
N A T O U N C L A S S I F I E D

NATO

STANDARD FOR

MANAGEMENT OF A

REUSABLE SOFTWARE

COMPONENT

LIBRARY

Volume 2
(of 3 Documents)

- Development of Reusable Software Components
- Management of a Reusable Software Component Library
- Software Reuse Procedures

Issued and Maintained by:

NATO COMMUNICATIONS AND INFORMATION SYSTEMS AGENCY

(Tel. Brussels (2).728.8490)

This document may be copied and distributed without constraint, for use within NATO
and NATO nations.

N A T O U N C L A S S I F I E D

ii

Table of Contents

Section Title Page

Table of Contents .. ii

List of Tables ..v

PART I INTRODUCTION AND BACKGROUND

Section 1 Introduction.. 1-1

1.1 Purpose and Scope ... 1-1

1.2 Guide to Using This Manual.. 1-1

Section 2 Applicable Documents ... 2-1

Section 3 Basic Reuse Concepts .. 3-1

3.1 Definitions.. 3-1

3.2 Expected Benefits of Reuse ... 3-2

3.3 Dimensions of Reuse ... 3-4

3.4 Forms of Reuse .. 3-5

3.5 Issues in Achieving Reuse ... 3-6

Section 4 Functional Overview of Reuse Library.. 4-1

4.1 Initial versus Final Operating Capability... 4-1

4.2 Primary Function of Library .. 4-1

4.3 Approach.. 4-1

4.4 Other Functions in Support of Reuse... 4-2

PART II STANDARD

Section 5 Requirement Analysis.. 5-1

5.1 General Cost-Effectiveness/Operational Objectives................................ 5-1

5.2 Library Supporting Objectives... 5-1

Section 6 RSC Accession.. 6-1

6.1 Proposed RSC List... 6-1

6.2 Evaluation and Ranking... 6-2

6.3 Acquisition... 6-3

6.4 Quality Assessment.. 6-5

6.5 Documentation... 6-8

6.6 Classification.. 6-9

iii

Table of Contents (Continued)

Section Title Page

6.7 Assimilation and Distribution .. 6-10

Section 7 RSC Management .. 7-1

7.1 RSC Tracking and CM... 7-1

7.2 Tracking Reusers ... 7-2

Section 8 Library Tool Management.. 8-1

8.1 Library Staff Tool Requirements ... 8-1

8.2 Library User Tool Requirements ... 8-3

Section 9 Library Organizational Management.. 9-1

9.1 Staff Skills and Responsibilities .. 9-1

9.2 User Services ... 9-2

9.3 Performance Evaluation... 9-3

APPENDICES

Appendix A Evaluating RSC Cost-Effectiveness... A-1

A.1 Overview... A-1

A.2 Benefits ... A-1

A.3 Costs.. A-2

A.4 Risks.. A-2

A.5 Net Saving to the Reuser... A-2

A.6 Net Saving to the Supported Program .. A-3

A.7 Annual Costs and Adjustments for Future Values.................................. A-3

Appendix B The Faceted Classification Scheme ..B-1

B.1 How to Classify a Reusable Software ComponentB-1

B.2 Maintaining the Library’s Classification Scheme....................................B-4

Appendix C Forms and Checklists ... C-1

RSC File Checklist...C-2

RSC File Cover Sheet ..C-3

Proposed RSC Requirements Form ...C-4

Cost-Effectiveness Evaluation Form, Part 1..C-5

Cost-Effectiveness Evaluation Form, Part 2..C-6

Conformance Checklist..C-7

iv

Table of Contents (Continued)

Section Title Page

Incremental Enhancement Form..C-8

Completeness Assessment Checklist ...C-9

General Quality and Reusability Rating Form.......................................C-10

Summary of Recommendations Form ...C-11

v

List of Tables

Table Title Page

Table B.1 - Classification for a Sort Routine..B-2

Table B.2 - Classification for a Generic Sort Routine ..B-2

PART I

INTRODUCTION AND BACKGROUND

1-1

Section 1

Introduction

The Standard for Management of a Reusable Software Component (RSC)
Library provides guidance in the establishment and operation of a NATO-
controlled resource to support the reuse of software life-cycle products in
NATO contracts.

The following subsections describe the purpose of this manual and explain how to use it
effectively.

1.1 Purpose and Scope

In order to achieve actual benefits from software reuse, reusable assets and
associated resources must be managed and controlled; this manual
provides guidance to NATO, host-nation, and contractor personnel on the
establishment and operation of a software reuse support organization,
hereinafter called a library.

The standard is intended to reflect NATO’s current approach to the issues of software reuse and
describe the activities by which the personnel of the library address those issues to achieve
specific ends.

The guidance is prescriptive to the degree that any management-oriented manual can be; where
there are alternatives, the standard presents criteria for deciding among them. The approach is
largely independent of specific methods and tools and easily adaptable to project software
engineering practice. Issues pertaining to trusted software are beyond the scope of the standard,
but may be addressed in the future.

The primary audience is the staff of a library operated by or on behalf of NATO or a host-
nation. NATO and host-nation program offices will use the guidance in establishing IFB
requirements and in guiding contractors.

This is one of a set of three software reuse standards developed by NACISA. This manual
specifically addresses the management of a library of reusable components. The other two
documents are standards for the creation of reusable software components and for the reuse of
existing software in ongoing projects.

1.2 Guide to Using This Manual

This standard provides specific guidance, organized by library activity, as
a basis for establishing individual project practice.

The Standard for Management of a Reusable Software Component (RSC) Library is organized
in two parts. Part I provides an introduction to the manual and a brief discussion of general

1-2

concepts of software reuse as a frame of reference for the reader, followed by a concise
description of the library, its goals, and its activities. Part II is the actual standard. Its major
sections address requirement analysis, RSC accession, configuration management, the
management of automated library tools, and the management of the library organization as a
whole.

Within Part II, each regularly numbered paragraph forms part of the standard, and is considered
essential in meeting the reuse objectives addressed by this manual; any deviation must be
justified and approved. The standard is augmented by a number of guidelines (indicated by
paragraph numbers beginning with the letter “G”). Guidelines support the standard, identifying
specific (potentially alternative) approaches to meeting the standard. Adherence to specific
guidelines is not considered essential; however some effective approach to meeting the
standard must be selected.

The library manager should be familiar with the entire standard and be prepared, especially at
the inception of the reuse program, to apply this guidance as flexibly as possible. Priority
should be given to setting and achieving realistic goals (tangible benefits of reuse), rather than
strict adherence to procedures that are likely to evolve for several years. Never forget that the
library is a service and the application engineers seeking reusable components are the library’s
customers.

2-1

Section 2

Applicable Documents

This is one of a set of three documents, specifically addressing the management of a software
reuse support organization. The other two documents are standards for the creation of reusable
software components and for the reuse of existing software in projects:

Contel Corporation. Standard for the Development of Reusable Software Components.
NATO contract number CO-5957-ADA, 1991.

Contel Corporation. Standard for Software Reuse Procedures. NATO contract number
CO-5957-ADA, 1991.

Numerous other references were used in developing this standard, and provide additional
guidance in managing a reuse library. Some that may be valuable to the user of this manual are:

SofTech, Incorporated. Ada Portability Guidelines. Document number 3285-2-208/1,
1985.

SofTech, Incorporated. Ada Reusability Guidelines. Document number 3285-2-208/2,
1985.

SofTech, Incorporated. RAPID Center Policy Recommendation. Document number
3451-4-112/5.1, 1988.

SofTech, Incorporated. RAPID Center Library Procedures. Document number
3451-4-112/11, 1988.

SofTech, Incorporated. RAPID Center Reusable Software Component (RSC)
Procedures. Document number 3451-4-326/4, 1990.

3-1

Section 3

Basic Reuse Concepts

Software reuse offers tremendous benefits in cost savings and quality;
however, it requires technical understanding, changed approaches, and an
understanding of potential obstacles.

This section provides a frame of reference for understanding the benefits and challenges of
software reuse. It introduces the terminology and concepts used in the remainder of the manual
and explains the goals underlying the guidance provided herein.

3.1 Definitions

A consistent terminology is used throughout this and companion manuals.

The following are definitions of the key terms used in this manual:

Reuse—the use of an existing software component in a new context, either elsewhere
in the same system or in another system

Reusability—the extent to which a software component is able to be reused.
Conformance to an appropriate design and coding standard increases a component’s
reusability.

Reusable software component (RSC)—a software entity intended for reuse; may be
design, code, or other product of the software development process. RSCs are
sometimes called “software assets”.

Reuser—an individual or organization that reuses an RSC

Portability—the extent to which a software component originally developed on one
computer and operating system can be used on another computer and/or operating
system. A component’s reusability potential is greater if it is easily portable.

Domain—a class of related software applications. Domains are sometimes described as
“vertical”—addressing all levels of a single application area (e.g., command and
control) and “horizontal”—addressing a particular kind of software processing (e.g.,
data structure manipulation) across applications. The potential for reuse is generally
greater within a single domain.

Domain analysis—the analysis of a selected domain to identify common structures and
functions, with the objective of increasing reuse potential

Library—a collection of reusable software components, together with the procedures
and support functions required to provide the components to users

Retrieval system—an automated tool that supports classification and retrieval of
reusable software components, also called a “repository”

3-2

Software life cycle—The series of stages a software system goes through during its
development and deployment. While the specific stages differ from one project to the
next, they generally include the activities of requirements specification, design, code,
testing, and maintenance.

3.2 Expected Benefits of Reuse

Software reuse clearly has the potential to improve productivity and hence
reduce cost; it also improves the quality of software systems.

Productivity Improvement. The obvious benefit of software reuse is improved productivity,
resulting in cost savings. This productivity gain is not only in code development; costs are also
saved in analysis, design, and testing phases. Systems built from reusable parts also have the
potential for improved performance and reliability, because the reusable parts can be highly
optimized and will have been proven in practice. Conformance to standard design paradigms
will reduce training costs, allow more effective practice of quality disciplines, and reduce
schedule risk.

