
 The Personal Process in Software Engineering1

Watts S. Humphrey

Software Engineering Institute, Carnegie Mellon University
Pittsburgh, PA 15213

Copyright (c) 1994 Institute of Electrical and Electronics Engineers. Presented at the Third International Conference on the Software Process,

Reston, Virginia, October 10-11, 1994, pp 69-77.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of

Carnegie Mellon University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish

this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the

IEEE by sending a blank email message to info.pub.permission@ieee.org.

By choosing to view this document, you will agree to all provisions of the copyright laws protecting it.

1This work is supported by the U.S. Department of Defense

ABSTRACT The basic premise is that improved personal process
discipline can help to increase the effectiveness of
individual engineers. [Humphrey 93, Humphrey 94]
As individual performance improves, it seems likely
that software team and project performance will
similarly improve.

The personal software process (PSP) provides
software engineers a way to improve the quality,
predictability, and productivity of their work. It is
designed to address the improvement needs of
individual engineers and small software organizations.
A graduate level PSP course has been taught at six
universities and the PSP is being introduced by three
industrial software organizations. The PSP provides a
defined sequence of process improvement steps
coupled with performance feedback at each step.
This helps engineers to understand the quality of their
work and to appreciate the effectiveness of the
methods they use. Early experience with the PSP
shows that average test defect rate improvements of
ten times and average productivity improvements of
25% or more are typical.

The current work on the PSP is focused on gaining
experience with teaching the PSP and on identifying
the most effective means for transitioning this method
into industrial practice. While the PSP methods are
not complex and can be readily learned through self
study, early indications are that a course environment
is most effective. There is also evidence that
engineers are most likely to adopt the PSP methods if
they work through the PSP exercises on a defined
schedule and in a structured course environment.

2. THE LOGIC FOR A PERSONAL SOFTWARE
PROCESS (PSP)Key Words: analysis, data, personal process, process

development, process definition, process discipline,
process improvement, process introduction, software
engineering, software engineering education,
transition.

At root, current software development practices are
nearer to a craft than an engineering discipline. The
professionals have private techniques and practices
which they have learned from their peers or through
personal experience. Thus, few software engineers
are aware of or consistently practice the best
available methods. The initial PSP data show that
very few engineers use such proven practices as
disciplined design methods, design or code reviews,
or defined testing procedures.

1. OVERVIEW

The personal software process (PSP) is a technique
that engineers can use to improve the predictability,
quality, and productivity of their work. It has been
taught to over 50 students and engineers and is being
used experimentally in three industrial software
organizations. Early data show average improvements
of over ten times in the numbers of test defects and
average productivity improvements of better than
25%. While the PSP uses various standard software
engineering methods, its principal objective is to
show engineers how a defined and measured process
can help them to improve their personal performance.
By providing immediate and explicit process
feedback, engineers have the data to see what
methods are most effective for them. This helps them
to more consistently follow sound engineering
practices.

The introduction of improved software methods is
often slow because software engineers must be
personally convinced of the effectiveness of new
methods before they will consistently use them. In
software this is particularly true because:

- Software professionals' methods are largely private
and not obvious from the products they produce.
Thus, if they do not use proper methods, it is
unlikely that anyone else will know.

- Software professionals are generally not trained to
follow the planning and measurement disciplines
needed to rigorously evaluate the methods they use.The PSP has been developed by the Software

Engineering Institute (SEI) to address the need for
process improvement in small organizations and small
project teams. It consists of a family of seven
personal processes that progressively introduce data
and analysis techniques. The engineers then use
these data to determine their own performance and to
measure the effectiveness of the methods they use.

- Evan when software groups have a common set of
defined practices, these practices are not
consistently followed.

- The current industrial and academic environments
do not require the use of the best-known software
engineering methods.

Today, when students start to program, they generally
begin by learning a programming language. They
practice on toy problems and develop the personal
skills and techniques to deal with issues at this level.
As they take more courses, their skills improve and
they soon find they can develop fairly large programs
relatively quickly. These skills, however, are
inherently limited. While they may have sufficed on
small-scale individual tasks, these programming-in-
the-small skills do not provide an adequate foundation
for the problems of large-scale multi-person projects.
The PSP work follows a different strategy: it scales
down industrial software practices to fit the needs of
small-scale program development. By learning and
using these practices on small programs, the students
develop a foundation on which to build industrial-
scale personal disciplines.

