

t’ = uc_cpn.LookForTrans(t)
// t’ is a transition of uc_cpn with •t=•t’ and t•=t’•
if (t’ does not exist)

uc_cpn.addtrans(t)
endif

end
uc_cpn.addEdges(sc_cpn)
// adds to uc_cpn edges of sc_cpn that do not exist in uc_cpn
uc_cpn.mergeColors(sc_cpn)
// calculates the new color of the integrated CPN (uc_cpn)
uc_cpn.putColorsOnPlaces(sc_cpn)
// all places of the net will have the merged color 
uc_cpn.putGuardOnTransitions(sc_cpn) 
// common transitions will be guarded by the merged color,
// the others will be guarded by their original colors
uc_cpn.putVariablesOnEdges(sc_cpn)
// put on edges variables or token expressions

end merge

The result of applying this algorithm on the two scenarios of the use case Identify
(figures 9 and 10) is shown in Figure 12.



Figure 12: CPN of the use case Identify after merging the scenarios regularIdentify and
errorIdentify.

When integrating several scenarios, the resulting specification captures in general
not only the input scenarios, but perhaps even more. Figure 13 gives an example
illustrating this issue: the resulting scenario Sc will capture the initial scenarios Sc1

(T1,T2,T3,T4,T5) and Sc2 (T1,T6,T7,T4,T9), as well as the two new scenarios
(T1,T2,T3,T4,T9) and (T1,T6,T7,T4,T5). After integrating the two scenarios, the initial
place B (see Figure 13) will be shared, yet we do not know which scenario will be
executed, and neither the color of Sc1 nor the color of Sc2 can be assigned to B. This
problem was described by Koskimies and Makinen [12], and we refer to it as
interleaving problem [6].

To solve the interleaving problem, we introduce a chameleon token, i.e., a token
that can take on several colors [6]. Using designCPN, a chameleon token is modeled
by a list of colors. Upon visiting the places of the integrated net, it will be marked by
the intersection of its colors and the colors of the place being visited. When the token
passes to the place S1, it keeps the composite color [sc1, sc2], and if it passes from S1

to S2, its color changes to [sc1] and will remain unchanged for the rest of its journey,
or if it passes from S1 to S6, its color changes to [sc2] and will remain unchanged for
the rest of its journey.

Transitions that belong to only one of the scenarios Sc1 and Sc2 will be guarded by
the color of their respective scenarios (see T3,T5,T7, and T9 in Figure 13(c)). But this is
not the case for the transitions T2 and T6 which are required to transform tokens from
the composite color (list of colors) to a single color. Therefore, they must be guarded
by the list of colors. For transitions that are shared by the two scenarios Sc1 and Sc2,
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they will be guarded by the composite color (see T1 in Figure 13(c)) or by a
disjunction of single colors of scenarios (see T4 in Figure 13(c)).

An integrated CPN corresponding to a given use case can be connected to the CPN
derived from the UsecaseD through a transition that is appended to the place B of the
integrated CPN. This transition transforms the uncolored tokens of the CPN of the
UsecaseD to the composite color of the integrated CPN.

Figure 13: Interleaving problem of scenario integration: (a) scenario Sc1, (b) scenario Sc2

and (c) integrated scenario Sc.

3.4 User interface prototype generation

In this activity, we derive from the CPN specifications a UI prototype of the
system. The generated prototype is standalone and comprises a menu to switch
between the different use cases. The various screens of the prototype represent the
static aspect of the UI; the dynamic aspect of the UI, as captured in the CPN
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specifications, maps into the dialog control of the prototype. In our current
implementation, prototypes are Java applications comprising each a number of frames
and navigation functionality (see Figure 14).

The activity of prototype generation is composed of the following five operations
which are described in detail in [6].

•  Generating graph of transitions.
•  Masking non-interactive transitions.
•  Identifying UI blocks.
•  Composing UI blocks.
•  Generating frames from composed UI blocks.

These operations follow closely the corresponding operations in the Statechart-
based approach [6], except for the operation of generating the graph of transitions.
This operation consists of deriving a directed graph of transitions (GT) from the CPN
of a given use case. Transitions of the CPN will represent the nodes of the GT, and
edges will indicate the precedence of execution among transitions: if two transitions
T1 and T2 are consecutively executed, there will be an edge between the nodes
representing T1 and T2.
A GT has a list of nodes nodeList, a list of edges edgeList, and a list of initial nodes
initialNodeList (entry nodes of the graph). The list of nodes nodeList of a GT is easily
obtained since it corresponds to the transition list of the CPN at hand. The list of
edges edgeList of a GT is obtained by linking the transitions in •p with the ones in p•
for each place p in the CPN.

