
The Personal Software Process1
by

Watts S. Humphrey
watts@sei.cmu.edu

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA  15213

Copyright (c) 1994 Institute of Electrical and Electronics Engineers.  Software Process Newsletter, Technical Council on

Software Engineering, IEEE Computer Society, Volume 13, No. 1, Sept. 1994, pp SPN 1-3.

This material is posted here with permission of the IEEE.  Such permission of the IEEE does not in any way imply IEEE

endorsement of any of Carnegie Mellon University's products or services.  Internal or personal use of this material is permitted.

However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective

works for resale or redistribution must be obtained from the IEEE by sending a blank email message to

info.pub.permission@ieee.org.

By choosing to view this document, you will agree to all provisions of the copyright laws protecting it.

1This work is supported by the U.S. Department of Defense



develop the personal skills and techniques to
deal with issues at this level.   As they take
more courses, they improve these methods and
soon find they can develop fairly large
programs relatively quickly.  These skills,
however, are inherently limited.  While they
may have sufficed on small-scale individual
tasks, these programming-in-the-small skills do
not provide an adequate foundation for the
problems of large-scale multi-person projects.
The PSP work follows a different strategy: it
scales down industrial software practices to fit
the needs of small-scale program development.
By learning and using these practices on small
programs, the students develop a foundation on
which to build industrial-scale personal
disciplines.

Overview

The personal software process (PSP) has been
developed by the Software Engineering
Institute (SEI) to address the need for process
improvement in small organizations and small
project teams.  This work started from the
premise that improved personal process
discipline can help to increase the
effectiveness of individual engineers.  It was
also felt that as the individual engineers'
performance improves, the performance of
their teams and projects will also be more
likely to improve.

The research work on the PSP started in 1989.
It resulted in a method that is now being
taught in several graduate university software
engineering and computer science courses and
experimentally tried at four corporations.
While the PSP principles have been
demonstrated with graduate software
engineering students, their effectiveness has
not yet been measured in industrial practice.

The Capability Maturity Model (CMM)
provides a body of software engineering
practices that have been found effective for
large-scale software development.  [Paulk]
Starting with the CMM, the author selected
and defined a subset of the CMM key process
areas for use by individual software
practitioners.  [Humphrey 93, Humphrey 94]
These methods have been structured in an
evolving sequence of upward-compatible
personal processes.  Each process step is
defined and used to guide engineers and
students through a progressive series of process
enhancements.

The current work on the PSP is focused on
gaining experience with teaching the PSP and
on identifying the most effective means for
transitioning the approach into industrial
practice.  While the PSP methods are not
complex and can be readily learned through
self study, early indications are that a course
environment is most effective.  In particular,
there is some evidence that many engineers
will be more likely to personally adopt the
methods if they have worked the PSP
exercises in parallel with learning the
methods.  It is not yet clear what percentage of
engineers will personally use the methods after
completing the course but it appears that a
reasonable number will.  It is reasonably clear,
however, that those engineers who do not work
the exercises will not likely adopt the
methods.

The professionals start by adjusting this simple
pre-defined process to fit their current
practices.  This initial process includes basic
measures of the time they spend in each PSP
phase and the defects they find.  They then
gradually enhance this process through seven
more PSP versions, adding a new software
engineering method with each update.  As they
use these processes on ten software
development exercises, they gather and
analyze data on the work.  Based on these
analyses, they improve their processes for the
next exercise.  This provides the engineers
with explicit feedback on the effectiveness of
that process step.  They also learn how to
define and improve their personal processes.

The Personal Software Process (PSP)
Strategy

Some CMM items are not included in the PSP
because their effectiveness cannot be
demonstrated at the individual level.
Examples are subcontract management and

Today, when students start to program, they
generally begin by learning a programming
language.  They practice on toy problems and



 3

intergroup coordination.  Others can be
usefully practiced by individuals but their
implications are better demonstrated in a
small team environment.  Requirements
management and configuration management
both fall in this category.  While these are
both critical topics, they are more effectively
introduced after the initial PSP steps have
been completed.  Two other key process areas
more directly relate to broader organizational
issues.  These are software quality assurance
and training programs.  While the PSP
capabilities are directly relevant to these
areas, it is not clear what useful exercises
could be developed to demonstrate them at an
individual level.

They analyze the defects they found in the
early programs and they use these data to
establish review checklists that are tailored to
their personal defect propensities.

The design process is addressed in PSP2.1.
The intent is not to tell engineers how to do
design but to address the criteria for design
completion.  That is, when they have finished
the design, what must they have?  In PSP2.1,
design completeness criteria are established
and various design verification and
consistency techniques are examined.

PSP3 - A Cyclic Personal Process

To this point, the PSP has concentrated on a
linear process for building small programs.  In
scaling the PSP2 up to larger projects, the
approach is to subdivide larger programs into
PSP2-sized pieces. These larger programs are
then designed to be developed in incremental
steps.  This is done in PSP3, the cyclic
development process.  The first build is a base
module or kernel that is enhanced in iterative
cycles.  In each iteration, a complete PSP2.1
is used, including design, code, compile, and
test.  Since each enhancement builds on the
previously completed increments, the PSP3
process is suitable for programs of up to
several thousand lines of code (KLOC).  The
cyclic PSP3 process can thus be an effective
element of a large-scale development process.