Reduced Maintenance Cost. Even more significantly, reuse reduces maintenance cost.
Because proven parts are used, expected defects are fewer. Also, there is a smaller body of
software to be maintained. For example, if a maintenance organization is responsible for
several different systems with a common graphic user interface, only one fix is required to
correct a problem in that software, rather than one for each system.

Improved Interoperability. A more specialized benefit is the opportunity to improve
interoperability among systems. Through the use of single implementations of interfaces,
systems will be able to more effectively interoperate with other systems. For example, if
multiple communications systems use a single software package to implement the X.25
protocol, it is very likely that they will be able to interact correctly. Following a written standard
has much less guarantee of compatible interpretation.

Support for Rapid Prototyping. Another benefit of reuse is support for rapid prototyping, or
putting together quick operational models of systems, typically to get customer or user
feedback on the capability. A library of reusable components provides an extremely effective
basis for quickly building application prototypes.

Reduced Training Cost. Finally, reuse reduces training cost, or the less formal cost associated
with employee familiarization with new assignments. It is a move toward packaged technology
that is the same from system to system. Just as hardware engineers work with the same basic
repertoire of available chips when designing different kinds of systems, software engineers will
work with a library of reusable parts with which they will become familiar and adept.

Industry Examples. All of these benefits lead directly to lower-cost, higher-quality software.
Some industry experiences have shown such improvements:

3-3

• Raytheon Missile Systems recognized the redundancy in its business application
systems and instituted a reuse program. In an analysis of over 5000 production COBOL
programs, three major classes were identified. Templates with standard architectures
were designed for each class, and a library of parts developed by modifying existing
modules to fit the architectures. Raytheon reports an average of 60% reuse and 50% net
productivity increase in new developments.

• NEC Software Engineering Laboratory analyzed its business applications and
identified 32 logic templates and 130 common algorithms. A reuse library was
established to catalogue these templates and components. The library was automated
and integrated into NEC’s software development environment, which enforces reuse in
all stages of development. NEC reports a 6.7:1 productivity improvement and 2.8:1
quality improvement.

• Fujitsu analyzed its existing electronic switching systems and catalogued potential
reusable parts in its Information Support Center—a library staffed with domain experts,
software engineers, and reuse experts. Use of the library is compulsory; library staff
members are included in all design reviews. With this approach, Fujitsu has
experienced an improvement from 20% of projects on schedule to 70% on schedule in
electronic switching systems development

• GTE Data Services has established a corporate-wide reuse program. Its activities
include identification of reusable assets and development of new assets, cataloguing of
these assets in an automated library, asset maintenance, reuser support, and a
management support group. GTE reports first year reuse of 14% and savings of $1.5
million, and projected figures of 50% reuse and $10 million savings, in telephony
management software development

• SofTech, Inc. employs a generic architecture approach in building Ada compiler
products. Compilers for new host and target systems can be developed by replacing
only selected modules from the standard architecture. This has led to productivity level
of 50K lines of code per person-year (10-20 times the industry average). This is typical
of compiler developers, as this is a field in which reuse is accepted practice.

• Universal Defence Systems (UDS), in Perth, Australia, develops Ada command and
control applications. The company began its work in this business with a reuse focus,
and has developed a company-owned library of 396 Ada modules comprising 400-500
thousand LOC. With this base, UDS developed the Australian Maritime Intelligent
Support Terminal with approximately 60% reuse, delivering a 700 thousand LOC
system in 18 months. A recently begun new project anticipates 50-70% reuse based on
the company’s asset library.

• Bofors Electronics had a requirement to develop command, control, and
communications systems for five ship classes. As each ship class was specific to a
different country, there are significantly different requirements for each. In order to
benefit from reuse, Bofors developed a single generic architecture and a set of large-
scale reusable parts to fit that architecture. Because of a well-structured design, internal
reuse, and a transition to Ada and modern CASE tools, Bofors experienced a
productivity improvement even in building the first ship—from 1.3 lines of code (LOC)
per hour previously to 3.28 LOC per hour. Improvements are much greater for

3-4

subsequent ships, with a projected productivity of 10.93 LOC per hour for the fifth ship,
which is expected to obtain 65% of its code from reuse.

3.3 Dimensions of Reuse

Reuse has several dimensions; the guidance in this manual supports all of
these.

Compositional versus Generative Approaches. Approaches to reuse may be classified as
either compositional or generative. Compositional approaches support the bottom-up
development of systems from a library of available lower-level components. Much work has
been devoted to classification and retrieval technology and to the development of automated
systems to support this process. Generative approaches are application domain specific; they
adopt a standard domain architecture model (a generic architecture) and standard interfaces for
the components. Their goal is to be able to automatically generate a new system from an
appropriate specification of its parameters. (The Fourth Generation Languages [4GLs] used in
the commercial world can be considered an example of generative reuse.) Such approaches can
be highly effective in very well understood domains, but significant effort is required to
develop the initial model.

Small-scale versus Large-scale Reuse. Another dimension is the scale of the reusable
components. Reuse on a small scale—for example, use of a library of mathematical functions—
is practiced fairly widely today. The effort saved from a single reuse is not great; payoff comes
from the widespread reuse that is possible. On a large scale, entire subsystems (for example, an
aircraft navigation subsystem or a message handling subsystem) may be reused. Here the
saving from a single reuse is great; many thousands of lines of code may be reused. However,
the opportunities for reuse of a given component are more limited. Large-scale reuse can pay
for itself even if a component is only reused once or twice, because of the amount of effort
saved.

As-is Reuse versus Reuse with Modification. Components may be reused as is, or may
required modification. Generally reusable components are designed to be flexible—for
example, through parameterization—but often modification is necessary to meet the reuser’s
requirement. Modifiability—the capability of a software component to be easily modified—is
particularly important in reusable software.

Generality versus Performance. Sometimes there is a trade-off between component
generality and performance. A component designed to be general and flexible will often include
extra processing to support that generality. Appropriate reusability guidelines help avoid this
penalty; guidelines for the reuser can provide mechanisms for coping with performance
problems that may arise.

3-5

3.4 Forms of Reuse

Reusable components are not necessarily code; they can be specifications,
designs, code, tests, or documentation.

Specification Reuse. Reuse of specifications is particularly relevant when aiming for large
scale reuse. Large-scale reuse requires up-front consideration during the requirements
definition activity. If an entire subsystem is to be designed for reuse, this should be made
explicit from the start. The specification is then reusable in systems that will reuse the
component, guaranteeing that requirements will match. Reuse of specifications greatly
increases the likelihood that design and code will also be reusable. Furthermore, reuse of
specifications can reduce time spent on requirements definition and help ensure
interoperability, even if neither design or code are reused.

Design Reuse. Sometimes a design can be reused even when the code cannot; for example, the
code may not be in the required programming language, or it may have inappropriate
environment dependencies. Design reuse can save significant effort in one of the most costly
life-cycle phases, provided that the design is specified so as to facilitate reuse. Furthermore, the
design phase establishes the software architecture that provides a framework for reuse. Reuse
of the software architecture will provide significantly greater code reuse opportunities by
establishing a standard functional allocation and uniform interfaces.

Code Reuse. The greatest payoff comes from reuse of actual code. Clearly this is possible only
when the specification and design are also reusable. Reusable code should be accompanied by
its associated life-cycle products—its requirements and design specifications, its tests, and its
documentation—so the reuser will not have to regenerate them.

Test Reuse. Ideally, a reusable code component should be accompanied by test cases that can
be used to test it in the environment in which it is reused. A less obvious point is that tests can
be reusable even when code is not, with reusable test cases accompanying specification reuse.
An example might be the reuse of a specification and a set of test cases for a particular
communications protocol. Even if the design and implementation differ from the original,
specification and test reuse will save effort and help ensure correctness and interoperability.

Documentation Reuse. Documentation is a major source of software development cost. To be
most valuable, a reusable component must be accompanied by appropriate documentation
items. Clearly, reuse of a specification or design is only meaningful when the component is in
a written form. However, other documentation such as users manuals may also be reusable,
even when the code is not.

3-6

3.5 Issues in Achieving Reuse

Reuse involves significant change to traditional practice; there a number
of challenges to be overcome in achieving its full benefits.

Identifying Opportunities for Reuse. A major technical issue is simply identifying
opportunities for reuse. A software engineer may know that similar software has been written
before; finding it is another matter. Reuse libraries help solve this problem. Once a component
is found, it may be hard to determine if it is indeed a fit, and hard to modify it if change is
required. Often software that appears to be reusable in fact will not be—it has inappropriate
interfaces, hidden dependencies, inflexible functional limitations, or is simply so difficult to
understand that the engineer will be better off simply starting over. The objective of software
reusability guidelines is to help avoid these problems.

Investment. Making software that is reusable generally requires investment above and beyond
that required for a one-time system. This effort goes into making the software more flexible,
ensuring its quality, and providing additional documentation required. Each organization must
make decisions about how the investment is supported.

The “Not Invented Here” Syndrome. Sometimes developers are unwilling to reuse software.
Software engineers enjoy the creative aspects of their profession, and can feel that these are
diminished when reusing software. Management encouragement, training, and perhaps other
incentives can help engineers shift to a view of creativity that involves larger “building
blocks”—reusable software components.

Estimating and Measuring. Estimating and measuring software development activities has
always been difficult, but there are some organizational methods in place that work relatively
well. These traditional methods will require modification in a reuse environment, and little data
is available to support that modification.

Contractual, Legal, and Ownership Issues. There are a number of contractual, legal, and
ownership issues that impact software reuse. Today’s usual contracting methods can create a
disincentive for contractors to reuse existing software or to provide software for reuse by
others. Legal issues arise over liabilities and warranties. Responsibility for maintenance must
be identified.

These organizational challenges are, for the most part, outside the scope of this set of manuals.
Each organization must develop its own solutions. Managers must be aware of the challenges
and address them if reuse is to succeed.

4-1

Section 4

Functional Overview of Reuse Library

The library is an organization of personnel, tools, and procedures whose
activities are directed at facilitating reuse of software life-cycle products to
meet specific goals of cost-effectiveness and productivity. This section
presents an overview of the library’s activities and resources as a context
for the standards and guidelines in the following sections.

