
Misconceptions of the Capability Maturity Model1

Karl Wiegers

Process Impact
716-377-5110

www.processimpact.com

Many organizations are striving to improve their software development processes with the
help of the Capability Maturity ModelSM (the CMMSM) for software. Most people who have heard
of the CMM know three things: It describes five levels of process maturity, higher is supposed to
be better, and most of us are presently at Level 1. However, people hold many common
misconceptions about the CMM: how it is structured, how it should be applied, how to advance
from one maturity level to the next, and so on.

While using the CMM to guide software process improvement efforts, I have heard
software engineers and managers express as facts a variety of misinterpretations about the CMM.
The purpose of this article is to clarify some of these common points of confusion. The model
really makes quite a bit of sense, but it is not intuitively obvious, and it’s not easy to find all the
right answers in the standard CMM documentation. Let’s begin by reviewing the overall structure
of the CMM.

Overview of the CMM

The CMM was developed by the Software Engineering Institute (SEI), a federally-funded
research and development center operated by Carnegie Mellon University. The definitive resource
is The Capability Maturity Model: Guidelines for Improving the Software Process, (Carnegie
Mellon University/Software Engineering Institute), published in 1995 by Addison-Wesley. The
CMM serves two major purposes: to guide process improvement efforts in a software
organization, and to assist with identifying contracting organizations that are qualified to perform
software work.

The five maturity levels (Initial, Repeatable, Defined, Managed, and Optimizing) represent
evolutionary plateaus on the road to a high level of software process capability. Each maturity
level, except the first, defines several key process areas or KPAs—groups of related software
practices—all of which must be satisfied in order for an organization to attain that level (Table 1).

Each KPA has two to four goals, all of which must be achieved in order to satisfy the
objectives of that KPA. In addition, each KPA describes a number of key practices that typically
lead to achieving that KPA’s goals. These practices are grouped into five “common features.” The
key practices of the common feature called Activities Performed define technical and managerial
activities that typically lead to satisfying the KPA goals, thereby establishing a specific process
capability in that key process area.

1 This article was originally published in Software Development magazine November 1996 It is reprinted (with
modifications) with permission from Software Development magazine.

SM Capability Maturity Model and CMM are service marks of Carnegie Mellon University

Misconceptions of the Capability Maturity Model Page 2

The other four common features relate to institutionalization of the practices performed in
a software organization. Institutionalization means that a practice is routinely applied across the
organization, even in times of crisis. Application of that practice has been ingrained in the group’s
culture, and it is supported with an infrastructure of policies, tools, training, and standards.
Without effective institutionalization, process improvements may turn out to be temporary. The
institutionalizing common features are:

• Commitment to Perform (encompasses the presence of an organizational policy pertaining to
the KPA and specifically assigning key responsibilities)

• Ability to Perform (includes training, resources, and other prerequisites)

• Measurement and Analysis (describes the status and quality measures that are used to control
and improve the process)

• Verifying Implementation (describes steps taken to ensure that activities are performed
according to established processes and procedures)

Several common themes run through the key process areas of the CMM. For starters,
written organizational policies state management expectations around the practice of each KPA.
Status and issues are to be reviewed periodically with senior management. A recurrent
expectation is that practitioners are trained to perform the activities expected of them. Most
activities are to be performed according to documented procedures (in contrast to the oral history
of many software cultures). Appreciating such philosophical and practical themes of the CMM is
as important as remembering the nuances of each KPA.

As organizations attempt to apply the CMM framework to their software process
improvement activities, it’s easy to get confused by incomplete or erroneous interpretations of the
CMM. Let’s clarify some of the misconceptions I have heard about this process improvement
model.

Misconceptions About Maturity Levels

Misconception #1: If you are at Level 1, you are pond scum. One problem with the
term “process maturity” is that if you are on the low end of the scale, you are “immature” by
definition. Some people object to the term “maturity” in this context because it sounds like a value
judgment, rather than being an objective appraisal of process capability.

The fact is that most software organizations are operating at the Initial level of the CMM
today, yet some of them are successful by many commonly accepted measures (profitability,
market share, customer satisfaction). However, other organizations are struggling, delivering poor
quality products (or nothing) with substantial cost and schedule overruns.

Being Level 1 does not mean that the members of a software organization are barely
breathing (as one manager put it). It does mean that the organization’s projects are likely to have
less predictability, more rework, more defects, and more schedule slippage than those in a higher
maturity organization. The CMM is concerned with organizational process capability; it does not
pass judgment on the performance or capabilities of individual software practitioners.

Misconception #2: Level 2 is mostly about software engineering activities, such as
requirements analysis, design, coding, and testing. Actually, the Repeatable Level addresses
practices that relate to planning, managing, and tracking several fundamental aspects of a software
project (see Table 1). The standard software engineering tasks of analysis, design, coding, testing,

Misconceptions of the Capability Maturity Model Page 3

and documentation are all included in a large KPA called Software Product Engineering at Level
3.