A principal issue, therefore, is how to motivate the
adoption of effective methods. The PSP approach is
to introduce engineers to disciplined process methods
through a progressively improving personal process.
The PSP provides software engineers with a defined
sequence of upward-compatible personal processes
that they can use to guide their individual
development. Each PSP step introduces an
engineering method together with a tailored exercise.
By measuring their performance on these exercises,
the engineers get immediate feedback on their
performance. They thus see what works for them and
what does not. The measurable goals for process
improvement help motivate the engineers to use the
methods that are most effective and to strive for
further improvements. The off-line nature of the PSP
exercises permits the engineers to experiment with
new methods. It has been found that the PSP
planning process and course schedule impose enough
external pressure to provide a realistic learning
environment.

The Capability Maturity Model (CMM) provides a
body of software engineering practices that have been
found effective for large-scale software development.
[Humphrey 89, Paulk 1993] Starting with the CMM,
the author selected and defined a subset of the CMM
key process areas for use by individual software
practitioners. [Humphrey 93, Humphrey 94]

The PSP approach is based on the following
principles: The CMM key process areas are shown in Figure 1

and those that are at least partially addressed by the
PSP are shown in bold italics and noted with an
asterisk. Some items are not included because their
effectiveness cannot be demonstrated at the
individual level. Examples are subcontract
management and intergroup coordination.

- By defining, measuring, and tracking their work,
software professionals will better understand what
they do.

- This understanding will enable the engineers to
better recognize what methods work best for them
and to see how they can more consistently apply
them.

Others can be usefully practiced by individuals but
their implications are better demonstrated in a small
team environment. Requirements management and
configuration management both fall in this category.
While these are both critical topics, they are more
effectively introduced after the initial PSP steps have
been completed. Two other key process areas more
directly relate to broader organizational issues. These
are software quality assurance and training programs.
While the PSP capabilities are directly relevant to
these areas, it is not clear what useful exercises could
be developed to demonstrate them at an individual
level.

- The engineers will then have a defined process
structure and measurable criteria for evaluating and
learning from their own and others experiences.

- With this knowledge, the engineers can select those
methods and practices that best suit their particular
tasks and abilities.

- By using a customized set of orderly, consistently
practiced, and high quality personal practices, the
engineers will be more effective members of their
development teams and projects.

3. THE PERSONAL SOFTWARE PROCESS
(PSP) STRATEGY

Figure 1 The CMM and the PSP

 * PSP key process areas Level 5 - Optimizing
Process change management*

Technology change management*
Defect prevention*

Level 4 - Managed
Quality management*

Quantitative process management*

Level 3 - Defined
Peer reviews*

Intergroup coordination
Software product engineering*

Integrated software management*
Training program

Software process definition*
Software process focus*

Level 2 - Repeatable
Software configuration management

Software quality assurance
Software subcontract management

Software project tracking and oversight*
Software project planning*
Requirements management

Level 1 - Initial

These CMM methods have been structured in an
evolving sequence of seven upward-compatible
personal processes, as shown in Figure 2. Each
process step is defined and used to guide engineers
and students through a progressive series of process
enhancements. The professionals start by using the
pre-defined PSP0 process to measure their current
practices. This initial process includes basic
measures of the time they spend in each PSP phase
and the defects they find. They then work through the
seven PSP versions, adding a new software
engineering method with each step. These processes
are used to complete a total of ten software
development exercises and to gather and analyze data
on each project. Based on these analyses, the
engineers improve their practices for the next
exercise. This provides them explicit feedback on the
effectiveness of each process step.

4. THE PERSONAL SOFTWARE PROCESS
(PSP) EVOLUTION

Following the progression shown in Figure 2, the PSP
process versions are described in the following
paragraphs.

4.1 PSP0 - The Baseline Personal Process

The initial step in the PSP is to establish a baseline
that includes measurements and a reporting format.
This provides a consistent basis for measuring
progress and a defined foundation on which to
improve. PSP0 is essentially the current process the
engineers use to write software, enhanced to provide
measurements.

At the course conclusion, the engineers have learned
how to measure their work, they have observed the
effectiveness of various software engineering
methods, and they have defined and used a special
process for their own use. With this foundation, they
are prepared to apply the PSP principles to other
aspects of their software work.