4.1 Initial versus Final Operating Capability

This standard concentrates on the initial operating capability (IOC), the actions essential to
supporting reuse that must be present when the library is first placed in operation. As reuse
becomes standard practice for software engineering and the library becomes well established,
additional resources may be allocated so that the library can assume a final operating capability
(FOC).

In the remainder of this manual, some FOC activities and issues will be mentioned when
necessary to present a clear and understandable picture of reuse issues; in each case, they will
be identified as such.

4.2 Primary Function of Library

The main purpose for the existence of the reuse library is ready access to reusable software life-
cycle products by the staff of the supported NATO project. Most of the library’s activities are
directed toward this end.

4.3 Approach

The library staff receives direction in the form of specific operational objectives, principally
aimed at making software reuse cost-effective. The staff also manages a continually revised list
of RSCs believed to advance those aims which are proposed for inclusion in the library.

This guidance drives a set of coordinated activities with the result that RSCs are added to the
library, made available to application engineers for use in projects, and continually improved.
These activities include:

Evaluate and rank proposed RSCs. The library evaluates each proposed RSC to note
the demand priority, verify assumptions, assess the effort needed to acquire it, and
compare it with RSCs already in the library. This allows the proposed RSCs in the list
to be ranked by priority so that scarce resources may be allocated for the best return.

4-2

Acquire RSCs. Library staff members obtain the actual life-cycle products for each
proposed RSC (by priority) by soliciting its development or by purchasing commercial
off-the-shelf (COTS) products.

Assess RSC Quality. The staff examine the acquired material for conformance with
Standards and Guidelines for the Design and Development of Reusable Software
Components, completeness, satisfaction of the original requirements and support for the
stated objectives, and reusability. RSCs must meet minimum acceptance standards.
Each accepted RSC is given a quality rating and deficiencies, if any, are noted in the
documentation.

Document RSCs. Like test scripts, adequate documentation should be furnished with
each RSC. The staff members verify its completeness, index it as needed to conform
with a standard organization, and extract some items for special purposes.

Classify RSCs. To permit automated search and retrieval, each RSC is assigned a set
of descriptive keywords corresponding to several different viewpoints. This method,
known as a faceted classification scheme, allows reusers to find library RSCs easily by
describing their characteristics and is easily extensible to accommodate future RSCs
and technologies.

Assimilate RSCs. Once all supporting material is assembled for a given RSC, the staff
installs it in the library and enters its description in the catalogue.

Distribute RSCs. The staff ensures that project engineers and managers are made
aware of new additions to the catalogue. When a user selects an RSC from the library,
certain actions must take place in order to ensure that the complete RSC in its latest
version is delivered and to provide for effective future support to this customer. Many
of these actions are performed automatically by the library component retrieval system.

Manage RSCs. The library performs various activities in support of configuration
management, including keeping track of RSC users and serving as a point of contact for
RSC maintenance issues.

4.4 Other Functions in Support of Reuse

In addition to ensuring that RSCs are available, the library is in a position to provide other
support to help ensure that the benefits of reuse are realized, including:

Manage Library Tools. As a minimum, the library operates an automated RSC
retrieval system to manage the collection of reusable software products. This includes
providing user accounts and maintaining the vocabulary of the classification scheme.

Assist Users. The library distributes published manuals like Standards and Guidelines
for Reuse Procedures and Standards and Guidelines for the Development of Reusable
Software Components, user documentation for library tools like the automated RSC
retrieval system, and the catalogue of RSCs in the library. In addition, some degree of
on-call assistance is available to users, as well as a personal walk-through for first-time
users of the retrieval system.

4-3

Measure Reuse Success. The library collects considerable data for a continuing
assessment of the effectiveness of the library’s procedures and tools, the usefulness of
its RSC collection, the accuracy of RSC classifications, and the general responsiveness
of the library to the needs of users. Some of this data is passed on to NATO agencies
charged with answering the broader question of the cost-effectiveness of software
reuse.

PART II

STANDARD

5-1

Section 5

Requirement Analysis

To succeed, reuse support of a software engineering activity must have
well-defined, well-understood requirements based on the cost-effectiveness
and operational benefits expected. The library staff must understand these
goals and translate them into specific supporting objectives attainable in
the course of the library’s activities.

5.1 General Cost-Effectiveness/Operational Objectives

5.1.1 All library operations will support NATO reuse objectives.

The agency responsible for the success of the reuse effort as a whole provides detailed guidance
to the library on the comprehensive reuse benefits expected. In general, these will include:

• Cost savings in software development

• Cost savings in testing and configuration management

• Reduced development time

• Cost savings in software maintenance

For certain projects, or under FOC, additional objectives might include:

• Cost savings in system design

• Higher quality and increased subsystem reliability

• Greater interoperability

G5.1.1.1 Be sure that NATO reuse objectives are understood.

G5.1.1.2 Be sure that NATO reuse objectives are communicated to the library
staff.

5.2 Library Supporting Objectives

5.2.1 Define specific objectives, in terms of library actions and goals, that
support NATO reuse objectives.

The scope of a comprehensive reuse program is broader than the role played by the library;
thus, NATO objectives by themselves are too broad to define the library’s mission.

The library staff must define clear, verifiable objectives that will support the directed cost-
effectiveness and operational objectives.

5-2

G5.2.1.1 Use the following library objectives as a basis:

Relevance of RSC collection. The software life-cycle products in the library must
correspond to actual requirements of the supported project and must be described in
language recognizable to the project staff.

RSC value. Components selected for the library must provide clearly identified and
significant savings. They should be easy to understand, install, and test. They should be
complete, including test scripts, test results, and useful documentation.

RSC quality. The quality of RSCs, both as software and as reusable products, must be
known, clearly stated, and as high as practical. This includes conformance with
development standards and guidelines, documentation accuracy, and satisfaction of
stated requirements.

Size of RSC collection. The library should contain a sufficiently wide selection of
RSCs to cover the scope of the supported project’s requirements and provide choices in
design and implementation.

Minimal cost to obtain RSCs. Library tools must be easy to understand and use. RSCs
in the collection must be properly classified and clearly described. Once a reuser selects
an RSC, there should be minimal procedural burden or delay in obtaining a copy.

Minimal cost to operate library. Recognizing that resources will always be limited,
the library should avoid activities that can be deferred or passed on to other agencies,
for example, RSC development, maintenance, or reengineering.

Support. The library will be the focal point for “making reuse happen,” and the first
point of contact for users’ concerns. The staff should provide responsive support for
perceived problems with RSCs, along with the effective configuration management this
implies. The library should retain control over the distribution of RSCs.

6-1

Section 6

RSC Accession

Once requirements for suitable RSCs have been identified, actual RSCs
meeting these requirements must be obtained, brought into conformance
with standards, and added to the library’s holdings, ready for retrieval by
application engineers. This section describes the series of actions that must
take place for this to happen.

6.1 Proposed RSC List

6.1.1 Maintain a list or catalogue of RSCs proposed for accession by the
library.

The library receives, from its customers and sponsoring agency, recommendations for RSCs to
add to the collection. Proposed RSCs can be existing material that is submitted for inclusion or
a required capability that is sought by a customer.

G6.1.1.1 Maintain a file for every proposed RSC.

Since the same or similar recommendations will recur during a project and from one
project to the next, keeping a formal file for each proposed RSC avoids duplication of
effort and provides a ready reference for all the accession activities described in this
section.

G6.1.1.2 Check whether the proposed RSC is really new.

Begin by preparing a tentative classification for every proposed RSC. Using the faceted
classification scheme, describe the RSC’s known characteristics. Then search for other
RSCs matching this classification to determine whether such an RSC, or a similar one,
is already on file.

If so, update the file based on any new information. If not, create a new one.

G6.1.1.3 For each proposed RSC, record the requirements of the proposer.

Requirements and perceptions of requirements change with time. In addition, design
and implementation considerations can obscure the original intent, with the result that
the RSC fails to bring satisfaction. Even when revising requirements, always start with
a clear baseline. Include, as a minimum, the following:

Functional description. What kind of product is it? What does it do? How,
specifically, will the user determine whether the RSC meets the need?

Availability. Is this existing material that the proposer is recommending for accession?
Is it a hypothetical RSC that the proposer is seeking? If so, can the proposer suggest
possible sources? What “raw material” (like design, code, documentation, or test
objectives) is already available?

6-2

Rationale. Why should this RSC be included? Where or by whom will it be used? What
benefit will it bring?

6.2 Evaluation and Ranking

6.2.1 Evaluate, qualitatively and quantitatively, every RSC proposed for
accession.

The library formally evaluates each proposed RSC in order to:

• Clarify the requirements and ensure that the proposer’s expectations are properly
understood and achievable

• Broaden the requirements, as appropriate, to meet the needs of multiple users

• Quantify the requirements and estimate the benefits the RSC will bring

• Estimate the costs of acquiring and preparing the RSC for the library

• Rank the proposed RSCs by priority, to allocate scarce resources effectively

G6.2.1.1 Ensure that the requirements address reusability issues.

Usually the proposer will have a particular application in mind. Be sure that the
requirements include all likely target applications and environments. If necessary,
augment the requirements.

G6.2.1.2 Assess the cost-effectiveness of the RSC.

Using the method described in Appendix A, estimate the reuser’s saving, cumulative
discounted cash flow, and cumulative discounted cash flow per unit invested. State all
assumptions made.

G6.2.1.3 Identify other beneficial characteristics in the RSC.

A number of considerations outside of cost-effectiveness will strongly influence an
RSC’s desirability. Indeed, the presence or absence of certain “virtues” may determine
whether the RSC is reused at all, and in any case will justify some of the assumptions
necessary for the cost-effectiveness assessment:

Known demand. An RSC that customers have specifically requested is very likely to
be reused, if it is available in time.

Short lead time. This is particularly important when setting up a new library, to meet
the goal of an adequately sized RSC collection. In addition, it means that the RSC will
be available while the demand is fresh.