For an organization to have a repeatable process, the project management controls and
discipline that are provided by the Level 2 KPAs must first be established. Without a foundation
of disciplined project management, even effective software engineering procedures may be
abandoned during times of schedule pressure or rapidly changing requirements.

Misconception #3: You have to perform all of the activities and practices defined at
some maturity level in order to achieve that level. Over 120 key practices are defined for the
Repeatable Level alone, counting the activities, commitments, abilities, measurements, and
verification steps. You do not have to perform every one of these practices in order to achieve
Level 2. However, you do need to demonstrate that you are satisfying all of the goals that are
defined for the applicable Level 2 KPAs. (If an organization does not engage in subcontracting,
the Software Subcontract Management KPA is not applicable.) You may have alternative
practices that accomplish the goals of a KPA, but which are not mentioned in the CMM. The key
practices are only a guideline—not a requirement—for determining whether goals are satisfied.

Misconception #4: Software measurement is not required until you are approaching
Level 4. People having a superficial knowledge of the CMM may be aware that the Managed
Level addresses the quantitative measurement of software products and processes. These people
sometimes are surprised to learn that measurement is a part of every KPA at every maturity level.
The Measurement and Analysis common feature provides a hint to this effect.

Most of these measurements determine the status of activities associated with application
of the KPA. Consider the Requirements Management KPA. You should measure the status of
each requirement, the effort spent on requirements management activities, and requirements
stability (the frequency of change of the requirements). At the higher maturity levels, metrics are
increasingly used to monitor progress and manage projects proactively. However, software
groups at all maturity levels should begin incorporating fundamental software metrics into their
routine operating practices.

Misconception #5: The SEI certifies an organization at a specific maturity level.
There is no such thing as being “SEI-certified,” and there is no certification associated with
achieving a specific CMM maturity level. Perhaps this misunderstanding arises because some
people erroneously refer to CMM-based process appraisals as “audits,” and certain audits do
result in a certification of some sort. The SEI maintains a database of accumulated results from
formal process appraisals, but it will not divulge the results for any specific organization.

Misconceptions About Practices

Misconception #6: The CMM requires that you use specific software development
practices, tools, and methodologies. The CMM does not stipulate how you must perform
software development or management activities. It does require that you document the processes
you use, that you follow these processes, and that they be technically sound. The CMM’s KPAs
define general areas of performance that must be satisfied in order to move to a higher maturity
level, but they do not specify all of the techniques to be used.

For example, the Software Project Planning KPA requires that you derive estimates for a
software project’s effort and costs according to a documented procedure. However, it is your
documented procedure, which should contain whatever estimating techniques work for you. The
CMM does not dictate estimating algorithms, CASE tools, development methodologies, or

Misconceptions of the Capability Maturity Model Page 4

standards that you have to apply. Provided your practices in each KPA consistently and verifiably
satisfy the goals of that KPA, you can apply any methods that you find to be effective.

Misconception #7: The CMM mandates a waterfall life cycle model. The CMM does
require that “a software life cycle with predefined stages of manageable size is identified or
defined.” However, the CMM does not specify (nor even imply) the life cycle to be used. Indeed,
the CMM explicitly states that “there is no intent either to encourage or preclude the use of any
particular software life cycle.” However, the CMM does impose discipline on the selection and
application of each project’s life cycle model.

The issue of life cycle models is most fully addressed in the Defined Level. The key points
are: descriptions of approved software life cycles are documented as part of an organization’s
standard software process; a project must select one of those life cycles; and the project can
modify the selected life cycle if necessary according to specified tailoring guidelines.

Misconception #8: The Software Quality Assurance KPA is mostly about testing.
Many newcomers to the CMM fall into this trap, since the term “quality assurance” so frequently
refers to defect detection activities like testing and reviews. Actually, the word “testing” does not
appear anywhere in the text of the Software Quality Assurance KPA; testing is addressed in the
Level 3 Software Product Engineering KPA.

The CMM states that “the purpose of Software Quality Assurance is to provide
management with appropriate visibility into the process being used by the software project and of
the products being built.” This visibility is provided through audits and reviews that determine
whether work products comply with applicable standards, and whether processes conform to
documented procedures.

To some, this application of quality assurance turns SQA practitioners into “process
police.” This negative interpretation should be balanced by the intent for SQA to help software
developers consistently use the most effective practices to create high quality products. A group’s
culture has a lot to do with whether SQA is viewed as a value-added support function, or as a spy
agency.

Misconception #9: The CMM requires that you perform software inspections to
achieve Level 3. The Managed Level includes a Peer Reviews KPA. The purpose of peer reviews
is to remove defects from software work products by having the author’s technical peers
methodically examine the products. Inspections are certainly one effective way to do this.
However, as with other KPAs that deal directly with software engineering practices, the CMM
does not dictate the specific review techniques to be used. This KPA primarily addresses the
implementation of the organization’s peer review activities, including:

• A written policy about peer reviews is required.

• Resources, funding, and training must be provided.

• Peer reviews must be planned.

