
3118
J2EE Patterns

Ken Sipe
Code Mentor, Inc.

Overall Presentation Goal Overall Presentation Goal

Review of Core J2EE Patterns.

Best Practices of J2EE Patterns.

Speaker’s QualificationsSpeaker’s Qualifications

•Chief Technology Officer at Code
Mentor, Inc.

•Sun Certified Java 2 Architect.
•Instructor for Visibroker for Java,

OOAD, Rational Rose, and Java
Development.

•Frequently speaks on the subject of
distributed computing programming,
including CORBA and EJB
architecture.

IntroductionIntroduction
•In the Beginning…

•There was code
•How do we get beyond copy and paste

Thought for the SessionThought for the Session
A good scientist is a person with

original ideas.
A good engineer is a person who

makes a design that works with as
few original ideas as possible.

— Freeman Dyson

Reuse SolutionsReuse Solutions
•OO

•Models

•Component Oriented Development
•Binaries

Why / Where do they come fromWhy / Where do they come from
OOAD

•Notation –UML
•Process (Raging)

•Software Development
•Technical Requirements

•Patterns

•Business Requirements
•Need further standardization

Patterns DefinitionPatterns Definition
•Patterns communicate a solution to a

recurring problem in context.
•John Crupi

Four Pattern ElementsFour Pattern Elements
•Name
•Problem (with Context)
•Solution
•Consequences (Pro / Cons)

Pattern ValuePattern Value
•Design “Reuse”
•Best Practices
•Easy code mappings
•Higher level vocabulary

Early Patterns SolutionsEarly Patterns Solutions
•Gang of Four

•Singleton
•MVC
•Command

•Context is technical and broad

Tend to be technical in nature and
span language choices.

Limited understanding

J2EE Core PatternsJ2EE Core Patterns
•Sun developed best practices

•John Crupi, Dan Malks, Deepak Alur

J2EE PatternsJ2EE Patterns
•Patterns in the “context”of J2EE

Presentation TierPresentation Tier
•Intercepting Filter
•Front Controller
•Context Object
•Application Controller
•View Helper
•Composite View
•Service To Worker
•Dispatcher View

Business TierBusiness Tier
•Business Delegate
•Service Locator
•Session Façade
•Application Service
•Business Object
•Composite Entity
•Transfer Object
•Transfer Object Assembler
•Value List Handler

Integration TierIntegration Tier
•Data Access Object (DAO)
•Service Activator
•Domain Store
•Web Service Broker

Non-Core J2EE Patterns ☺Non-Core J2EE Patterns ☺
•Fast Lane Reader
•MVC
•Mapper Pattern
•Pluggin Pattern
•Service Stub
•Token Pattern *

Patterns for this SessionPatterns for this Session
•Front Controller
•MVC
•Business Delegate
•Mapper Pattern
•Service Stub
•Session Façade
•Fast Lane Reader
•Token Pattern
•Value List Handler

Focus on development
and JBuilder

What Is a MVC?What Is a MVC?
• MVC stands for model / view /

controller.
• A software pattern where logic is

separated from the model and view
in order to provide for better reuse
possibilities.

• A software pattern recognized in the
early days of small talk.

• Documented in the GoF book.

Web Application MVC PatternWeb Application MVC Pattern
• Model

• Information is
provided in objects
or beans

• View
• The JSP provide

the view

• Controller
• Servlet provides

control logic and
becomes the
controller

Controller
(Servlet)

Model
(Beans)

View
(JSPs)

View
(JSPs)

View
(JSPs)

View
(JSPs)

View
(JSP)

1

2

3
4

5

MVC Collaboration DiagramMVC Collaboration Diagram

JSP

The View

Servlet Data
Resource

Beans

Browser

Controller

The Model

5: Access beans

3: Establish
bean state,
then place in
session or
request

object

4: redirect to
appropriate view

2: Retrieve Data1: Post

Front Controller / MVC SolutionsFront Controller / MVC Solutions
•J2EE Context
•Struts

•Concept of a Front Controller
•ActionServlet
•RequestProcessor

Demo

Jbuilder / Struts

Business DelegateBusiness Delegate
•Presentation Tiers
•Reduction of coupling of the client

tiers to the business tiers
•Centralizes code for lookups, access

details

Business DelegateBusiness Delegate
•Great place for:

•Data transformation
•Tier to tier coupling
•Exception translation

•Manage unit tests
•Service Stubs

Delegate DiagramDelegate Diagram

Mapper PatternMapper Pattern
•An object that sets up a

communication between two
independent objects -Fowler

•Provides a configurable access to
service stubs

Pluggin PatternPluggin Pattern
•Links classes during configuration

rather than compilation - Fowler

Service StubService Stub
•Removes dependence upon

problematic services during testing
–Fowler

Mapper / Pluggin SolutionMapper / Pluggin Solution

Session FaçadeSession Façade
•Removes the number of client / server

method invocations
•Uniform client access strategy
•Remove direct Entity Bean access
•Provides course grain access to

Business

Façade DiagramFaçade Diagram

Data Transfer Object (DTO)Data Transfer Object (DTO)
•Data Structure for serialization across

tiers.

Demo

Jbuilder / Facades / Delegates / DTO

Fast Lane ReaderFast Lane Reader
•Fast access to read-only data
•By pass Entity layer.

Token PatternToken Pattern
•Synchronize the Client Presentation

Tier
•Effort to stop multiple requests

Value List HandlerValue List Handler
•Provides a scalable solution to

providing lists of data to the client.

Value List DiagramValue List Diagram

Concluding ThoughtsConcluding Thoughts
•Patterns presented are in heavy use

today and add value
•JBuilder continues to aid in providing

wizards to accelerate pattern focused
development.

ResourcesResources
•http://java.sun.com/blueprints/corej2e

epatterns/
•http://www.martinfowler.com/eaaCatal

og/

Questions?

Thank You

Please fill out the speaker evaluation

You can contact me further at ...
kensipe@codementor.net