Wide applicability. A component that many programmers can use will ensure that
many users will learn about the library and begin developing the habit of reuse,
regardless of the financial return.

High visibility. An RSC likely to be used in a widely known project can bring
favourable publicity with a single reuse.

6-3

Compatibility. A component that fits well with or is related to what reusers are already
doing appeals to reusers and promotes standards and interoperability.

Low complexity. An RSC that is easily understood and installed is more likely to be
reused.

Drudgery avoidance. RSCs that implement necessary capabilities that are tedious to
develop and test are likely to find favour with programmers.

“Glamour.” New and popular technology, well-designed user interfaces, or
exceptional performance are appealing for their own sake and encourage the reuse of
RSCs that offer them.

G6.2.1.4 Rank the proposed RSCs by priority.

If resources are insufficient to acquire all the RSCs on the list, identify those RSCs
which will have first claim on the resources.

6.2.2 Review the evaluation findings with the RSC’s proposer.

This helps to ensure that the requirements and expectations were properly understood, corrects
unrealistic or unworkable constraints, and enlists the proposer’s future support and cooperation.

6.2.3 Retain all RSC evaluation findings.

Retain the evaluation results with the other information in the file for each proposed RSC.

6.3 Acquisition

The library acquires reusable software life-cycle products from numerous sources. In each case,
the library staff makes every effort to obtain as complete a product as practical. The greatest
degree of control is possible with RSCs obtained from contributors assigned to the supported
project or affiliated organizations.

6.3.1 Ensure that RSCs submitted to the library by project engineers conform
to the Standard for the Development of Reusable Software Components.

That standard specifically addresses the requirements that reusable products must meet in order
to support the objectives of the reuse program.

G6.3.1.1 Be sure that all potential submitters of RSCs have ready access to
the development standard.

Distribute the standard freely and encourage its incorporation in project software
engineering standards.

G6.3.1.2 Be sure that the project’s Quality Assurance staff have ready access
to the development standard.

If the development standard is part of the supported project’s software engineering
standards, the actual effort of ensuring compliance is borne by the project’s Quality
Assurance staff.

6-4

6.3.2 Incorporate RSCs by reference, rather than physically, when
appropriate.

There is no absolute need for the library to contain a physical copy of each RSC. While in many
cases an owned copy is preferred for convenient access and control, there are cases where there
are distinct disadvantages.

G6.3.2.1 Incorporate an RSC by reference if:

It is maintained and distributed by an outside organization. Commercial off-the-
shelf (COTS) products and many public-domain products are distributed and supported
by vendors or individuals. In exceptional cases, the benefits will justify the library’s
expense of keeping an up-to-date copy for local distribution. Normally, the duplication
of effort and potential for obsolescence makes an owned copy impractical. Moreover,
COTS products typically have license restrictions.

It carries restricted rights or license agreements. The library cannot assume the
responsibility and liability associated with licenses and other legal restrictions on use.

It is considered security-classified material. This is a special case of an RSC that is
maintained and distributed by an outside organization. For certain projects, the library
may be configured to manage that project’s classified RSCs but the library contains
only unclassified material.

In the case of software, it is executable code. Transferring executable code is a
potential security vulnerability; add only documents and source code to the library.

G6.3.2.2 When an RSC is incorporated by reference, provide instructions for
obtaining it.

Recognizing that the purpose of the library is to reduce the cost of reuse, it makes sense
to save the user’s time and effort by identifying sources and points of contact.

Provide on-line instructions for obtaining the RSC. In some cases, especially where
little or no material is furnished directly by the library, the user should be able to read
the instructions directly from the retrieval system.

Provide hard-copy instructions for obtaining the RSC. Where significant material
(for example, a test plan, reuser manual, or quality assessment) is furnished directly by
the library, include the instructions.

In every case, ensure that the use is noted. The library staff needs to track every
instance of a reuser obtaining an RSC in order to assess demand, obtain user feedback,
distribute change notices, and improve library services. This applies as well to RSCs
incorporated by reference.

6.3.3 Encourage the reuse of software life-cycle products from NATO
projects.

Projects in the NATO arena, including host nation projects, are likely to have many elements
in common. Reusing components among them encourages the evolution of common

6-5

architectures, shortens development times, and promotes participation in the library’s activities
and a strong reuse program.

G6.3.3.1 Always look at the specifications of existing work for opportunities to
meet requirements of RSCs proposed for accession by the library.

The library staff should stay informed about NATO and host nation projects; where
practical, the library should maintain a reference collection of project functional
specifications and other supporting documentation.

G6.3.3.2 Don’t overlook the proposer’s own project as a source.

Few members of any project’s technical staff have an overview of the entire project’s
design; most work on particular subsystems. Hence, an engineer can be quite unaware
that the needed capability is already under development, or even available, as a
component of another subsystem.

6.4 Quality Assessment

Library RSCs must be of known quality, as high as practical, but at least meeting minimum
acceptance standards. Staff members examine the acquired material constituting the RSC to
identify omissions, deficiencies, or discrepancies. The primary object is giving the user a clear
idea of what is being provided and what may still need to be done, rather than supplying only
components of certifiably high quality.

6.4.1 Allow for incremental enhancement of RSCs.

The library does not normally have the resources to develop or enhance RSCs. This doesn’t
mean that only complete, highest-quality RSCs are acceptable. Instead, the library accepts any
material of significant usefulness, relying mainly on individual reusers to improve RSCs and
submit the enhanced product back to the library. The library adds value by identifying
omissions, defects, and other shortcomings so that reusers get a product of known status with
specific recommendations on additional work needed. Each successive reuser benefits from the
enhancements made by the previous customer.

6.4.2 Define minimum acceptance standards for library RSCs.

The fundamental criterion for acceptance is cost-effectiveness for the individual reuser. The
cost of obtaining and reusing the RSC, including correcting its shortcomings, must be less than
the cost of developing the desired capability directly. The minimum acceptance standards must
support this principle in the context of the supported project.

G6.4.2.1 Consider the software engineering standards for the supported
project.

Standards for library RSCs are, in general, somewhat higher than those of projects
because of the additional requirements reusable products must meet and because
deficiencies are multiplied in multiple reuses. This is not to say that the minimum
acceptance standards for the library must be higher than project standards; what matters

6-6

is the cost to the reuser of bringing the single instance of the reused product up to project
standards.

G6.4.2.2 Consider the software engineering process performing the supported
project.

An established, experienced engineering team can improve an RSC with little wasted
effort; on the other hand, if the RSC implements a technology or design methodology
unfamiliar to the reuser, correcting deficiencies may be prohibitively expensive.

G6.4.2.3 Acceptance standards must include the documentation.

No product can be considered reusable if it lacks an understandable description of its
capabilities and clear instructions on its use. While a complete reuser’s manual goes
into considerably more detail, minimally acceptable documentation must include at
least that information.

6.4.3 If an RSC is incorporated by reference, modify the quality assessment
and testing procedures accordingly.

In some cases, a copy of the latest version may be obtainable, or some version may be
accessible for examination at another site. Sometimes a vendor will provide an evaluation
version with some features disabled or with a limited life span.

G6.4.3.1 If no reasonable assessment is practical, the RSC cannot be included
in the library.

Note this in the RSC’s file.

G6.4.3.2 Be sure the quality assessment indicates the basis for the evaluation.

Explain whether a copy was obtained or borrowed, or whether an evaluation version
was used. State the release and version numbers.

6.4.4 Examine the acquired material for conformance with the Standard for
the Development of Reusable Software Components.

The development standard specifically addresses the requirements that reusable products must
meet in order to support the objectives of the reuse program. Deviations from the standard are
potentially significant and must be noted, but are not necessarily grounds for rejection.

6.4.5 Examine the acquired material for completeness.

Consider all the items a reuser will need to find, understand, install, test, and document the
RSC. This list will vary, depending on the RSC’s nature.

G6.4.5.1 In general, any library RSC needs the following items to be complete:

• Complete instructions to reuser on characteristics, installation, verification, and
operation (the reuser’s manual described in Section 8 of the development
standard)

• Abstract (described in Section 8 of the development standard)

6-7

• Classification

• Actual material to be reused

• Criteria and scaffolding for verification (test objectives, scripts, software, and
results)

6.4.6 Assess the general quality and reusability of the complete RSC.

This action calls for a subjective assessment by library staff engineers. While there exist
numerous measures relating to software quality (and the library should make use of all that
apply), no measure is currently available that concisely and comprehensively answers the
questions “How good is this RSC; will it do the job?” Yet these are questions an engineer would
not hesitate to ask a colleague, with considerable confidence that the answer will be useful.
Even though professionals often disagree, it remains true that there is no automated or
“cookbook” substitute for an expert opinion.

G6.4.6.1 Use a simple numeric rating scheme.

Assign the RSC a “general quality and reusability rating” from one to ten. Ten
indicates an ideal RSC that exactly meets the stated needs and conforms to the highest
standards of modern software engineering practice. One indicates an RSC that just
meets minimum standards but still gives the reuser some saving compared with starting
over. The range between one and ten might reflect an estimate of the effort completed
out of the total estimated effort for the entire development sequence, adjusted up or
down for quality, reuse potential, and portability.

Prepare a concise rationale explaining the basis for the rating. Describe the RSC’s
unusual strengths and weaknesses and the influence of each on the general rating.

G6.4.6.2 Record the quality assessment and recommendations in the RSC’s
file.

The assessment will be used again by project engineers considering reusing the product,
by maintainers modifying or enhancing it, by library staff evaluating proposed RSCs
that are similar, and by submitters seeking to correct RSCs that failed to meet minimum
standards.

Record the findings using a consistent format. A consistent format, perhaps in the
form of checklists or standard outlines, minimizes the time required to review the
findings.

Make clear, verifiable recommendations for improvement or further refinement
using a directive style. Use imperative sentences like “Include tests for the stated
requirements” or “Isolate dependencies on this particular data base management
system.”

Include a separate summary of recommendations. While individual recommenda-
tions will be interspersed with the findings, a separate summary with an assessment of
the relative importance of each recommendation helps the reuser decide quickly what
will need to be done for this particular reuse.