• The peer review procedures to be used must be documented.

Misconception #10: Having a “tailorable” process really means that you can do
whatever you want. Anyone making this claim may be trying to weasel out of following a
disciplined process. At the Managed Level, you develop a standard process for the software
organization, as well as guidelines and criteria for tailoring this standard process for each project.

Misconceptions of the Capability Maturity Model Page 5

You can’t just do whatever you feel like, since each project’s defined process must be adapted in
a structured way from the broader organizational software process.

Misconception #11: Requirements management is the same thing as requirements
engineering. Requirements management, a Level 2 KPA, focuses on establishing and maintaining
an agreement between the customer and the software project team on the software requirements.
Activities include having the software group review the requirements, using requirements as the
basis for software plans and activities, and managing changes to the requirements in a controlled
way. However, this KPA does not deal with requirements engineering, the tasks of gathering the
right requirements from customers, documenting them, analyzing them, and so forth. Virtually
every aspect of requirements engineering that the CMM addresses is found in Activity 2 of the
Software Product Engineering KPA at the Defined Level.

Misconceptions About Application

Misconception #12: You cannot work on improving KPAs more than one maturity
level higher than your current level. You can tackle process improvements in any area you feel
will help your group, whether covered by the CMM or not, since the CMM doesn’t address every
issue that makes a software project successful. It’s important to understand that while you can
choose to practice, say, peer reviews, while you are still at Level 1, you must satisfy the CMM’s
goals around peer reviews in order to achieve Level 3.

The CMM’s structure is based on the concept that you must stabilize the practices defined
at Level 2 before you can be sure of sustaining any process improvements you might make on
KPAs from the higher levels. Once the Repeatable Level KPAs (focusing at the individual project
level) have been institutionalized, they provide a solid foundation for implementing the
organization-wide KPAs at the higher levels. It’s hard to create an organization’s standard
software process if the individual projects are still doing whatever they want in an ad hoc and
undocumented fashion.

While you cannot skip maturity levels (say, jump directly from Level 1 to Level 3), you
can certainly choose to work on improvements in practices found at the higher levels. Just
recognize the risk that you may not be able to sustain those improvements over time or during
periods of crisis.

Misconception #13: The CMM mandates bureaucracy and wasteful paperwork. In
their zeal to apply the CMM, process enthusiasts sometimes forget to scale the procedures they
create to the size of the problem being addressed. The CMM speaks frequently about performing
an activity according to a documented procedure. This doesn’t mean that you need a shelf full of
procedures for every project you undertake. Defined processes are not intended to be barriers to
productivity. They are intended to let practitioners apply the best available technical and
managerial methods in a disciplined, repeatable, and efficient fashion.

As you develop processes, make them scaleable. As an example, a very simple project plan
should be written for a 16-hour project, with specific additional planning components to be added
for projects up to 160 hours. Plans for larger projects should contain still more detail to increase
the chance of success. Adapt the guidance provided by the CMM to the magnitude and risk of the
project, but always write a project plan! Rather than dogmatically applying every detail in the
CMM to every project, use the CMM to help you identify those activities that will add the most
value to each project.

Misconceptions of the Capability Maturity Model Page 6

Misconception #14: The CMM is a quick fix for short-term problems. If anyone
believes the CMM is the long-sought software silver bullet, call me right away. I have some prime
swamp land in Florida I just know you’re going to love.

Sorry, but adopting the CMM will not instantly double your productivity or melt away
those unsightly defects while you sleep. It takes time to incorporate improved practices into your
current development process and see the benefits. However, a sustained commitment to software
process improvement, using the CMM or any other approach, will gradually improve your quality,
productivity, and team morale (except for the coding cowboys, who just might ride into the
sunset).

Karl’s Conceptions About the CMM

The framework for process improvement provided by the CMM can go a long way toward
improving the ability of a software organization to be successful on project after project.
However, the CMM is not a religion. You should use it as a guide to help you focus your
improvement energies where they will likely pay off, rather than simply racing up the maturity
scale as fast as you can. Attack your projects’ real points of process pain, instead of treating the
CMM as a sure-fire prescription for curing what ails you. All projects are different, but most can
benefit from improvements in the Level 2 key process areas.

Your software process improvement efforts should run in parallel with your software
people improvement activities: hiring, teamwork, skill-building, work environment, recognition,
and enlightened management. The best software results come from a sensible balance of people,
process, and technology; don’t neglect any one of these vital components.

Table 1. Key Process Areas of the Capability Maturity Model.

Maturity Level Key Process Area

1: Initial None

2: Repeatable Requirements Management, Software Project Planning,
Software Project Tracking and Oversight, Software
Subcontract Management, Software Quality Assurance,
Software Configuration Management

3: Defined Organization Process Focus, Organization Process
Definition, Training Program, Integrated Software
Management, Software Product Engineering, Intergroup
Coordination, Peer Reviews

4: Managed Quantitative Process Management, Software Quality
Management

5: Optimizing Defect Prevention, Technology Change Management,
Process Change Management