Figure 2 The PSP Evolution

PSP0
Current process
Time recording

Defect recording
Defect type standard

PSP1
Size estimating

Test report

PSP2
Code reviews

Design reviews

PSP3
Cyclic development

PSP2.1
Design templates

PSP1.1
Task planning

Schedule planning

PSP0.1
Coding standard

Size measurement
Process Improvement

Proposal

The Cyclic
Personal
Process

Personal
Quality
Management

Personal
Planning

The Baseline
Personal
Process

While the importance of these techniques for large
projects is well understood, few engineers apply them
to their personal work. The PSP demonstrates the
value of these methods at the personal level.

Following the first programming exercises, PSP0 is
enhanced to PSP0.1 by adding a coding standard, size
measurement, and the process improvement proposal
(PIP). The PIP provides a structured way to record
process problems, experiences, and improvement
suggestions. PSP0.1 also enhances program size
measurement to separately count methods and
procedures.

4.3 PSP2 - Personal Quality Management

An early PSP objective is to help engineers to deal
realistically and objectively with the defects they
inject. Programmers are often embarrassed about
their errors.2 Beizer calls this "bug guilt" [Beizer
1983]. The fact that most software errors are simple
typos, oversights, or dumb mistakes generally makes
engineers feel they can improve merely by trying
harder. The problem is that trying harder often makes
things worse. Just as in touch typing, sports, and the
performing arts, the issue is inherent skills and
abilities. In PSP2, a broad and consistent focus is
placed on improving the engineer's ability to produce
quality programs. The objective is to make quality
work more natural and more consistent.

4.2 PSP1 - The Personal Planning Process

PSP1 adds planning steps to PSP0. The initial step
adds size and resource estimation and a test report. In
PSP1.1, schedule planning and status tracking are
also introduced. The engineers are taught to:

- understand the relationship between the sizes of the
programs they develop and the times they take to
develop them,

- learn how to make commitments that they can
meet, Significant improvements in engineers' defect rates

are not likely unless they know how many errors they
- prepare an orderly plan for doing their work, and

2A definition note: programmers make
errors or mistakes that result in program
defects or faults.

- establish a basis for tracking their work.

make and understand their causes and consequences.
From PSP defect data on both students and
experienced engineers, the typical numbers of
compile and unit test defects fall between 50 to 250
per thousand lines of code (KLOC). This is for
uninspected and unreviewed programs.

documentation development, and test development.
Phase entry and exit criteria are important because
without them, it is difficult to do effective phase
reviews or to crisply define development status.

Figure 3 The PSP3 Process
Requirements

and
Planning

High-level
Design

High Level
Design
Review

Cyclic
Development

Post-
mortem

Integration
System Test

Use

Detailed Design
and

Design Reviews

Test Development
and Reviews

Implementation
and Code Reviews

Compile

Test

Specify
Cycle

Reassess
and Recycle

Specifications

Product

PSP2 adds personal design and code reviews to PSP1.
These reviews help the engineers to find defects
earlier in their processes and to see the benefits of
finding them early. They analyze the defects they
find in the early programs and use these data to
establish review checklists that are tailored to their
personal defect experience.

4.4 PSP3 - A Cyclic Personal Process

To this point, the PSP has concentrated on a linear
process for building small programs. The PSP3
process introduces methods for individuals to use
when they are developing larger-scale programs. It is
still focused on the individual, however, and does not
deal with the communication and coordination
problems that are an important part of larger-scale
system development.

The design process is addressed in PSP2.1. The intent
is not to tell engineers how to do design but to address
the criteria for design completion. That is, when they
have finished the design, what must they have? In
PSP2.1, design completeness criteria are established
and various design proving and consistency
techniques are examined. While the design phase is
used as an example of completeness criteria, the
same approach can be used with the other process
phases. Examples are requirements specification,

In scaling the PSP2 up to larger projects, the
approach is to subdivide the personal process of
developing larger programs into PSP2-sized pieces.
These larger programs are then designed to be
developed in incremental steps. The way this is done
by PSP3, the cyclic development process, as shown
in Figure 3. The first build is a base module or kernel

that is enhanced in iterative cycles. In each iteration,
a complete PSP2 is used, including design, code,
compile, and test. Since each enhancement builds on
the previously completed increments, the PSP3
process is suitable for programs of up to several
KLOC.

As project size increases beyond several KLOC, there
is a point at which team projects are more
appropriate. The PSP briefly introduces the concepts
for coupling individual PSPs into larger team
activities but it does not define team processes or
perform team exercises.