6-8

Keep the rating up to date. To be credible, the rating must reflect the current state of
the RSC. Revise it whenever the RSC is improved and whenever actual reusers provide
feedback.

Keep the assessment and recommendations up to date. To be credible, the quality
assessment and recommendations should reflect the current state of the RSC. Revise
them whenever the RSC is improved and whenever actual reusers provide feedback. As
a minimum, date each finding and recommendation and add dated revision paragraphs.

6.5 Documentation

The folder for an RSC ready for accession contains considerable information. The staff
members verify its completeness and extract some items for special purposes.

6.5.1 Identify documents to be delivered to the reuser with the RSC.

Assemble the following items and review them for readability and consistency. If this RSC is
to be delivered in machine-readable form, obtain each item in that form.

• Reuser’s manual

• Test plans, objectives, scripts, expected results

• If the RSC is a document, the document itself

• General quality and reusability rating and rationale

• Summary of recommendations

6.5.2 Identify documents to be displayed on-line to library users for searching
and browsing.

Assemble the following items in machine-readable form, review for readability and
consistency, and revise, as appropriate, to facilitate on-line browsing.

• Abstract

• General quality and reusability rating and rationale

• Summary of recommendations

6.5.3 If there is no formal reuser’s manual, review the existing documentation
and prepare an index.

Except in the case of RSCs developed specifically for the library by project engineers, the
reuser’s manual will likely be absent. All or most of the information needed by the reuser may
be present in the existing documentation.

6-9

G6.5.3.1 Index the existing documentation using the organizational format for
the reuser’s manual.

In general, documentation developed for software is designed to provide an audit trail
of the development process and instructions to the end-user. Thus, the information will
be organized quite differently from the reuser’s manual, which is specifically designed
for the needs of the implementor, the reuser. To rearrange the information in a familiar
(to the reuser) format, prepare a cross-index arranged like the standard reuser’s manual
table of contents and indicate where in the available documentation the information
actually is.

6.6 Classification

As the library acquires a significant number of RSCs, an automated search and retrieval system
becomes indispensable. Several such systems are available as commercial products; many
more have been developed by companies for their own use or on behalf of government
agencies. Requirements for such systems and other tools are discussed in 8.1, Library Staff
Tool Requirements, page 8-1 and in 8.2, Library User Tool Requirements, page 8-3.

6.6.1 Classify every RSC to support automated search and retrieval.

Whatever tool is used, the library must have a way to classify RSCs so that a user can quickly
find what is wanted without the frustration and delay of finding bad matches. Sophisticated,
expert system, knowledge-based approaches and new technologies for high-speed text search
are the subjects of current research efforts. The two methods that have proven themselves in
practice are the keyword search and the faceted classification scheme.

The keyword search has the advantages of simplicity and familiarity. In this system, every item
to be catalogued has a number of keywords associated with it. The searcher enters words
corresponding to the requirements and, typically after many iterations, items in the general
category are identified. This method is inefficient, mainly because, without a context, simple
words lack precision.

6.6.2 Use a faceted classification scheme to classify RSCs.

A faceted classification scheme places the keywords in context. Moreover, it encourages more
precise and accurate classification through the discipline of regarding the item from specific
viewpoints, or facets. Numerous tools designed specifically for RSC retrieval use this method.
A faceted classification scheme is described in Appendix B.

G6.6.2.1 Encourage submitters of proposed RSCs to include classification
descriptors.

The proposer knows the requirements and can describe them clearly, so that the initial
search for similar RSCs (Guideline G6.1.1.2, page 6-1) will be effective.

6-10

G6.6.2.2 Encourage potential submitters of RSCs to include classification
descriptors.

The submitter knows the RSC’s characteristics best, and can revise the original
proposer’s descriptors, if necessary.

G6.6.2.3 Review and revise RSC classifications.

The library staff knows the domain best and is most familiar with the details of the
classification scheme. The actual classification that is entered in the retrieval system
may call for multiple entries and other subtle usages unlikely to be familiar to users, but
which greatly improve the chances of success.

6.7 Assimilation and Distribution

Once the necessary supporting material is assembled for a given RSC, the staff installs it in the
library and makes it available to the project engineers.

6.7.1 Assemble each complete RSC for delivery.

G6.7.1.1 A complete RSC includes:

• Abstract

• Classification

• Reuser’s manual

• Test plans, objectives, scripts, expected results

• Source code or document to be reused

• General quality and reusability rating and rationale

• Summary of recommendations

G6.7.1.2 Ensure that the RSC package is readily available.

Have machine-readable deliverables organized for efficient retrieval and transmission.
For hard-copy deliverables, if reproduction resources limit quick turnaround, have extra
copies ready for transmittal.

6.7.2 Enter each RSC’s description in the catalogue.

The library staff maintains a catalogue of available RSCs, with periodic updates of new
accessions. Once the RSC is assimilated into the library and accessible via the retrieval system,
make users aware of its existence by including its description in the next catalogue update.

6.7.3 When new RSCs are acquired, inform interested parties directly.

The person or organization who originally proposed adding the RSC to the collection, anyone
who contributed material for the RSC, reusers who sought this or similar capabilities via the

6-11

retrieval system and failed, and anyone else who has expressed or implied an interest are all
potential reusers of the RSC. Don’t wait for them to notice it in the catalogue.

G6.7.3.1 Always note interested parties.

Documents in the RSC’s file should always have room for names and dates. The
retrieval system should generate a log of unsuccessful searches, and the library staff
should check this log frequently.

7-1

Section 7

RSC Management

The library assists the supported project’s configuration management
(CM) team by keeping track of reusable software products and their users
and by serving as a point of contact for changes and problem reports.

7.1 RSC Tracking and CM

From the moment an RSC is installed in the library and made available to project engineers, it
is managed as a product. The library’s incremental enhancement approach and the wide
dispersion characteristic of reusable products demand effective CM. The continual process of
improvement described in subsection 9.3, Performance Evaluation, page 9-3, depends on a
history of the uses of RSCs and the experiences of the reusers.

7.1.1 Provide added value to the maintenance and CM activities.

G7.1.1.1 Don’t duplicate the duties of the CM staff.

CM of RSCs is, to a large extent, like CM for all other project products, and is properly
the responsibility of the trained CM team. Maintaining separate records introduces
more problems than it solves.

G7.1.1.2 Don’t try to maintain RSCs.

Normally, and particularly under IOC, the library will have no resources to spare for
maintenance, especially since the supported project has the skills available.

G7.1.1.3 Serve as a point of contact for CM and maintenance issues.

The library can provide a service to reusers by acting as a liaison between them and the
CM team, as well as coordinating maintenance. While the library staff does not
routinely maintain RSCs, it has a responsibility to its customers, the engineers who
reuse the components, to ensure quick and effective response to maintenance issues. In
general, maintenance of RSCs will be performed by RSC authors or RSC users. Each
of these parties has an interest in fixing problems and adding capability; who provides
the labor will vary from one case to the next. The library’s primary concern is that
problems eventually get fixed with no duplication of effort.

G7.1.1.4 Coordinate with the project CM staff to define a problem resolution
procedure for RSCs.

The nature of reusable products might call for some changes to the existing problem
resolution procedure. Nevertheless, the existing method is the place to start. Be sure the
procedure for RSCs takes into account the library’s incremental enhancement approach
described in 6.4.1, page 6-5.

7-2

G7.1.1.5 Maintain and use the logs generated by the automated search and
retrieval system.

The retrieval system should track RSC uses, problem reports, search failures, and other
data which support CM; improvement of the search mechanisms; and full disclosure to
reusers of the current status of each RSC.

7.2 Tracking Reusers

The library staff tracks the transactions of reusers extracting RSCs from the library in various
ways. Some of this information supports CM and maintenance; other data, discussed in
subsection 9.3, supports performance improvement. Much of the information can be collected
automatically by the search and retrieval system; refer to the discussion in subsection 8.1,
Library Staff Tool Requirements, page 8-1. This section concentrates on library staff
procedures related to CM.

7.2.1 Ensure that every RSC reuse is noted.

The library cannot possibly be an effective point of contact for CM and maintenance for
RSCs that are obtained with no record of the extraction. Unfortunately, the strict control
measures that would enforce registration of all RSC reuses are not only costly but
undermine the goals of reuse by creating disincentives.

G7.2.1.1 Insist that library tools track RSC reuses.

This requirement is important. It allows registration with no burden on the reuser and,
in fact, enlists reusers’ cooperation through full disclosure. Typically, a reuser has an
account for access to the search and retrieval system. The only additional information
asked at extraction is an agreement on a “feedback date” when the reuser will be
available for an interview (usually telephonic) about the ultimate fate of the RSC and
the reuser’s experience with it.

G7.2.1.2 Be sure all participants understand the importance of tracking reuses.

Emphasize that the library staff needs to track every instance of a reuser obtaining an
RSC in order to assess demand, obtain reuser feedback, distribute change notices, and
improve library services. The display that asks for the feedback date might include a
statement or “sales pitch” to drive this point home.

G7.2.1.3 Encourage “borrowers” to register uses with the library.

It is likely that engineers working together will share the same RSC for multiple reuses,
with the danger that only the original extraction is registered by the library. Be sure
everyone understands that there is no cost or penalty for registering the use of an RSC;
on the contrary, there are only benefits. Warn the CM team to watch for this.

G7.2.1.4 Don’t overlook RSCs incorporated by reference.

Like “borrowed” RSCs, reusable products obtained from sources outside the library
may be unregistered. Again, stress the benefits and warn CM. In some cases, not only
the reuse, but the very existence of such products may be unknown to the library.

7-3

Encourage users of these unregistered software products to propose them for inclusion
in the library for the benefit of all.

7.2.2 Ensure that registered but unused RSCs are reported and their use
registrations deleted.

If a project engineer obtains a component, registers the use, and then decides not to use it after
all, resources will be wasted if the registration remains active. The project engineer will receive
unwanted problem reports and change notices as a “reuser,” and the RSC will look more
attractive than it deserves because, after all, it has been “field-tested!”