Figure 14: Prototype execution of the ATM system.

To support prototype execution, a Simulation Window is generated (Figure 14,
bottom window), as well as a dialog box to Choose Scenarios (Figure 14, middle-
right window). For example, after selecting the use case Identify from the UseCases
menu (Figure 14, top window), a message is displayed in the simulation window that
confirms the use case selection and prompts the user to click the button Insert_card.
When this button is clicked, the fields Password and Select Operation are enabled.



Then, the simulator prompts the user for information entry. When execution reaches a
node in GT from which several continuation paths are possible (e.g., button Confirm
clicked), the prototype displays the dialog box for scenario selection. In the example
of Figure 14, the upper selection corresponds to the scenario regularIdentify and the
lower one to the scenario errorIdentify. Once a path has been selected, the traversal of
GT continues.

4 Related Work

In this section, we review some related work in the area of UI specification and
automatic generation based on Petri nets. Each of the three approaches presented
below suggests some high-level UI specification, yet none of them generates these
specifications from scenario descriptions. For a discussion of work dealing with the
simulation of specifications and with UI generation from specifications other than
Petri nets refer to [5].

In the TADEUS approach [20] (TAsk-based DEvelopment of User interface
Software), the development of the UI follows three stages: the requirements analysis
and specification, the dialogue design, and the generation of the UI prototype. During
the dialogue design stage, two levels of dialogues are manually built: the navigation
dialogue that describes the sequencing between different task presentation units
(dialogue views), and the processing dialogue that describes the changes on UI
objects inside a dialogue view. The result of generation is a script file for an existing
UI management system. Dialogue graphs is the formalism used to specify dialogues.
It is Petri net based, and it permits to model easily different types of dialogues (single,
multi, modal, etc.). In this approach, dialogues are manually defined by the UI
developer.

Palanque et al. [15] provide the Interactive Cooperative Objects (ICO) formalism
for designing interactive systems. Using ICO, an object of the system has four
components: a data structure, a set of operations representing the services offered by
the object, an object control structure defining the object behavior with high-level
Petri nets, and a presentation structured as a set of widgets. The windows of the UI
and their interrelations are modeled with ICO objects. This approach is completely
manual, wheras in our approach the only manual operation is the building of the
object state tables (see Section 3.2.2).

De Rosis et al. [17] propose a task-based approach using Petri nets to describe
interactive behavior. They represent a UI by a CPN where transitions are the tasks of
the system and places represent the information display after a task execution. A
logical projection function is associated to places and transitions of the CPN in order
to describe in form of conditions the user actions and the information displayed as a
result of performing actions. To complete the UI description, the designer links the
physical aspect of the interface to the CPN by means of a physical projection
function. This work focuses on specifying the UI, yet does not address UI generation.



5 Discussion of Approach

Below, we discuss our approach in respect to the following points: scenario-based
approach, system and object views, visual formalisms for modeling interactive
systems, and validation of approach.

5.1 Scenario-based approach

Our approach to UI generation exhibits the advantages of scenario-based
techniques. In contrast to many data-oriented methods, UIs are generated from
specifications describing dynamic system behavior, which are derived from task
analysis. Once they are generated, data specifications may be used as the basis for
further refinements. In line with Rosson [18] who advocates a “model-first, middle-
out design approach” that interleaves the modeling of objects and scenarios, we put
the emphasis on the (dynamic) modeling aspect, and generate the dynamic core of UIs
rather than focus on screen design and the user-system dialog.

As scenarios are partial descriptions, there is a need to elicit all possible scenarios
of the system to produce a complete specification. In our approach, colors of Petri
nets are used to inhibit scenario interleaving, that is, the resulting specifications will
capture exactly the input scenarios. The integration algorithm can be configured to
allow scenario interleaving and to capture more than the mere input scenarios. In this
way, new scenarios may be generated from already existing ones.

It is well known that scalability is an inherent problem when dealing with scenarios
for large applications. Our approach eases this problem by integrating scenarios on a
per use case basis, rather than treating them as an unstructured mass of scenarios.

5.2 System and object views

In this paper, we focus on using scenarios for the restructuring of the formal
system specification (system view). In our previous work [5, 13], we have addressed
the specification of individual objects in interactive systems (object view). In a
scenario-based approach, the specification of the behavior of a given object can be
seen as the projection of the set of acquired scenarios on that object. When projecting
scenarios onto an object, only messages entering and exiting the object are
considered. In this way, the sequence order of messages in the scenarios is lost, and
this can lead to capture undesirable behaviors. Furthermore, in an object view, all
interface objects must be explicitly identified in the underlying set of scenarios. On
the other hand, in a system view, there is no loss of precision, and the UI can be
generated from the system specification without the need to explicitly identify UI
objects.