The Personal Software Process (PSP)
Evolution

The PSP has a maturity structure much like
the CMM.  It is important to realize, however,
that the PSP presumes an organization is at or
near CMM level 2.  Different numbers were
selected for the PSP levels to avoid confusion
with the CMM levels.  The PSP progression is
described in the following paragraphs.

PSP0 - The Baseline Process

The initial step in the PSP is to establish a
baseline that includes some measurements and
a reporting format.  This provides a consistent
basis for measuring progress and a defined
foundation on which to improve.  Following
the first programming exercises, PSP0 is
enhanced to PSP0.1 by adding a coding
standard, size measurement, and the process
improvement proposal (PIP).

Introduction Strategies

The PSP strategy is to start by introducing
these methods in university curricula.  This is
initially being done at the graduate or senior
undergraduate level.  At a later time, the
methods should be introduced at an earlier
undergraduate level.  This introduction,
however, should be done in concert with basic
programming methods and techniques.

PSP1 - The Personal Planning Process

PSP1 adds planning steps to PSP0.  The initial
step to PSP1 adds size and resource
estimation.  In PSP1.1, schedule planning and
status tracking are also introduced. Because it will likely take many years to

introduce these methods through the
educational system, the SEI is also supporting
the transition of these methods into industrial
practice and several corporations are currently
participating in PSP introduction programs.

PSP2 - Personal Quality Management

PSP2 adds personal design and code reviews
to PSP1.  These help the engineers to find
defects earlier in their processes and to
appreciate the benefits of finding defects early. Status



 4

-  A course format has also been found to be
the most effective for introducing the PSP in
industrial organizations.

The PSP work has been under development at
the SEI since 1989 and the author has
developed a total of about 25 KLOC of C++
and Object Pascal programs with the PSP
method.  Several graduate students at
Carnegie Mellon University have participated
in an introductory study of the PSP and early
experimental work was started with Siemens
Corporate Research and the AIS Corporation
in Peoria, Ill.  More recently, the Digital
Equipment Corporation and Hewlett Packard
Corporation have identified several interested
projects and work is progressing on introducing
the PSP in these organizations.

-  Several engineers have attempted to use
PSP methods in their regular work.  Without
the rapid feedback provided by the PSP
exercises, however, they have generally
been unable to sustain the needed process
discipline.

The PSP is not a magic answer to the
problems of developing good software.  The
methods take time and effort to learn and they
require consistent discipline to use.  While the
initial PSP work concentrates on the design,
code, and test phases of software
development, the PSP principles can be
applied to requirements specification, product
maintenance, test planning, documentation
development, or many other aspects of the
software process.  The detailed design, code,
and unit test phases were selected because
they are important development phases and
they are most suitable for the small but
challenging classroom exercises.

A textbook manuscript draft has been used to
teach PSP courses at the University of
Massachusetts and Howard University in the
Fall of 1993 and at the Carnegie Mellon,
Bradley, Embry Riddle, and McGill
universities in the Spring of 1994.  Based on
the data from these courses, it is clear that
both students and experienced engineers gain
substantial  benefits from this work.  Quality
improvements of two to three times are
common and measured productivity
improvements have averaged 35%.  There are
not yet sufficient data, however, to indicate
the likely ranges of individual benefits or the
factors that influence them.  It also appears
that the more experienced students make the
greatest improvement.  In one case, an
experienced engineer found that by using the
PSP, he reduced his numbers of test defects by
about ten times and more than doubled his
productivity.

References

[Humphrey 93]  W. S. Humphrey, "The
Personal Software Process, Rationale
and Status," The 8th International
Software Process Workshop, Wadern,
Germany, March 2-5, 1993.

[Humphrey 94]  W. S. Humphrey, "Process
Feedback and Learning," The 9th
International Software Process
Workshop, Airlie, VA, Oct. 5-7, 1994.

Conclusions
[Paulk]  M. C. Paulk, Bill Curtis, M. B.

Chrisis, "Capability Maturity Model
for Software, Version 1.1," Software
Engineering Institute Technical
Report, CMU/SEI-93-TR-24, February
1993.

The early work on the PSP indicates that a
structured, disciplined, and measured personal
software process can provide the guidance and
feedback needed to help engineers improve
their personal performance.

-  The engineers are more aware of their work
and better able to understand areas where
they can improve.

Copyright (c) 1994 Institute of Electrical and
Electronics Engineers.  Software Process
Newsletter, Technical Council on Software
Engineering, IEEE Computer Society, Volume
13, No. 1, Sept. 1994, pp SPN 1-3.

-  The process measures provide them direct
and explicit feedback on their work.

-  This rapid feedback reinforces the use of
sound engineering practices.



 5

This material is posted here with permission of
the IEEE.  Such permission of the IEEE does
not in any way imply IEEE endorsement of any
of Carnegie Mellon University's products or
services.  Internal or personal use of this
material is permitted.  However, permission to
reprint/republish this material for advertising or
promotional purposes or for creating new
collective works for resale or redistribution
must be obtained from the IEEE by sending a
blank email message to
info.pub.permission@ieee.org.

By choosing to view this document, you will
agree to all provisions of the copyright laws
protecting it.