G7.2.2.1 Be sure the feedback interview determines the eventual fate of the
RSC.

The feedback interview is the best source of information on unused RSCs. Be sure the
respondent doesn’t feel obligated to pretend it was used.

8-1

Section 8

Library Tool Management

Once a reuse program is established and components accumulate,
automated search and retrieval tools can make an increasing difference in
making these components available to users.

This section describes the requirements for support tools which are unique to the needs of the
NATO reuse library. Standard productivity tools such as electronic mail, technical publishing,
and spreadsheets should be available as part of the library, but are not discussed here because
there are no unique features which the tools must provide.

Requirements expressed explicitly as numbered paragraphs of the standard indicate the
minimum military requirement (MMR); the library cannot operate effectively without these.
Some features can reasonably be expected in tools, but will not become critical until FOC, and
are so noted.

8.1 Library Staff Tool Requirements

The support tools available to the library staff will have direct impact on the effectiveness of
the reuse program. Maintenance of the RSCs can become overwhelming if inadequate tools are
supplied to the library staff.

8.1.1 Support the cataloguing of RSCs.

Just as libraries of books classify them for easy access, the reuse library must classify its
components. There must be an easy-to-use means of associating a classification with an RSC,
and this association must support quick searching based on the classification.

The tools should support bulk automatic entry of the RSCs’ classification information into the
library in order to minimize the data entry burden on the library staff. (FOC)

Initially, a spreadsheet-based package might suffice to track RSCs and their classifications, but
a growing collection of RSCs will soon exceed its capacity. A data base management system
with an easy-to-use interactive query language would be more powerful and a basis for further
enhancement.

G8.1.1.1 Support sublibraries specific to application domains.

The cataloguing tools should support sublibraries for distinct domains such as
communications, radar, networks, or logistics, and allow RSCs to belong to more than
one domain. (FOC)

8-2

8.1.2 Support the maintenance of the classification mechanism.

The classification scheme used to classify the RSCs must not be static. As new technologies,
each with its own vocabulary, are identified and added to the library, new elements must be
added and deleted from the classification scheme.

8.1.3 Generate transaction and status reports.

The library must be able to generate logs of transactions and produce reports based on these
logs. As a minimum, the library must report:

RSC Uses. Report who extracted the RSC, when, and for what project, including a point
of contact if different from the user. This facilitates the distribution of problem reports
and change notices, demand assessment, and performance measurement.

Classification Scheme. List the descriptive terms used to classify RSCs, by domain.

User Information. Include name, telephone number, mailing address, and project
association for each user of the library.

RSC History. Report the RSC change log, which maps to problem reports; feedback
log, including inspections which did not turn into actual uses; and relationships to other
RSCs, particularly derivations and dependencies.

Problem Reports. Show all outstanding problem reports for a given RSC.

8.1.4 Support CM of the RSCs and of the classification vocabulary.

The library system must prevent unauthorized changes to RSCs in the library (noting that
changes by users to extracted RSCs are permitted). The tools must be able to keep track of
RSCs and RSC versions, and to track the changes against problem reports or enhancements
made by reusers. Similarly, the descriptive terms used to classify products should resist
uncontrolled changes.

8.1.5 Support problem-report tracking.

The library must track problem reports to closing, since the library typically acts as a
coordinator for problem-report resolution. Also, because of relationships among RSCs and the
strategy of incremental enhancements, the library must be able to assess the impact of a
problem report against all related RSCs—especially those that have been derived from or are
the parents of the RSC the problem report was originally issued against.

8.1.6 Support user and project tracking.

The library must be able to identify the project point of contact for the distribution of new
releases of RSCs and for the distribution of problem reports.

The library must be able to identify specific reusers in order to obtain feedback and to determine
whether inspections have culminated in actual reuse.

8-3

8.1.7 Include adequate tool documentation.

The tools should come with reuser, installation, and maintenance documentation.

8.2 Library User Tool Requirements

The library, with few resources available for labor-intensive tasks, must rely on automation to
provide much of the user services that will make reuse successful. While reuse tool technology
advances steadily, the MMR can readily be met with currently available tools.

8.2.1 Provide reusers an effective RSC search and retrieval system.

This is the key technology, and it addresses many of the greatest obstacles to reuse by reducing
the time, the cost, and the difficulty of identifying and obtaining reusable products. The
essential features are:

Easy specification. The reuser should be able to describe the requirements of the
desired products without learning a new language or negotiating a cumbersome user
interface.

Iterative refinement. The system should allow, and preferably assist, the reuser to
change the specification, based on the result of a search.

Detailed information. After the search has narrowed the list of candidates to a
manageable size, the reuser should have access to abstracts, quality assessments,
software measures, and other information needed to eliminate unsuitable RSCs and
select the best match to the requirements.

These features suggest additional details:

G8.2.1.1 Allow synonyms.

Different domains, and different parts of the same project, use different terminology for
requirements that are arguably equivalent. Similarly, reusers with different
backgrounds use different terms. An automated thesaurus can bridge the gaps between
application jargon, software engineering terminology, plain English, and “engineer’s
English.” There is no particular reason why a thesaurus could not accept multiple
human languages (for example, English and French) on the same project, although this
capability is not readily available today.

G8.2.1.2 Indicate the closeness of each RSC to the stated requirements.

As a minimum, tell the reuser how many terms matched.

G8.2.1.3 Provide tools for browsing RSC information.

The reuser must be able to examine the RSC’s documentation, problem reports, metrics,
and log prior to making the commitment to use an RSC. Having this information on-line
will greatly increase the likelihood that the information will be accessed.

8-4

G8.2.1.4 Allow sorting and other management of the RSC list.

The reuser, trying to narrow the list of candidate RSCs, can keep better track if the list
can be rearranged and annotated based on the reuser’s reactions to descriptions,
problem reports, and software measures.

G8.2.1.5 Support searches across sublibraries or domains.

The searching tools should allow the reuser to search multiple domains for needed
components. (FOC)

G8.2.1.6 Support geographically remote reusers.

The searching tools should be easily accessible to geographically remote reusers. The
reuse library will be of most benefit if available to engineers through electronic media
as part of the development environment. (FOC)

G8.2.1.7 Include a mechanism to provide the reuser a copy of the RSCs
requested.

At a minimum, when a reuser selects an RSC from the library, send the reuser a tape or
diskette with the requested information. If electronic mechanisms like File Transfer
Protocol (FTP) are available, they can be used if the transfer is initiated on the library
side of the transfer. (Users cannot be given the file names of the RSCs for CM and
security reasons.) Some RSCs, particularly design documents, may not be available in
electronic media. In such cases, send a hard copy.

8.2.2 Furnish documentation explaining the features and use of the tools.

G8.2.2.1 Provide on-line help and simple procedures.

Ideally, most users should never need to refer to the published user’s manual. More and
more modern software is close to this ideal, and today’s users resent having to read
manuals to perform straightforward tasks.

G8.2.2.2 Provide a detailed user’s manual.

On-line help notwithstanding, a manual is still necessary. Some users like to study a
manual away from the system to become familiar with the breadth of features available;
others find physical pages more comfortable than scrolling text on a screen or
navigating menus. Some tasks are complex beyond the capacity of on-line help. Finally,
a manual is an excellent place to provide added value in the form of hints and strategies
that make the most of the tool’s capabilities.

9-1

Section 9

Library Organizational Management

A successful reuse program depends critically upon the coordination and
the proficiency of the reuse library organization. This section discusses the
needed skill mix, user services, and performance evaluation.

9.1 Staff Skills and Responsibilities

In the IOC configuration, which will most likely be the typical configuration for most projects,
the library will not have a full-time dedicated staff. Instead, the library tasks will be performed
as additional duties by an existing organization with a related mission. A likely candidate is the
supported project’s maintenance, testing, and validation activity.

Nevertheless, the library’s activities call for specific skills and, more importantly, specific
viewpoints and priorities. The responsibilities and corresponding skills of the library staff,
always focused on cost-effectiveness and operational goals, will evolve as the NATO reuse
program matures.

9.1.1 Put the customer first.

The reuse library exists for the benefit of the supported project, and is successful insofar as it
increases the project’s cost-effectiveness. The project’s engineers and managers are the
library’s customers. Therefore, library activities and procedures give priority to responsive
customer service.

This can lead to conflict if, as is likely, the library’s duties are performed by the supported
project’s maintenance, testing, and validation activity. Traditionally, and rightly so, a
validation activity calls for a somewhat adversarial position to assure objective assessments.

G9.1.1.1 Make a clear distinction between reuse library activities and
conflicting positions.

To the extent practical, separate the activities and, if possible, make this separation
clearly apparent to the project staff. Always be responsive to customer needs.

G9.1.1.2 Use creativity and initiative.

While the library functions primarily in a support role rather than as a “reuse advocate,”
its products and services are the most visible manifestation of the software reuse
program. Reuse is an evolving methodology that must overcome many barriers to
succeed; if the library is not actively making reuse happen, it is holding it back.

9.1.2 Be conversant with all relevant aspects of the supported project.

Much of the library’s added value is the ability to place RSCs in the context of “the big picture,”
that is, the entire application domain. Library staff members should be able to perceive

9-2

opportunities for reuse that may not be apparent to project engineers concentrating on more
specialized subsystems.

9.1.3 Know the programming languages and design methods used in the
supported project as well as other languages and methods.

Library personnel should recognize commonality and reuse potential even when it is disguised
by different design and implementation conventions.

9.1.4 Be thoroughly familiar with the three NATO reuse standards.

Among the library’s duties is the application and, where necessary, revision of the three
manuals, Standard for the Development of Reusable Software Components, Standard for
Management of a Reusable Software Component Library (this manual), and Standard for
Software Reuse Procedures.

9.1.5 Be proficient in modern software engineering practice.

Most technical issues of reuse are nothing more than the systematic application of what is
currently considered good practice.

9.1.6 Have a working knowledge of CM principles.

This is essential for the library’s role as a point of contact for CM issues pertaining to RSCs.