For the purpose of UI generation, a system view is appropriate when in all use
cases and associated scenarios only one user interacts with the system. In the case of
collaborative tasks (more than one user interacts with the use cases), however, an
object view will be more suitable.



5.3 Visual formalisms for modeling interactive systems

Petri nets and Statecharts are among the most powerful visual formalisms used for
specifying complex and interactive systems. Statecharts are an extension of state
machines to include hierarchies by allowing state refinement, and concurrency by
describing independent parts of a system. Concurrency in Statecharts is modeled via
orthogonal states. An orthogonal state is a Cartesian product of two or more
Statecharts (threads). Sending messages between threads of an orthogonal state is
forbidden. Leaving a state of a thread of an orthogonal state leads to exit all threads of
this orthogonal state. These restrictions do not apply to the Petri net formalism. Petri
nets are known for their support of pure concurrency, all transitions having a
sufficient number of tokens in their input places may concurrently be fired. Petri nets
in their basic form do not support hierarchy, but the extension of Petri nets used in
tools such as designCPN allow for hierarchies in the specification.

Non-deterministic choices can more easily be modeled using Petri nets than based
on Statecharts. When two or more transitions share the same input places, the system
chooses randomly to fire one of these transitions. In Statecharts, non-deterministic
choices cannot directly be modeled because messages are ordered and broadcasted to
all concurrent threads.

In many UIs, we have to model exclusive executions (modal windows). This can
easily be done using the history states of Statecharts. When entering a modal window,
an event must be broadcasted to all concurrent threads to enter their history states.
After exiting the modal window, all concurrent threads must be re-entered in the
states they were before. Modeling exclusive execution with Petri nets requires
extensions of the formalism, as discussed for instance in [11].

Tokens that are specific to Petri nets can be used both in controlling and simulating
system behavior, and in modeling data and resources of the system. If the place Begin
of the Figure 6 contains only one token, the system can only execute one use case at a
time. When the place contains n tokens, n concurrent executions of different use cases
are possible. It may even be possible to execute n scenarios of the same use case
(multiple instances).

Table 3 summarizes the differences between Petri nets and Statecharts based on the
above discussion, indicating the strengths (+ for good and ++ for very good) and
weaknesses (-) of the two formalisms. We believe that the considered criteria are all
highly relevant to modern UIs. Depending on the type of UI at hand, one or the other
formalism and modeling approach will be more appropriate.

Criterion Petri net Statechart
Concurrency ++ +
Non-determinism + -
History states - +
Multiple instances + -

Table 3: Differences between Petri nets and Statecharts from a UI perspective.



5.4 Validation of approach

The scenario integration and prototype generation activities have all been
implemented in Java, resulting in about 4,000 commented lines of code. The Java
code generated for the UI prototype is fully compatible with the interface builder of
Visual Café. For obtaining CPNs in serialized form, as required by the scenario
integration algorithm, the XML tools mentioned at the end of Section 3.2.2 are used.

Our approach has been successfully applied to a number of small-sized examples.
For further validation, we have started implementing the suite of examples used for
validating SUIP [22], the implementation of our Statechart-based approach [5]. This
suite includes a library system, a gas station simulator, and a filing system. The gas
station simulator will be of particular interest since it involves two actors. “Extreme”
examples, i.e., examples that lend themselves particularly well to the Petri net or the
Statechart based approach, respectively, will also be examined, in order to further
investigate the differences between the two approaches (cf. previous subsection and
discussion of system versus object views).

6 Conclusion and Future Work

The work presented in this paper proposes a new approach to the generation of UI
prototypes from scenarios. Scenarios are acquired as SequenceDs enriched with UI
information. These SequenceDs are transformed into CPN specifications from which
the UI prototype of the system is generated. Both static and dynamic aspects of the UI
are derived from the CPN specifications.

The most interesting features of our approach lie in the automation brought upon
by the deployed algorithms, in the use of the scenario approach addressing not only
sequential scenarios but also scenarios in the sense of the UML (which supports, for
instance, concurrency in scenarios), and in the derivation of executable prototypes
that are embedded in a UI builder environment for refinement. The obtained prototype
can be used for scenario validation with end users and can be evolved towards the
target application.

As future work, we plan to move in three directions. As mentioned above, we
intend to further pursue our comparison of modeling approaches. This will also
include the study of the interrelationship between modeling formalism and the UI
paradigm being supported. Second, we wish to investigate backward engineering, that
is, allowing the automatic modification of scenarios through the UI prototype. Finally,
we plan to further study the verification aspect of scenario-based modeling [4],
especially the completeness of the system specification obtained from partial
descriptions in form of scenarios.
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