Figure 4 Total Defects - 12
Students

Program Number

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Max

Avg

Min

Figure 5 Total Defects - 11
Students

Program Number

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10

Max

Avg

Min

Figure 6 Total Defects - 4
Engineers

Program Number

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Max

Avg

Min

Figure 7 Defect Removal Rates -
12 Students

Program Number

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

Des.Rev.

Code
Rev.

Compile

Test

The cyclic PSP3 process can be an effective element
of a large-scale development process only if each
successive software increment is of high quality. The
engineers can then concentrate on verifying the
quality for the latest increment without being troubled
by defects in the earlier cycles. If a prior increment
has many defects, however, testing will be more
complex and the scale-up benefits will be largely lost.
This is one reason for emphasizing design and code
reviews in the earlier PSP steps. The engineers can
also use the test report to facilitate rerunning earlier
tests to check for regressions.

5. PSP EXPERIENCE

A textbook manuscript draft has been used to teach
PSP methods in two university courses in the Fall of
1993 and four more courses in the Spring of 1994.
[Humphrey in press] The data from these courses
indicates that both students and experienced
engineers can get substantial benefits from using PSP
methods.

The defect data for a class of 12 graduate software
engineering students at Carnegie Mellon University

4.5 TSP - The Team Software Process

(CMU) are shown in Figure 4. These students were
required to have several years industrial experience
before they could register for the Masters in Software
Engineering program at CMU. At the beginning of the
course, their defect levels initially ranged from
slightly under 50 to nearly 250 defects per thousand
lines of code (KLOC). These numbers are this large
because they include all the defects found in desk
checking, compile, and test.

Figure 10 Defects Found in Test -
11 Students

Program Number

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

Max

Avg

Min

Figure 8 Defects Found in Test -
12 Students

Program Number

0

20
40

60

80
100
120

140
160

180

1 2 3 4 5 6 7 8 9 10

Max

Avg

Min

Before they achieve language fluency, beginning
programmers may have even higher defect rates. This
is shown, for example, from the data for a class of 11
less experienced students in Figure 5. Their defect
levels averaged 200 per KLOC at the beginning of the
course with some numbers over 1000. At the end of
the course, their defect numbers were also
significantly reduced. In Figure 6, a group of 4
experienced engineers in a different course averaged
around 100 defects per KLOC. These engineers all
had over ten years of industrial experience before
taking the course. Another group of 8 experienced
engineers who have not yet completed the course,
averaged 150 defects per KLOC at the beginning of
the course with a high of 458 defects per KLOC.
While their rates are substantially improved during
the first half of the course, their final data are not yet
available.

Figure 9 Defects Found in Test -
4 Engineers

Program Number

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

Max

Avg

Min While many organizations report much lower defect
numbers, these do not generally include the defects
found in desk checking compiling, or even unit test.
With the PSP, the engineers count all their defects.

One of the principal PSP measures is the defect
removal rate. Figure 7 shows the average defects per
hour for 12 students for design reviews (DR), code
reviews (CR), compile (C), and test (T). The
students are generally surprised to see how ineffective
their testing time is at removing defects. They learn,
for example, that in one hour, they can find an
average of 10 defects in code reviews and only 2 or 3
in test.

Throughout the course, the students gradually learn
improved methods to detect and prevent defects,
resulting in significant over-all improvements in
defect levels. Figure 8 shows the average
improvement in test defects for 12 students. The
average test defect levels in unit test improved from
36 per thousand lines of code to 3.9. This is a class
average of about ten times improvement. Both the
highest and lowest individual defect levels also
improved substantially. Similar results are shown for
the class of 4 experienced engineers in Figure 9 and
the 11 student class in Figure 10.

able to focus on process improvement and learn more
effectively from the data they gather.

6. PSP INTRODUCTION STRATEGIES

There are two PSP introduction strategies. One starts
by introducing these methods in university curricula.
This is initially being done at the graduate or senior
undergraduate level. At a later time, the methods
should be introduced with beginning programming
courses. Such an introduction should, however, be
done in concert with basic programming methods and
techniques.

Figure 11 Yield - 12 Students

Program Number

0

10

20
30
40

50
60

70
80

90

100

0 1 2 3 4 5 6 7 8 9 10

Max

Avg

Min

Figure 12 Compile Time - 12
Students

Program Number

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Max

Avg

Min

Figure 11 shows that this major improvement resulted
in part from a PSP concept called yield management.
One principal objective of the course is to prevent or
remove defects before the first compile. Through
appropriate process measurements, the students
become aware of the numbers and types of defects
they inject. As Figure 12 demonstrates, this resulted
in a substantial reduction in compiling time. Also, in
Figure 13, average productivity increased by about
30%. Note, however, that productivity improvement
is not the key concern of the PSP. The principal
focus is on improving the predictability and quality of
the work. A key PSP objective is to do this without
significantly reducing productivity.

Figure 13 Productivity - 12
Students

Program Number

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10

Max

Avg

Min

While this is only a limited sample, it appears that
the more experienced students make the greatest
improvement. Indications are that the less
experienced students spend more time learning how to
write the programming exercises and less on process
improvement. The more experienced engineers are

Because it will likely take many years to introduce
these methods through the educational system, the
SEI is also exploring means for directly transitioning
these methods into industrial practice. One of the

three industrial organizations currently involved in
this work is the Digital Equipment Corporation, where
several projects are participating in an introduction
program. The Hewlett Packard Corporation is also
using a course format to train 20 engineers in PSP
methods. The AIS corporation has just completed
training 8 engineers in PSP methods and they are
currently applying these methods to their software
work. While experience data are not yet available
from any of these organizations, early evidence
indicates that the engineers are finding the PSP
approach useful to them in their work.

made, however, to design a simple tool to assist in
time and defect recording. It was found that the tool
was actually less convenient than pencil and paper. It
is thus clear that, to be most helpful, PSP support
must be integrated into the working environment. If
done properly, such support would make the PSP
methods more efficient and easier to use. With CASE
facilities to automatically log time, track defects,
maintain data, and present statistical analyses, the
PSP likely would be easier to learn and more efficient
to use.

ACKNOWLEDGMENTS
7. CONCLUSIONS

Richard Barbour, Howie Dow, Susan Garcia, Mark
Paulk, and Larry Votta have kindly reviewed this
paper and I am much indebted to them for their
helpful comments and suggestions.

The early work on the PSP indicates that a structured,
disciplined, and measured personal software process
can provide the guidance and feedback needed to
help engineers improve their personal performance.

REFERENCES
- The engineers are more aware of their work and

better able to understand areas where they can
improve.

Beizer, B. (1983), Software Testing Techniques. Van
Nostrand Reinhold, New York, NY.

- The process measures provide them direct and
explicit feedback on their performance. Humphrey, W.S, (1989), Managing the Software

Process. Addison-Wesley, Reading, MA.- This rapid feedback reinforces their use of sound
engineering practices.

- A course format has been found most effective for
introducing the PSP in industrial organizations.

Humphrey, W.S. (1993), "The Personal Software
Process, Rationale and Status," The 8th
International Software Process Workshop,
Wadern, Germany.

- Several engineers have attempted to use PSP
methods in their regular work. Without the rapid
feedback provided by the PSP exercises, however,
they have been unable to sustain the needed
process discipline.

Humphrey, W.S. (1994), "Process Feedback and
Learning," The 9th International Software
Process Workshop, Airlie, VA.

The PSP is not a magic answer to the problems of
developing good software. The methods take time
and effort to learn and they require consistent
discipline to use. While the initial PSP work
concentrates on the design, code, and test phases of
software development, the PSP principles can be
applied to requirements specification, product
maintenance, test planning, documentation
development, or many other aspects of the software
process. The detailed design, code, and unit test
phases were selected because they are important
development phases and they are most suitable for the
small but challenging classroom exercises.

Humphrey, W.S, (in press), A Discipline for Software
Engineering. Addison-Wesley, Reading, MA.

Paulk, M.C., Bill Curtis, M. B. Chrisis (1993),
"Capability Maturity Model for Software,
Version 1.1," Technical Report, CMU/SEI-93-
TR-24, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA.

Copyright (c) 1994 Institute of Electrical and Electronics Engineers.

Presented at the Third International Conference on the Software

Process, Reston, Virginia, October 10-11, 1994, pp 69-77.

The PSP work does not rely on any special tools or
aids. Initially, such standard aids as word processors,
spread sheets, and statistical packages provide an
adequate base for PSP use. An early attempt was

This material is posted here with permission of the IEEE. Such

permission of the IEEE does not in any way imply IEEE

endorsement of any of Carnegie Mellon University's products or

services. Internal or personal use of this material is permitted.

However, permission to reprint/republish this material for

advertising or promotional purposes or for creating new collective

works for resale or redistribution must be obtained from the IEEE by

sending a blank email message to info.pub.permission@ieee.org.

By choosing to view this document, you will agree to all provisions

of the copyright laws protecting it.