9.1.7 Have a working knowledge of software testing, validation, and
verification procedures.

The library’s assessments of reusable products should be done using methods compatible with
project practice.

9.2 User Services

The library’s main activity is the accession and distribution of RSCs. In support of this activity,
the staff performs additional tasks related to CM and maintenance, described in previous
sections.

Beyond these activities, the library provides some services directly to the user community.

9.2.1 Publish and distribute a catalogue of available RSCs.

This serves both as a reference, indicating the breadth of offerings, and as advertising,
promoting awareness of the support available through the library.

G9.2.1.1 Distribute catalogue updates, announcing additions and changes to
the RSC collection, frequently.

Distributing revised versions of the entire catalogue meets the purpose of providing a
reference, but fails to make users aware of what is new. The updates might be in the
form of a newsletter that includes other reuse-related information of interest to the
project staff.

9-3

9.2.2 Provide on call assistance.

This is an essential service. Users of the library search and retrieval system and proposers,
submitters, and reusers of RSCs will turn to the library staff with their questions and concerns.
Be prepared to respond effectively.

G9.2.2.1 Publish answers to frequent questions.

This might include introductory instructions on the use of the tools, an overview of
library activities, products, services, and points of contact, and examples of good
practice.

G9.2.2.2 Prepare packages of forms, checklists, and instructions for RSC
proposers and submitters.

Appendix C includes examples of such forms.

G9.2.2.3 Prepare standard forms for problem reports, RSC enhancements,
and other reuser actions.

Appendix C includes suggestions for such forms. Be sure they don’t conflict with the
project’s standard forms and procedures.

9.3 Performance Evaluation

Like any initiative for change, the reuse program must grow into its role; the sponsoring office
must continually evaluate the program’s success in terms of actual benefits realized and revise
standards and practices based on these findings. The library is in a key position to collect data
that will assist this evaluation process.

9.3.1 Define specific indicators corresponding to the library’s objectives.

Following paragraph 5.2.1, page 5-1, the library staff will:

Define specific objectives, in terms of library actions and goals, that support
NATO reuse objectives.

For each of the objectives defined, the library needs corresponding measures or other verifiable
evidence. Note that the indicators need not be numeric, or even particularly quantifiable; for
example, a mapping of RSC characteristics to requirements is neither.

G9.3.1.1 For the objectives recommended in Guideline G5.2.1.1, page 5-2,
use the following indicators, respectively:

Relevance of RSC collection:

• Fraction of RSCs actually used

• Mapping of RSC characteristics to project requirements and specifications

9-4

RSC value:

• Results of evaluation

• Reuser feedback

RSC quality:

• Results of evaluation

• Test results

• General quality and reusability rating

• Problem reports

• Reuser feedback

Size of RSC collection:

• Number of components

• Number of distinct categories of components

• Mapping of categories to application subsystem domains

Minimal cost to obtain RSCs:

• High rate of successful searches by reusers

• Low number of unsatisfied searches

• Low number of unknown or ambiguous terms

• Low search times

• Reuser feedback

Minimal cost to operate library:

• Expenses, by task

• Ratio of library cost to measured benefits of reuse

• Work done outside of IOC requirements

Support:

• Response time for problem reports

• Amount of direct contact with users

9-5

9.3.2 Provide regular reports on the performance of the library and its RSCs.

Define and follow a standard procedure for reporting performance to the agency responsible for
the reuse program.

G9.3.2.1 Compile the data collected for the above performance indicators.

Use a standard format.

G9.3.2.2 Perform a preliminary analysis.

Annotate the indicators with interpretations and explanations, and combine them, where
appropriate, to reduce the volume of data.

G9.3.2.3 Present the results in a summary format for detailed analysis by the
sponsoring agency.

Use a standard format.

APPENDICES

A-1

Appendix A

Evaluating RSC Cost-Effectiveness

A.1 Overview

Depending on the resources available, mainly labor, evaluating proposed RSCs for cost-
effectiveness can range from a rough estimate to a detailed analysis of discounted cash flows.
Since consistency is important, the library should select a level of detail that can be sustained
over its lifetime and that gives comparable results for all RSCs. The method used to estimate
costs should be compatible with software cost estimation methods used by the supported
program.

The desired end result is simple to state; there are two quantities of primary importance:

• The net saving to the individual reuser for each instance of reuse of the RSC

• The net saving to the supported program from all reuses of the RSC

The quantities in the analysis can be expressed either in IAU or in labor hours.

A.2 Benefits

Considering likely target applications in the supported project, estimate the following measures
of the RSC’s usefulness:

Saving due to Avoided Cost, SR. The sum of costs avoided each time the RSC is
reused, that is, the cost that will be incurred if a new component is developed for each
instance. Includes design, coding, testing, QA, documentation, maintenance, and CM.
Adjust the value if there are multiple likely uses and developers can be expected, in the
absence of a library RSC, to salvage existing components to save work.

Service Life, L. The useful lifetime of the component (how long it will be maintained
in the library) in years, taking into consideration the nature of the target uses as well as
any characteristics of the RSC that might limit its life.

Demand, N. The number of times the RSC is likely to be reused during its service life L.

If the estimate takes into account present and future values, use instead:

Demand Distribution, Ny (y = 1, 2, ..., L). The number of times the RSC is likely to be
reused in each year of its service life, L.

A-2

A.3 Costs

Considering the resources available, estimate the following quantities associated with making
the RSC available:

Cost to Reuse, CR. The cost incurred each time the RSC is reused, including
identification, retrieval, familiarization, modification (if likely), and installation.

Accession Time, TA. The amount of time likely to elapse between the decision to
acquire the RSC and its availability in the library.

Accession Cost, CA. The cost to add the RSC to the library, including obtaining raw
material, developing the complete RSC, and installing it in the library.

Maintenance Cost, CM. The cost to maintain the RSC in the library, including CM and
change distribution.

If the estimate takes into account present and future values, use instead:

Maintenance Cost Distribution, CMy (y = 1, 2, ..., L). The cost to maintain the RSC in
the library for each year of its service life L.

A.4 Risks

Assess any risks incurred by the reuser or by the program if the decision is made to acquire the
RSC. These may include:

• A dependency on technology or information not yet available

• A dependency on a particular environment or configuration

• Obsolescence of the objects or functions implemented by the RSC

• Obsolescence of the RSC’s design or algorithm in areas where technology is advancing
quickly

• Legal or contractual obstacles to acquiring or using the RSC

Adjust the cost to reuse, CR, the accession cost, CA, or the maintenance cost, CM (or CMy), as

appropriate, by an estimate of the cost to overcome identified risks. For risks that can’t be
overcome, adjust the service life, L, or the demand, N (or Ny)

A.5 Net Saving to the Reuser

Calculate the net saving to the individual reuser for each instance of reuse of the RSC, or the
NSR, as the difference between the saving due to avoided cost and the cost to reuse:

NSR = SR - CR

A-3

A.6 Net Saving to the Supported Program

The total saving from all instances of reuse is the NSR multiplied by the number of reuses (the
demand, N).

Calculate the net saving to the supported program from all reuses of the RSC, NSP, as the total
saving less the accession and maintenance costs:

NSP = (NSR × N) − (CA + CM)

A.7 Annual Costs and Adjustments for Future Values

It may be useful to calculate the NSP on an annual basis, using the demand distribution and the
maintenance cost distribution. For each year y:

NSPy = (NSR × Ny) − CMy

This calculation assumes that the accession cost is incurred prior to the beginning of the first
year of service and is recorded separately. Alternatively, the accession cost could be amortized
over the service life and included as an adjustment to each year’s NSPy.

The cost estimation method may include an adjustment for the fact that future cash flows
decrease in value with time. There are many ways to account for this; one method uses a
required rate of return or discount rate:

Discount Rate, i. The percentage by which future cash flows are discounted each year.

This approach allows the NSP to be expressed as an annual discounted NSP, DNSPy, also called

the discounted cash flow:

(NSR × Ny) − CMy
DNSPy = ______________________

(1 + i)y

A useful measure for comparing RSCs (for example, to determine priorities for scarce
resources), is the

Cumulative Discounted Cash Flow, CDCF. This is simply the sum of the annual
discounted cash flows, less the accession cost:

CDCF = DNSP1 + DNSP2 + DNSP3 + … + DNSPy − CA

A-4

An alternative comparison measure is the

Profitability Index, PI. Also known as the cumulative discounted cash flow per unit
invested, this is simply the sum of the annual discounted cash flows divided by the
accession cost:

DNSP1 + DNSP2 + DNSP3 + … + DNSPy − CA
PI = ___

CA

B-1

Appendix B

The Faceted Classification Scheme

B.1 How to Classify a Reusable Software Component

Overview

A component classification is a set of {facet, facet term} pairs, also called descriptors,
assembled according to the following rules:

1. Facet is one of a fixed set of words or short phrases denoting possible aspects, or
viewpoints, from which to describe RSCs. The particular words may vary from one
installation to another and new ones may occasionally be added during the lifetime of a
library system as the need arises.

2. Facet term is a word or phrase from the library’s list of representative terms for the
particular facet. During the startup phase of a new library, the list will grow quickly as
the library staff becomes familiar with the users’ preferred terminology. However, it is
in everyone’s interest that the list stabilize soon, after which terms are added only
occasionally.

3. There may be any number of pairs in the classification for a particular RSC; any facet
can occur any number of times (including zero). In the interest of performance,
however, there should always be at least one term for the facet object or the facet
function.

Facets are few in number (between five and ten, occasionally as many as fifteen). Each facet is
carefully selected to be clear and unambiguous to the intended user community, but need be
neither independent of every other facet nor applicable to every possible RSC.

A typical set of facets might include:

object—a software engineering abstraction implemented by, or operated upon by, the
RSC, such as stack, window, or sensor

function—a process or action performed by the RSC, such as sort, assign, or delete

algorithm—any special method name associated with a function or object, such as
bubble for the descriptor {function, sort}

rsc type—the particular kind of software life-cycle product that the RSC is, such as
code, design, or requirement

language—the method or language used to construct the RSC, for example, ada, c++,
postcript, english, or french

B-2

environment—any hardware, software, or protocol for which the RSC is specialized,
such as unix, msdos, postscript, or sql

An RSC is classified by assigning appropriate facet terms for all applicable facets. The
objective in classifying the RSC is to make it possible for all users who might in fact have use
for the RSC to retrieve it as a result of their requests. Guidelines for this process are given
below.

A complete component classification for a sort routine might look like Table B.1:

Table B.1 - Classification for a Sort Routine

Note that the facet object occurs twice (the routine sorts addresses by mail code, but the user
might specify either in a search). The facet environment is absent (the routine is not tied to any
in particular).

A more versatile sort routine might look like Table B.2:

Table B.2 - Classification for a Generic Sort Routine

Here the facet object has disappeared, since the object to be sorted is a generic parameter of any
type.

Facet Facet Term

object address

object mail code

function sort

algorithm binary sort

rsc type code

language ada

Facet Facet Term

function sort

algorithm binary sort

rsc type code

language ada

B-3

The user need not be familiar with all the terms used in classification; many automated systems
allow synonyms to be used in searches.

Synonyms are facet terms with the same meaning; a group of synonyms is known as a concept.
For example, delete, remove, erase, and pop are synonyms. One term from such a group is
selected as the representative term (the name of the concept) and serves as the facet term used
for the actual classification of RSCs. The remaining synonyms are keyed to the representative
term in a list called a thesaurus. When the user enters terms to describe the desired component,
any one of the synonyms is equivalent to the representative term.

How to Select Terms, Facet by Facet

1. Look over the available documentation (including the source code) and write a draft
abstract. At this point, you should have a clear understanding of the component.

2. Look at each facet’s definition and consider how it applies to the RSC. Jot down terms
that come to mind, without regard to the list of representative terms.

3. Reconcile your terms with those from the list. If a term you need has no equivalent on
the list, prepare a proposed facet term entry:

• Jot down the term and a definition/rationale (so we can understand why it’s
different from those on the list).

• Jot down all possible synonyms. A thesaurus may be helpful. Consider all words
a user might employ for this concept, even if they are not true synonyms.

• Select the original term or one of the synonyms as the representative term. This
should be the one with the clearest, least ambiguous meaning within this facet.

• Write the representative term, all synonyms, the definition/rationale, and the
identifier of the RSC for which it is needed on a sheet of paper and submit to the
library. New terms will be added periodically and new lists distributed.

4. List the terms for each facet; if any terms are new (proposed to the library), flag them
in some clearly visible way.

5. Revise the abstract if you’ve learned anything new.

Guidelines for Effective Classification

Not all facets need to be employed in classifying an RSC. For example, algorithm might not
apply. Remember, however, that terms must always be given for object or function.

More than one facet term may be given for a single facet. For example, a Sort RSC might be
classified with {object, address} and with {object, record}. Thus, the user who wants to sort
addresses will be guided to the RSC, and so will the user who simply asks to sort records. This
approach is useful in describing RSCs that can be thought of in either application-oriented or

B-4

software-oriented terms. It is also useful if an RSC does more than one thing, runs on more than
one system, and so forth.

In classifying packages, subsystems, or other composite RSCs, classify the overall package and
each of its constituent components as separate RSCs if it makes sense to do so.

In selecting a facet term, use the representative term rather than one of its synonyms. For
example, use telephone number rather than phone.

Once a component has been classified initially, its classification can be changed or augmented.

If the facet terms that best classify a component are not in the library they can be added.

To classify RSCs most effectively, the librarian must understand the selection process that the
user goes through. Librarians should familiarize themselves with this process through actual
on-line practice searching for RSCs.

If the system generates a Search Failure Log, it should be reviewed to identify instances in
which a user may not be getting a match to an available RSC that meets the needs. This is an
indication that the RSC classification needs updating. For example, if a routine that sorts
addresses is classified only as sorting {object, record}, then the user who requests
{object, address} will not retrieve it. Noticing this, the librarian might decide to add
{object, address} to the RSC’s classification.

B.2 Maintaining the Library’s Classification Scheme

The library classification scheme is designed to allow additions and changes to improve its
descriptive power. This subsection addresses the kinds of classification scheme changes
available to the librarian.

Maintaining the Descriptor Lists

The descriptor lists are the list of facets and the list of facet terms for each facet. Both can be
changed, but the circumstances in which changes are appropriate are very different.

The set of facets provides the basic structure of the classification scheme. They have been
carefully chosen to meet a wide range of classification needs, and change should not be
undertaken without comparable analysis. Changing the facets involves significant effort,
because it means that the classifications of all the RSCs in the library potentially need to be
changed. For these reasons, the set of facets should rarely be changed, and such changes should
be carefully controlled through appropriate approval policy and access permission. Facet
changes may be required when extending the library system to serve a different application
area, to meet an installation-specific need, or to address a new policy.

B-5

The facet terms, on the other hand, are intended to be added as need arises to classify new RSCs.
The following guidelines apply to the addition of facet terms:

• Before adding a new term, be sure that it is not a synonym of an existing term. If so, it
should be added as a synonym to that term—see Maintaining the Thesaurus, below.

• All terms in a given facet must have unique names, and the names may not be the same
as any synonyms for other terms in that facet. For example, there might be two
meanings for state as an object term, a nation and the state of a system entity. State
cannot appear twice as a term, or once as a term and once as a synonym. The solution
is to introduce two terms with unique names like nation and status, with state as a
synonym for each.

• Make the new term the same part of speech and case as the existing terms in the facet.
For example, the object terms are singular nouns like record and address.

• Always use lower case for portability with systems that are case-sensitive.

• When adding a new term, add obvious synonyms at the same time.

It may be desirable to delete facet terms that have been in the system for some defined period
of time without ever being used.

Maintaining the Thesaurus

The thesaurus is the set of synonyms for the facet terms. Synonyms are added to improve the
capability of the system to “understand” user requests. The following guidelines apply to
adding synonyms:

• In classifying a component, add a synonym if a desired term is a synonym of an existing
term.

• Examine the Search Failure Log for instances in which a user failed to get a match when
using a synonym for one of the existing terms. It might be appropriate to add that
synonym to the thesaurus.

• Avoid adding different parts of speech, plurals, or other complexities to the thesaurus.
The user can be expected to conform to the standard for the facet.

• If appropriate, two or more different facet terms can have the same synonym.

As with terms, deletion of synonyms may be appropriate.

C-1

Appendix C

Forms and Checklists

This appendix includes the following checklists and forms:

• RSC File Checklist

• RSC File Cover Sheet

• Proposed RSC Requirements Form

• Cost-Effectiveness Evaluation Form

• Conformance Checklist

• Incremental Enhancement Form

• Completeness Assessment Checklist

• General Quality and Reusability Rating Form

• Summary of Recommendations Form

C-2

RSC File Checklist

RSC Identifier __

____ RSC File Cover Sheet

____ Proposed RSC Requirements Form

____ Cost-effectiveness Evaluation Form

____ Evaluation Findings

____ Conformance Checklist

____ Acquisition Instructions

____ Incremental Enhancement Form

____ Completeness Assessment Checklist

____ General Quality and Reusability Rating Form

____ Summary of Recommendations Form

C-3

RSC File Cover Sheet

RSC Identifier __

RSC Name ___

Component Origin ___

Component Type __

Proposer __Date:_________________

Reviewer ___Date: ________________

Change Log

 Date Change Description Name

C-4

Proposed RSC Requirements Form

RSC Identifier __

Functional Description:

Availability:

Rationale:

C-5

Cost-Effectiveness Evaluation Form, Part 1

RSC Identifier __

Quantity Value

Saving due to avoided cost SR _________________

Service Life L _________________

Demand N _________________

Demand Distribution: Ny

N1 _________________

N2 _________________

N3 _________________

N4 _________________

N5 _________________

(use additional sheet if needed)

Cost to Reuse CR _________________

Accession Time TA _________________

Accession Cost CA _________________

Maintenance Cost CM _________________

Maintenance Cost Distribution: CMy

CM1 _________________

CM2 _________________

CM3 _________________

CM4 _________________

CM5 _________________

(use additional sheet if needed)

Risk adjustments:

CR _________________

CA _________________

CM _________________

L _________________

N _________________

Discount rate i _________________

Method

C-6

Cost-Effectiveness Evaluation Form, Part 2

RSC Identifier __

Calculation Result Method

Net saving to reuser NSR _________________ SR - CR

Net saving to program NSP _________________ (NSR × N) − (CA + CM)

Annual net saving: NSPy (NSR × Ny) − CMy

NSP1 _________________

NSP2 _________________

NSP3 _________________

NSP4 _________________

NSP5 _________________

(use additional sheet if needed)

Annual discounted net saving: DNSPy NSPy ÷ (1 + i)y

DNSP1 _________________

DNSP2 _________________

DNSP3 _________________

DNSP4 _________________

DNSP5 _________________

(use additional sheet if needed)

Cumulative discounted
cash flow: CDCF _________________ Σ DNSPy − CA

 Profitability index PI _________________ Σ DNSPy ÷ CA

C-7

Conformance Checklist

RSC Identifier __

Standard Deviation Description Analysis

C-8

Incremental Enhancement Form

RSC Identifier __

 Deficiency Description

1. ___________________________

2. ___________________________

3. ___________________________

4. ___________________________

5. ___________________________

6. ___________________________

7. ___________________________

 Enhancement Description and Rationale

1. ______________________________________

2. ______________________________________

3. ______________________________________

4. ______________________________________

5. ______________________________________

6. ______________________________________

7. ______________________________________

C-9

Completeness Assessment Checklist

RSC Identifier __

____ Reuser’s Manual

____ Abstract

____ Classification

____ RSC Material

____ Test Material

____ General Quality and Reusability Rating and Rational

____ Summary of Recommendations

C-10

General Quality and Reusability Rating Form

RSC Identifier __

General Quality and Reusability Rating __

Rationale:

C-11

Summary of Recommendations Form

RSC Identifier __

Priority Rating __

Recommendations: Priority:

