
N A T O U N C L A S S I F I E D

NATO

STANDARD FOR

THE DEVELOPMENT OF REUSABLE

 SOFTWARE COMPONENTS

Volume 1
(of 3 Documents)

- Development of Reusable Software Components
- Management of a Reusable Software Component Library
- Software Reuse Procedures

Issued and Maintained by:

NATO COMMUNICATIONS AND INFORMATION SYSTEMS AGENCY

(Tel. Brussels (2).728.8490)

This document may be copied and distributed without constraint, for use within NATO
and NATO nations.

N A T O U N C L A S S I F I E D

ii

Table of Contents

Section Title Page

Table of Contents .. ii

List of Figures... iv

List of Tables ..v

PART I INTRODUCTION AND BACKGROUND

Section 1 Introduction.. 1-1

1.1 Purpose and Scope ... 1-1

1.2 Guide to Using this Manual ... 1-1

Section 2 Applicable Documents ... 2-1

Section 3 Basic Reuse Concepts .. 3-1

3.1 Definitions.. 3-1

3.2 Expected Benefits of Reuse ... 3-2

3.3 Dimensions of Reuse ... 3-4

3.4 Forms of Reuse .. 3-5

3.5 Issues in Achieving Reuse ... 3-6

PART II STANDARD

Section 4 Requirements Analysis .. 4-1

4.1 Requirements that Encourage Reuse ... 4-1

4.2 Requiring Reusability .. 4-2

4.3 The Role of Domain Analysis.. 4-4

4.4 Requirements Specifications as RSCs ... 4-6

Section 5 Design Principles.. 5-1

5.1 Transition from Requirements Analysis .. 5-1

5.2 Models, Architectures, and Interfaces ... 5-2

5.3 Designing for Modification.. 5-6

5.4 Design Methods ... 5-8

5.5 Designs as RSCs .. 5-11

5.6 Selecting CASE Tools ... 5-11

iii

Table of Contents (Continued)

Section Title Page

Section 6 Detailed Design and Implementation ... 6-1

6.1 Transition from Design to Code .. 6-1

6.2 Program Structuring... 6-3

6.3 Interfaces.. 6-6

6.4 Parameterization .. 6-9

6.5 Handling Errors and Exceptional Conditions .. 6-11

6.6 Efficiency... 6-14

6.7 Detailed Coding Standard .. 6-17

Section 7 Quality Assurance and Test .. 7-1

7.1 Evaluation Activities.. 7-1

7.2 Metrics ... 7-2

7.3 Test Procedures.. 7-4

7.4 Problem Resolution.. 7-5

Section 8 Documentation ... 8-1

8.1 Application of Conventional Documentation Standards 8-1

8.2 Documentation for the Reuse Library.. 8-2

8.3 The Reuser’s Manual ... 8-4

8.4 Formal Specification.. 8-6

APPENDIX

Appendix A Ada Coding Standard... A-1

A.1 Identifiers .. A-2

A.2 Format and Layout.. A-5

A.3 Commentary.. A-8

A.4 Types and Subtypes .. A-11

A.5 Named Numbers, Constants, and Literals... A-15

A.6 Expressions ... A-16

A.7 Control Structures ... A-18

A.8 Exceptions... A-20

A.9 Program Structure and Compilation Units.. A-22

A.10 Parameters... A-24

A.11 Tasks ... A-26

A.12 Other Areas ... A-28

iv

List of Figures

Figure Title Page

Figure 5.1 - Layered Data Base Management Architecture .. 5-5

Figure 6.2 - Using a Filter Routine to Localize Dependencies.................................... 6-6

Figure 8.3 - Example Outline for a Reuser’s Manual.. 8-5

v

List of Tables

Table Title Page

Table 6.1 - A Taxonomy of RSC Interface Types ... 6-7

PART I

INTRODUCTION AND BACKGROUND

1-1

Section 1

Introduction

The Standard for the Development of Reusable Software Components is
designed to provide guidance in the creation of software products with
maximum potential for software reuse.

The following subsections describe the purpose of this manual and explain how to use it
effectively.

1.1 Purpose and Scope

To achieve the benefits of software reuse, it is essential to have an
understanding of the specific activities to be performed at each step in
software development; this manual provides that guidance to NATO, host
nation, and contractor personnel.

Software reuse is an important aspect of controlling and reducing software cost and improving
quality. The practice of software reuse can be significantly increased through the use of an
appropriate standard in identifying software intended for reuse and developing that software.
The Standard for the Development of Reusable Software Components is a prescriptive
document designed to provide concrete reuse guidance. It assist the user in structuring a
software development process that leads to the development of reusable software components.

The manual is intended for use by NATO, host nation, and contractor personnel. NATO and
host nation program offices will use the guidance in establishing IFB requirements and in
guiding contractors. Contractors will use it in establishing project-specific development
practices.

This is one of a set of three manuals developed by NACISA to provide guidance in software
reuse. This manual specifically addresses the creation of reusable software components. The
other two documents are standards for the management of a library of reusable components,
and for carrying out a project that takes advantage of the library to reuse existing software.

1.2 Guide to Using this Manual

This manual provides specific guidance, organized by software life-cycle
activity, to form a basis for establishing individual project practice.

The Standard for the Development of Reusable Software Components is organized in two parts.
Part I provides an introduction to the manual and a brief discussion of general concepts of
software reuse to provide a basic frame of reference for the reader. Part II is the actual standard.
Its major sections address requirements analysis, design principles, detailed design and

1-2

implementation, quality assurance and test, and documentation. Appendix A provides detailed
reusability guidelines for the Ada programming language.

Within Part II, each regularly-numbered paragraph forms part of the standard, and is considered
mandatory in meeting the reuse objectives addressed by this manual; any deviation must be
justified and approved. The standard is augmented by a number of guidelines (indicated by
paragraph numbers beginning with the letter “G”). Guidelines support the standard, identifying
specific (potentially alternative) approaches to meeting the standard. Compliance with specific
guidelines is not considered mandatory; however some effective approach to meeting the
standard must be selected.

Because this manual offers alternative approaches, project managers should use this it as a basis
for generating project-specific reuse guidance, for incorporation in other software development
practices adopted for the project.

2-1

Section 2

Applicable Documents

Many existing materials provide valuable guidance that augments this
standard.

The following reference documents are cited in this manual:

Booch, G. Software Components with Ada. The Benjamin/Cummings Publishing
Company, 1987. ISBN 0-8053-0610-12.

Contel Corporation. Standard for Management of a Reusable Software Component
Library. NATO contract number CO-5957-ADA, 1991.

Contel Corporation. Standard for Software Reuse Procedures. NATO contract number
CO-5957-ADA, 1991.

Dynamics Research Corp. ADAMAT Reference Manual. 1987.

McCabe, Thomas J. “A Complexity Measure.” IEEE Transactions on Software
Engineering (Dec. 1976): 308-320.

Nissen, J. and P.J.L. Wallis (Eds). Portability and Style in Ada. Cambridge University
Press, Cambridge, United Kingdom, 1984.

Numerous other references were used in developing this standard, and provide additional
guidance in developing reusable software. Some that may be valuable to the user of this manual
are:

Gautier, R.U. and P.J.L. Wallis (Eds). Software Reuse with Ada. Peter Peregrinus Ltd.
on behalf of the Institution of Electrical Engineers, London, United Kingdom, 1990.

The Software Productivity Consortium. Ada Quality and Style: Guidelines for
Professional Programmers. Van Nostrand Reinhold, New York, USA, 1989.

SofTech, Incorporated. RAPID Center Standards for Reusable Software. Document
number 3451-4-012/6.4, 1990.

SofTech, Incorporated. RAPID Center Reusable Software Component (RSC)
Procedures. Document number 3451-4-326/4, 1990.

SofTech, Incorporated. Ada Reusability Guidelines. Document number 3285-2-208/2,
1985.

3-1

Section 3

Basic Reuse Concepts

Software reuse offers tremendous benefits in cost savings and quality;
however, it requires technical understanding, changed approaches, and an
understanding of potential obstacles.

This section provides a frame of reference for understanding the benefits and challenges of
software reuse. It introduces the terminology and concepts used in the remainder of the manual
and explains the goals underlying the guidance provided herein.

3.1 Definitions

A consistent terminology is used throughout this and companion manuals.

The following are definitions of the key terms used in this manual:

Reuse—the use of an existing software component in a new context, either elsewhere
in the same system or in another system

Reusability—the extent to which a software component is able to be reused.
Conformance to an appropriate design and coding standard increases a component’s
reusability.

Reusable software component (RSC)—a software entity intended for reuse; may be
design, code, or other product of the software development process. RSCs are
sometimes called “software assets”.

Reuser—an individual or organization that reuses an RSC

Portability—the extent to which a software component originally developed on one
computer and operating system can be used on another computer and/or operating
system. A component’s reusability potential is greater if it is easily portable.

Domain—a class of related software applications. Domains are sometimes described as
“vertical”—addressing all levels of a single application area (e.g., command and
control) and “horizontal”—addressing a particular kind of software processing (e.g.,
data structure manipulation) across applications. The potential for reuse is generally
greater within a single domain.

Domain analysis—the analysis of a selected domain to identify common structures and
functions, with the objective of increasing reuse potential

Library—a collection of reusable software components, together with the procedures
and support functions required to provide the components to users

Retrieval system—an automated tool that supports classification and retrieval of
reusable software components, also called a “repository”

3-2

Software life cycle—The series of stages a software system goes through during its
development and deployment. While the specific stages differ from one project to the
next, they generally include the activities of requirements specification, design, code,
testing, and maintenance.

3.2 Expected Benefits of Reuse

Software reuse clearly has the potential to improve productivity and hence
reduce cost; it also improves the quality of software systems.

Productivity Improvement. The obvious benefit of software reuse is improved productivity,
resulting in cost savings. This productivity gain is not only in code development; costs are also
saved in analysis, design, and testing phases. Systems built from reusable parts also have the
potential for improved performance and reliability, because the reusable parts can be highly
optimized and will have been proven in practice. Conformance to standard design paradigms
will reduce training costs, allow more effective practice of quality disciplines, and reduce
schedule risk.

Reduced Maintenance Cost. Even more significantly, reuse reduces maintenance cost.
Because proven parts are used, expected defects are fewer. Also, there is a smaller body of
software to be maintained. For example, if a maintenance organization is responsible for
several different systems with a common graphic user interface, only one fix is required to
correct a problem in that software, rather than one for each system.

Improved Interoperability. A more specialized benefit is the opportunity to improve
interoperability among systems. Through the use of single implementations of interfaces,
systems will be able to more effectively interoperate with other systems. For example, if
multiple communications systems use a single software package to implement the X.25
protocol, it is very likely that they will be able to interact correctly. Following a written standard
has much less guarantee of compatible interpretation.

Support for Rapid Prototyping. Another benefit of reuse is support for rapid prototyping, or
putting together quick operational models of systems, typically to get customer or user
feedback on the capability. A library of reusable components provides an extremely effective
basis for quickly building application prototypes.

Reduced Training Cost. Finally, reuse reduces training cost, or the less formal cost associated
with employee familiarization with new assignments. It is a move toward packaged technology
that is the same from system to system. Just as hardware engineers work with the same basic
repertoire of available chips when designing different kinds of systems, software engineers will
work with a library of reusable parts with which they will become familiar and adept.

Industry Examples. All of these benefits lead directly to lower-cost, higher-quality software.
Some industry experiences have shown such improvements:

3-3

• Raytheon Missile Systems recognized the redundancy in its business application
systems and instituted a reuse program. In an analysis of over 5000 production COBOL
programs, three major classes were identified. Templates with standard architectures
were designed for each class, and a library of parts developed by modifying existing
modules to fit the architectures. Raytheon reports an average of 60% reuse and 50% net
productivity increase in new developments.

• NEC Software Engineering Laboratory analyzed its business applications and
identified 32 logic templates and 130 common algorithms. A reuse library was
established to catalogue these templates and components. The library was automated
and integrated into NEC’s software development environment, which enforces reuse in
all stages of development. NEC reports a 6.7:1 productivity improvement and 2.8:1
quality improvement.

• Fujitsu analyzed its existing electronic switching systems and catalogued potential
reusable parts in its Information Support Center—a library staffed with domain experts,
software engineers, and reuse experts. Use of the library is compulsory; library staff
members are included in all design reviews. With this approach, Fujitsu has
experienced an improvement from 20% of projects on schedule to 70% on schedule in
electronic switching systems development

• GTE Data Services has established a corporate-wide reuse program. Its activities
include identification of reusable assets and development of new assets, cataloguing of
these assets in an automated library, asset maintenance, reuser support, and a
management support group. GTE reports first year reuse of 14% and savings of $1.5
million, and projected figures of 50% reuse and $10 million savings, in telephony
management software development

• SofTech, Inc. employs a generic architecture approach in building Ada compiler
products. Compilers for new host and target systems can be developed by replacing
only selected modules from the standard architecture. This has led to productivity level
of 50K lines of code per person-year (10-20 times the industry average). This is typical
of compiler developers, as this is a field in which reuse is accepted practice.

• Universal Defence Systems (UDS), in Perth, Australia, develops Ada command and
control applications. The company began its work in this business with a reuse focus,
and has developed a company-owned library of 396 Ada modules comprising 400-500
thousand LOC. With this base, UDS developed the Australian Maritime Intelligent
Support Terminal with approximately 60% reuse, delivering a 700 thousand LOC
system in 18 months. A recently begun new project anticipates 50-70% reuse based on
the company’s asset library.

• Bofors Electronics had a requirement to develop command, control, and
communications systems for five ship classes. As each ship class was specific to a
different country, there are significantly different requirements for each. In order to
benefit from reuse, Bofors developed a single generic architecture and a set of large-
scale reusable parts to fit that architecture. Because of a well-structured design, internal
reuse, and a transition to Ada and modern CASE tools, Bofors experienced a
productivity improvement even in building the first ship—from 1.3 lines of code (LOC)
per hour previously to 3.28 LOC per hour. Improvements are much greater for

3-4

subsequent ships, with a projected productivity of 10.93 LOC per hour for the fifth ship,
which is expected to obtain 65% of its code from reuse.

3.3 Dimensions of Reuse

Reuse has several dimensions; the guidance in this manual supports all of
these.

Compositional versus Generative Approaches. Approaches to reuse may be classified as
either compositional or generative. Compositional approaches support the bottom-up
development of systems from a library of available lower-level components. Much work has
been devoted to classification and retrieval technology and to the development of automated
systems to support this process. Generative approaches are application domain specific; they
adopt a standard domain architecture model (a generic architecture) and standard interfaces for
the components. Their goal is to be able to automatically generate a new system from an
appropriate specification of its parameters. (The Fourth Generation Languages [4GLs] used in
the commercial world can be considered an example of generative reuse.) Such approaches can
be highly effective in very well understood domains, but significant effort is required to
develop the initial model.

Small-scale versus Large-scale Reuse. Another dimension is the scale of the reusable
components. Reuse on a small scale—for example, use of a library of mathematical functions—
is practiced fairly widely today. The effort saved from a single reuse is not great; payoff comes
from the widespread reuse that is possible. On a large scale, entire subsystems (for example, an
aircraft navigation subsystem or a message handling subsystem) may be reused. Here the
saving from a single reuse is great; many thousands of lines of code may be reused. However,
the opportunities for reuse of a given component are more limited. Large-scale reuse can pay
for itself even if a component is only reused once or twice, because of the amount of effort
saved.

As-is Reuse versus Reuse with Modification. Components may be reused as is, or may
required modification. Generally reusable components are designed to be flexible—for
example, through parameterization—but often modification is necessary to meet the reuser’s
requirement. Modifiability—the capability of a software component to be easily modified—is
particularly important in reusable software.

Generality versus Performance. Sometimes there is a trade-off between component
generality and performance. A component designed to be general and flexible will often include
extra processing to support that generality. Appropriate reusability guidelines help avoid this
penalty; guidelines for the reuser can provide mechanisms for coping with performance
problems that may arise.

3-5

3.4 Forms of Reuse

Reusable components are not necessarily code; they can be specifications,
designs, code, tests, or documentation.

Specification Reuse. Reuse of specifications is particularly relevant when aiming for large
scale reuse. Large-scale reuse requires up-front consideration during the requirements
definition activity. If an entire subsystem is to be designed for reuse, this should be made
explicit from the start. The specification is then reusable in systems that will reuse the
component, guaranteeing that requirements will match. Reuse of specifications greatly
increases the likelihood that design and code will also be reusable. Furthermore, reuse of
specifications can reduce time spent on requirements definition and help ensure
interoperability, even if neither design or code are reused.

Design Reuse. Sometimes a design can be reused even when the code cannot; for example, the
code may not be in the required programming language, or it may have inappropriate
environment dependencies. Design reuse can save significant effort in one of the most costly
life-cycle phases, provided that the design is specified so as to facilitate reuse. Furthermore, the
design phase establishes the software architecture that provides a framework for reuse. Reuse
of the software architecture will provide significantly greater code reuse opportunities by
establishing a standard functional allocation and uniform interfaces.

Code Reuse. The greatest payoff comes from reuse of actual code. Clearly this is possible only
when the specification and design are also reusable. Reusable code should be accompanied by
its associated life-cycle products—its requirements and design specifications, its tests, and its
documentation—so the reuser will not have to regenerate them.

Test Reuse. Ideally, a reusable code component should be accompanied by test cases that can
be used to test it in the environment in which it is reused. A less obvious point is that tests can
be reusable even when code is not, with reusable test cases accompanying specification reuse.
An example might be the reuse of a specification and a set of test cases for a particular
communications protocol. Even if the design and implementation differ from the original,
specification and test reuse will save effort and help ensure correctness and interoperability.

Documentation Reuse. Documentation is a major source of software development cost. To be
most valuable, a reusable component must be accompanied by appropriate documentation
items. Clearly, reuse of a specification or design is only meaningful when the component is in
a written form. However, other documentation such as users manuals may also be reusable,
even when the code is not.

3-6

3.5 Issues in Achieving Reuse

Reuse involves significant change to traditional practice; there a number
of challenges to be overcome in achieving its full benefits.

Identifying Opportunities for Reuse. A major technical issue is simply identifying
opportunities for reuse. A software engineer may know that similar software has been written
before; finding it is another matter. Reuse libraries help solve this problem. Once a component
is found, it may be hard to determine if it is indeed a fit, and hard to modify it if change is
required. Often software that appears to be reusable in fact will not be—it has inappropriate
interfaces, hidden dependencies, inflexible functional limitations, or is simply so difficult to
understand that the engineer will be better off simply starting over. The objective of software
reusability guidelines is to help avoid these problems.

Investment. Making software that is reusable generally requires investment above and beyond
that required for a one-time system. This effort goes into making the software more flexible,
ensuring its quality, and providing additional documentation required. Each organization must
make decisions about how the investment is supported.

The “Not Invented Here” Syndrome. Sometimes developers are unwilling to reuse software.
Software engineers enjoy the creative aspects of their profession, and can feel that these are
diminished when reusing software. Management encouragement, training, and perhaps other
incentives can help engineers shift to a view of creativity that involves larger “building
blocks”—reusable software components.

Estimating and Measuring. Estimating and measuring software development activities has
always been difficult, but there are some organizational methods in place that work relatively
well. These traditional methods will require modification in a reuse environment, and little data
is available to support that modification.

Contractual, Legal, and Ownership Issues. There are a number of contractual, legal, and
ownership issues that impact software reuse. Today’s usual contracting methods can create a
disincentive for contractors to reuse existing software or to provide software for reuse by
others. Legal issues arise over liabilities and warranties. Responsibility for maintenance must
be identified.

These organizational challenges are, for the most part, outside the scope of this set of manuals.
Each organization must develop its own solutions. Managers must be aware of the challenges
and address them if reuse is to succeed.

PART II

STANDARD

4-1

Section 4

Requirements Analysis

The requirements analysis phase lays the groundwork for software reuse.
Attention to reuse at this point can have a major impact on the extent to
which later project products are reusable.

This section presents guidance for activities that can be performed in the requirements analysis
phase to support the development of reusable software.

Development of requirements is often done in whole or in part by the program customer
(NATO or a host-nation program management office). These guidelines apply to customer
activities as well as to contractor activities.

The following subsections address establishing requirements that encourage reuse of existing
software, requiring the development of reusable software, the role of domain analysis in the
requirements phase, and the handling of the requirements specification as an RSC.

4.1 Requirements that Encourage Reuse

The requirements specification must recognize and encourage software
reuse.

Reuse begins at the requirements stage. The software requirements lay the groundwork for
reuse by providing a statement of the required functionality and performance. Requirements
must identify any required or expected reuse, and must not inhibit other reuse.

4.1.1 Specify only what is really needed; overspecified requirements inhibit
reuse.

In many cases opportunities for software reuse are lost because the system requirements
unnecessarily preclude them. The best opportunities for reuse arise when the system
specification requires only the necessary functionality and performance, and allows the system
designer to select operational specifics. This gives the designer the freedom to identify reusable
components that can help provide the needed capability. An extremely explicit specification—
for example, one that describes precise screen layouts or report formats—is unlikely to
correspond to any existing software, and to thus require new development.

G4.1.1.1 Examine each requirement for necessity. Be sure it is a requirement
and not a part of the design solution.

Particularly when the requirements specification is developed by someone other than
the software designer, there is a tendency to include aspects of the solution that are not
in fact requirements. Such requirements constrain the developer’s options to offer a
more cost-effective solution based on reuse. A point-by-point examination of each
requirement which asks “Is this really something we need, or can we ask the developer

4-2

to propose his own solution?” will help eliminate overspecified requirements. An
independent party may be able to perform this review more effectively.

G4.1.1.2 Offer contractor(s) an opportunity to review the system specification
to identify potential changes that could increase opportunities for
reuse.

When the requirements specification is prepared before going out for bids on a program,
it is often first issued as a firm requirement. Instead, consider providing a draft
specification to potential offerors with a request that they identify areas in which
requirements could be modified to permit reuse of available software. When the
specification is prepared jointly by the customer and the contractor as part of the
contract effort, it is important that software development personnel are involved to
provide a similar insight.

4.1.2 Specify any required or expected reuse.

Sometimes the organization developing the requirements specification will be aware of existing
software that can or should be reused in developing the new system. If reuse is a requirement,
it must be specified as such. For any such requirement, it must be possible to determine
whether it is met.

G4.1.2.1 Provide a reuse goal.

In most cases, there will probably not be a particular software component that must be
reused. However, it may be desirable to encourage the developer to practice reuse. (This
is particularly likely to be true once a significant library of RSCs has been developed.)
In this case, a goal percentage of reuse might be specified. This would indicate the
percentage of the overall system code resulting from reuse rather than from new
development. Such a metric requires some thought to determine how reuse is measured
(e.g., lines of code, number of functions reused, number of requirements reused), how
compliance will be assessed, how reuse with modification is counted, etc.

G4.1.2.2 Provide an incentive for reuse.

If it is not desired to require reuse, it might be appropriate to encourage it through some
sort of contractual incentive, whenever possible.

4.2 Requiring Reusability

To ensure the development of reusable software, any specifically needed
reusability must be explicitly required.

If the software to be developed for a system is to have reuse potential in future systems, this
should be stated as a requirement. There are two possibilities—(a) the software should
generally be developed so as to facilitate reuse, and (b) specific parts of the software must be
reusable in a given set of circumstances. In either case, the requirements must be established
appropriately and explicitly.

4-3

4.2.1 Establish explicit and verifiable reusability requirements in the contract.

Little is to be gained by simply asking developers to make their software reusable, or by
providing them with a reusability guidelines document like this one. Reusability must be
specified as a project requirement. Requirements are only meaningful when they are explicitly
stated and objectively measurable. A requirement for reuse must explain what reuse means, that
is, how to know it if you’ve got it. There must be a way of assessing whether the requirement
was met.

G4.2.1.1 Specify anticipated scope of reusability.

A reusability requirement can be made more explicit when the desired scope of reuse is
known. For example, it may be known that a software component will need to be reused
on another platform, or that it must be adapted to a different communications interface.
In such cases, this can be made an explicit requirement. Desired flexibility or
parameterization can also be specified. For example, the system under development
might require a window-oriented user interface. If it is anticipated that the interface will
be reusable in other systems, the contractor can be tasked to provide a window package
that is tailorable to other applications, rather than one that provides only the specific
screens needed for the original system. In effect, known desired RSCs become program
requirements in their own right.

G4.2.1.2 Specify conformance to a reuse standard.

If a reuse standard such as this one is available, conformance can become a contractual
requirement. In this case the developer should be expected to describe how
conformance will be ensured. Alternatively, the developer might be asked to provide his
own organization-specific or project-specific standard, again describing how it will be
used.

G4.2.1.3 Specify needed documentation.

Reusable software components, to be most usable, require documentation beyond
normal program documentation. Section 8 of this manual addresses this requirement.
Any such documentation need should be contractually required.

G4.2.1.4 Identify/require tests for reusability.

Like any other requirement, reusability requirements should be testable. An
understanding of how conformance to such requirements will be measured should be
established during requirements specification. When an explicit requirement, such as
the ability to operate on another platform or the ability to be parameterized differently,
is known, this can be tested directly. When the requirement is conformance to a
standard, the test will probably consist of quality assurance (QA) inspections, perhaps
aided by some automated coding standards checker.

G4.2.1.5 Provide for subsequent maintenance of RSCs.

Maintenance of reusable software should be addressed. One approach is that RSCs are
simply placed in the library and then reused as is, with the reuser responsible for any
fixes. An alternative is that the library organization will want continued maintenance by

4-4

the original developer. If this is the case, the program requirements should allow for
such a maintenance activity.

4.3 The Role of Domain Analysis

Domain analysis identifies functional commonality across a range of
systems or subsystems, and can influence the choice of requirements.

Domain analysis is an activity above and beyond the effort normally carried out during a
requirements analysis phase for a particular program. It is the analysis of a class of systems in
a particular application domain, as well as of anticipated future requirements and evolving
technology. Its objective is the identification of a common architecture and common functions
and interfaces that apply across the domain. Once these are identified, software that is
constructed according to this common architecture has greatly enhanced potential for
reusability in future systems.

Alternatively, a domain analysis may already have been done for the application area. Any
such products should be examined for potential utility in developing the new system.

4.3.1 Consider future reuse opportunities when analyzing system
requirements.

A complete or partial domain analysis can increase the reuse potential of the software by
making it a better fit to future requirements. The benefits of a domain analysis activity should
be analyzed, and an effort undertaken if appropriate. A partial analysis of reusable subsystems
and interfaces can also be worthwhile.

G4.3.1.1 Evaluate the appropriateness of a domain analysis.

Either a customer or a development contractor may make the decision that a domain
analysis is desirable, either independently or in conjunction with a particular
development effort. Some of the criteria in making such a decision are:

• Will the organization be building more systems in the same domain, and
consequently be able to profit from the availability of a standard architecture
and parts that fit that architecture?

• Is the technology of building systems in this area sufficiently well understood
that a satisfactory standard architecture is a realistic expectation?

• Has the developer built similar systems, and thus gained the experience to
ensure that the products of the domain analysis are usable?

• Is there a mechanism for requiring/ensuring that the products of a domain
analysis are in fact used? For example, if a contractor is tasked to develop a
standard architecture, is there a way to see that other contractors use it?

• Is there a way to amortize the cost of the domain analysis across the
organizational elements that will profit from it?

4-5

If these questions are generally answered in the affirmative, a domain analysis is
probably well worthwhile.

G4.3.1.2 Identify reusable subsystems and interfaces.

Without the time and expense of a full domain analysis, it is still possible to identify
elements that a system may have in common with future applications in its class, and to
design those with particular attention to reuse. This identification can be done relatively
quickly by someone familiar with the organization’s future directions in the application
domain. Candidates for such treatment might include interfaces to standard devices or
to other systems, communications protocols, user interface packages, graphics
packages, specific graphics such as maps, application-specific algorithm packages,
message handling, etc. Attention to future requirements can help build a powerful
library of application parts as a by-product of an ongoing effort.

4.3.2 Make use of existing domain analysis products.

A domain analysis for the selected domain may have been conducted previously by the
customer or the development organization. If so, a recommended architecture, an identified set
of common functions, and potentially reusable parts to implement those functions may be
available. Taking advantage of these where appropriate will save money in the development
effort. More importantly, it will support the effort at commonality that was begun by
undertaking the domain analysis initially.

G4.3.2.1 Evaluate the suitability of existing products.

In evaluating existing domain analysis products, some of the questions that should be
asked are:

• Is the system to be built a representative member of the domain addressed by the
domain analysis? Will the architecture be suitable?

• Exactly what is available? If there is only a model architecture and a parts list
but no detailed design or code components available for reuse, cost savings will
probably not be great.

• If detailed design or code components are available, how much of the required
functionality do they supply?

• What level of standardization has the architecture achieved? Is there benefit to
be gained by using the architecture and/or interfaces in order to promote
commonality across an organization?

• Have the products been proven in practice? What level of confidence is
realistic?

Even if the overall architecture from a previous domain analysis is not applicable, some
of the available reusable parts, interfaces, etc. may be useful and should be evaluated.

4-6

G4.3.2.2 Provide feedback and additions/modifications to the “owner” of the
existing products.

An architecture and its component parts evolve with use. Each user of these products
should contribute to that evolution by providing feedback on the effectiveness of the
products and by supplying any added or modified parts to the library.

4.4 Requirements Specifications as RSCs

Requirements are reusable components; they should be chosen and
expressed so as to facilitate reuse.

Requirements specifications consist of a number of individual requirements, many of which
represent requirements that will also occur in other systems. These requirements are thus
reusable and should be treated as RSCs. Reuse of the design and implementation that result
from the requirement is far more likely if the requirement itself is reused in the specification for
the new system. Even if the design and implementation cannot be reused, a reused statement of
the requirement lessens the chance of error and incompatibility.

4.4.1 Express requirements so as to facilitate their reuse.

Reusable requirements must be easily identifiable as such, and must be easily extractable from
the requirements specification for incorporation in a reuse library.

G4.4.1.1 Separate requirements with reuse potential from system-specific
requirements.

To the extent possible, system-specific requirements should be isolated from reusable
requirements, rather than combining both aspects in a single requirement. For example,
consider a system with a requirement for a window-oriented user interface. If the
requirement for the general “look and feel” and operation of the windows, controls, etc.
is separated from the requirement for the specific displayed information, the former can
be reused. If a single requirement describes the general as well as the specific aspects
of the user interface, it cannot be reused without significant modification. It may also
be desirable to use some notational means to distinguish requirements with likely reuse
potential from system-specific requirements.

G4.4.1.2 Ensure that requirements for identical functionality are expressed
identically.

Sometimes reuse opportunities are not recognized due to differences in the way
requirements are described. This can happen either across parts of a single system or
across systems. For example, two systems may need to display maps of the same parts
of the world with the same information and operations. If the two capabilities are
described by two different specification writers in their own words, it is difficult to
recognize that the capabilities are the same. If identical wording is used, such
recognition is easier. An even better approach is to use only a single statement of the
requirement, either as an independent document referenced by both specifications or by
reference from one specification to the other.

4-7

G4.4.1.3 Employ a uniform means for representing requirements
specifications.

If an organization wishes to reuse requirements across systems specifications, it can be
inhibited if each specification employs distinct formatting, organizational, and
notational conventions. An organization that adopts a uniform style for specifications
can reuse requirements far more easily.

G4.4.1.4 Develop requirements specifications in a machine-readable form.

Extraction and reuse of requirements specification components are much easier when
the requirements can be automatically extracted from machine readable text. If
requirements must be retyped, there is opportunity and perhaps incentive to modify
them, thus losing the desired commonality.

5-1

Section 5

Design Principles

Software reusability is greatly impacted by software design approaches
and decisions; this section provides guidance in the effective use of design
approaches to facilitate reusability.

This section presents guidance for the use of software engineering principles and methods to
achieve software reusability. It deals with general principles and top-level design choices,
whereas the next section (Section 6) presents more specific guidance on detailed design and
implementation.

The subsections address: the transition from requirements analysis; the role of models,
architectures, and interfaces; designing for modification; design methods; designs as RSCs; and
selection of Computer-Aided Software Engineering (CASE) tools to support design for reuse.

5.1 Transition from Requirements Analysis

The design phase must carry through the reuse requirements established
earlier, and must establish the framework for implementing them in later
phases.

The top-level design activity allocates requirements to components of the software architecture.
This allocation must preserve and facilitate the reuse requirements established in the
requirements specification. This is a critical activity in determining the overall reuse potential
of the software, as it defines the reusable components to be built.

5.1.1 Identify and define all reusable entities in the top-level design.

The design process must provide for a software implementation of the previously identified
requirements. In general, design can be broken down into top-level design and detailed design.
The top-level design phase develops a software architecture which defines the software
components and their interfaces, while the detailed design develops the specific component
designs. Because top-level design is the time when the specific system components are
determined, it is the time when potential reusable components are identified. All reusable
requirements must be addressed, and any other reusable components must be identified.

G5.1.1.1 Map reusable requirements to reusable design components.

While there is not a one-for-one mapping between the requirements and the software
components, each reusable requirement should be mapped to one or more reusable
components. A single component should not combine reusable and system-specific
requirements; separation should be retained.

5-2

G5.1.1.2 Identify additional reusable components during the top-level design
phase.

As the design is developed, components will be identified that, while not explicitly
addressing one of the reusable requirements, clearly have reuse potential. This is
particularly true of lower-level components in the design hierarchy. All components
identified during design should be considered from the standpoint of reuse potential.

G5.1.1.3 Indicate which components are intended as RSCs.

Components intended for reuse are subject to special consideration—for example,
conformance to this standard. Consequently, they should be clearly distinguished from
system-specific components. Use some notational mechanism in the specification to
identify or separate intended RSCs.

G5.1.1.4 Provide explicit requirements traceability.

Requirements tracing identifies the mapping from each requirement to its
implementation in the top-level design, and subsequently, to the detailed design, code,
and tests. An explicit requirements trace ensures that all reusable requirements are
mapped to design elements. It also provides the basis for later reflecting these
relationships in a reuse library, so that library users can locate all software components
associated with a particular requirement.

5.1.2 Implement required generality and modifiability in detailed design.

Once the top-level design activity has identified the components to be developed, detailed
design develops the specific algorithms to implement them. At this level, the generality and
modifiability necessary to support reuse are designed.

G5.1.2.1 Identify the appropriate parameterization for each component.

Parameterization identifies the range of data on which a component will operate, and
allows for execution-time tailoring of specific processing. The detailed design activity
should examine the requirements not only for the specific application, but to meet the
component’s reuse goals. Each component identified in the top-level design as an RSC
should be subject to such an analysis.

G5.1.2.2 Follow detailed design guidelines for RSCs.

Section 6 of this manual provides detailed design guidelines for reusable software
components. These should be followed for each component intended as an RSC, in
order to maximize the generality, flexibility, and modifiability of the component.

5.2 Models, Architectures, and Interfaces

The software architecture establishes the framework for reuse; use of
modelling, layering, and interface design principles helps ensure an
effective structure.

Software reusability is first and foremost a design issue. If a system is not designed with
reusability in mind, component interrelationships will be such that reusability cannot be

5-3

attained no matter how rigorously coding or documentation rules are followed. The software
architecture identifies the major software components and their interfaces. These components
are reusable to the extent that they implement well-defined, complete functions that may occur
elsewhere. The architecture should be designed to facilitate this.

5.2.1 Use models to provide a mapping of functional requirements to
implementation decisions.

A model provides a common viewpoint for stating software needs and matching these needs
against existing capabilities. It provides a structure and a vocabulary for organizing and
describing capabilities in a uniform manner. In a sense, all software architectures reflect some
model that the designer has formulated; our objective here is a logical, well-structured model
that can serve as a basis for understanding between developers and reusers.

For example, if a designer wants to create reusable software for manipulating graphic displays,
he first has to define a model of the semantic functions needed to establish and manipulate a
certain kind of display interaction. He might choose as a model the idea that a form will be
presented to a display user who will be asked to fill in the fields of the form, following prompts
on the display which indicate what kind of data is to go in each field. This familiar paradigm
helps establish a basis for reusability. The concepts of form layout and allowable values for
each field provide natural bases for parameterization. A designer of a new system can ask
himself whether any capabilities needed for his system can be provided within the framework
of a fill-in-the-blanks form. If so, he can then specify the tailoring he needs in terms of form
layout and field values.

G5.2.1.1 Base models on real-world concepts.

The most effective models reflect real-world concepts, as they map readily to our
understanding of the problem at hand. For example, the display interaction model
described is readily understandable to potential reusers because it corresponds to a real-
world concept—filling in the blanks on a form. A potential reuser can instantly form
an initial judgement of whether the capability can or cannot meet his needs. If it appears
to be what he needs, he can then examine the component in more detail to support a
decision. In contrast, if the RSC is simply described as an “interactive display
package”, the reuser might have to expend significant effort simply to form an initial
judgement of its utility.

G5.2.1.2 Generalize models to increase reuse potential.

A real-world model increases the understandability of the RSC’s intent; added
generality will increase its reuse potential. The display interaction model described
above would have limited reuse potential if it supported only the specific form layout
and field contents were limited to those required by the initial application. The designer
seeking to make a reusable component would begin with the concept of the particular
form(s) he wishes to design, then generalize the capability so as to allow the form layout
and field contents to be varied. This creates an effective, easy-to-understand RSC with
wide applicability.

5-4

5.2.2 Use a layered architecture to separate concerns and thus to isolate
reusable subsystems.

A layered architecture contributes to reusability by separating concerns into discrete layers that
can be separately replaced to tailor the software function and performance. It partitions the
system into an ordered series of layers, each of which implements a specific abstraction. Each
layer provides a set of services to the layer above it. It, in turn, uses the services provided by
the layer below to carry out its own work. In effect, the layers below a given layer define an
abstract machine that is used by that layer to carry out its functions. Each layer has specific,
defined interfaces to the layers directly above and below it in the hierarchy.

G5.2.2.1 Define architecture layers to support portability and to allow
adaptability to anticipated change.

A layered architecture should be designed so that individual layers represent aspects of
the solution that are subject to anticipation—for example, changes in platform and
operating system (at lower levels) or changes in user interface (at higher levels). Layers
can then be independently replaced to tailor the function or performance of the system,
thus limiting the effect of a change to a relatively small part of the system. Since it is
rarely the case that a moderate to large system can be reused exactly, limiting the effects
of the required changes can significantly reduce the effort required to modify the system
for reuse.

For example, consider the layered architecture for a simplified data base management
system shown in Figure 5.1. The bottom layer, the physical device layer, does the
physical input/output (I/O) to the data storage devices. This may include issuing actual
I/O device commands, handling device interrupts, and dealing with device errors. This
layer supports the abstraction of an idealized I/O device that simply and reliably reads
or writes data blocks from one or more of a large set of possible physical device
addresses. If the entire data management system was to be reused in another system that
had a different type of physical data storage device, only this layer would need to be
changed to deal with the new device. The next layer, file I/O, represents the data storage
as a set of named files that may be created, destroyed, read from, or written to. A change
in the directory structure, or in the handling of variable length files, involves only this
layer. The data access layer provides access to particular pieces of information, using
the file I/O facilities to store and retrieve the data items. Modifications to the data access
method involve only this layer. The top layer, data manipulation, carries out specific
operations on the data in the data base. Only the top layer needs to be changed to change
the way data is manipulated.

G5.2.2.2 Use existing industry-standard layered architectures where
appropriate.

In some fields there are existing layered architecture models that are becoming industry
standards. An example is the International Standards Organization (ISO) Open System
Interconnect (OSI) model of a communications system. This model uses a seven-layer
architecture to separate the various aspects of the communications process. By
conforming to this architecture, application developments in the communications
domain will experience more opportunities to reuse existing software and will produce
more software that can be reused in future programs.

5-5

Figure 5.1 - Layered Data Base Management Architecture

5.2.3 Clearly identify and specify interfaces for all RSCs.

In a sense, a component’s interfaces specify the component. The component can be thought of
as a “plug-in” part, where the reuser must provide the correct “socket”. The component’s
interfaces describe how to construct that socket, and determine how easy or difficult it is to do
so. The interfaces to all components intended for reuse should be identified during the top-
level design phase. They should be clean, concise, and clearly specified. Where possible, they
should conform to existing industry standards. (This section presents general principles for
effective RSC interface identification; Section 6, which addresses detailed design and
implementation, provides detailed guidelines for the design of RSC interfaces.)

G5.2.3.1 Identify interfaces that should be standardized.

The interfaces to all components specifically intended as RSCs should be identified
during top-level design. The interfaces of a component form a standard with which
reusers must comply, as in “all systems desiring to incorporate this component must
conform to the following specification ...”. Thus, the designer of a reusable component
is, in effect, determining design constraints for future systems. The interfaces of an RSC

DATA
ACCESS
LAYER

DATA
MANIPULATION

LAYER

FILE
I/O

LAYER

PHYSICAL
DEVICE
LAYER

PHYSICAL
 DEVICE

LAYER

 1

 2

 3

 4

DATA MANIPULATION
REQUESTS

DATA ACCESS
REQUESTS

FILE CREATE, DESTROY,
READ, WRITE REQUESTS

DATA BLOCK READ,
WRITE REQUESTS

I/O DEVICE COMMANDS,
INTERRUPTS

5-6

should be carefully designed to facilitate their use as such a standard, and should be
fully documented. The designer of such an interface should keep this viewpoint in
mind; thinking of the RSC as a software product can help.

G5.2.3.2 Design interfaces of reusable components according to strict criteria
of necessity and sufficiency.

The interfaces of a reusable component should be sufficient to provide the necessary
flexibility and generality, but should not be so extensive as to limit the potential
situations in which the component can be reused. There is generally a trade-off between
simplicity and generality. Simpler interfaces make a component easier to reuse,
because it is easier to provide the required connections. However, interfaces are the
means whereby generality is supported—for example, by providing various parameters
to tailor functionality. Before the interfaces can be identified, it is necessary to
determine the degree of generality that is desired for the RSC, i.e., how much variation
will be supported. Then each potential interface can be examined to determine if it is
necessary to providing that generality. In some cases, the interface required to
implement the desired generality may be so complex that the generality requirement
must be relaxed.

G5.2.3.3 Where possible, use existing standard interfaces.

Some interfaces to well-known kinds of components have become industry standards;
additional accepted standards may exist within a particular organization. An example
of such an industry standard is the Structured Query Language (SQL) interface to
relational data base management systems. Even if an off-the-shelf data base
management system is not used, development of an SQL interface to the custom data
base will permit later substitution of a commercial product.

G5.2.3.4 Specify standard interfaces so as to permit reuse of the specification.

Interface specifications for reusable components are themselves reusable entities. If the
component is reused, its specification should be reused in the specification of the new
system. Because the description of interfaces can be complex (for example, consider
the description of a communications protocol), the interface should be available for
physical extraction and insertion in a new document. Thus, its description should be
easily isolated from other parts of the design specification and should be machine
readable.

5.3 Designing for Modification

Reusable components must often be modified by the reuser; building in
capability for modification must be considered at the design stage.

Reusable components can often be reused as they are, but in many cases some modification by
the reuser will be necessary. This is particularly true over time, as requirements and technology
evolve. Thus, modifiability is an important principle in designing for reuse. The designer of a
reusable component can greatly enhance its reusability by giving attention to modifications that
are likely to be required and designing to facilitate them.

5-7

5.3.1 Make design choices that facilitate modification.

Certain design choices can greatly facilitate modification by appropriate addition of generality
and isolation of areas of likely change. The design of a reusable component should consider
subsequent modification needs consistent with the anticipated reuse of the component.

G5.3.1.1 Identify potential/likely modifications when designing.

The need for modification of a reusable component can arise for a number of reasons.
The designer of the RSC should devote some attention to explicitly identifying such
reasons. Some questions that might be asked are:

• Will the RSC be ported to other platforms and/or operating systems?

• Is future commercially available software likely to be usable for some of the
functions provided by the RSC?

• Will the RSC have to communicate with new kinds of devices not supported in
its original design?

• Will workstation replacement impact the RSC?

• Will the RSC need to be adapted to a different user interface “look and feel”
(e.g., a change from an Open Look to a Motif interface)?

• Will reuser systems require a different response to errors and anomalies?

• What kinds of functional additions are most likely?

Some of these anticipated changes may be handled by building flexibility into the RSC
via parameterization. However, some will require the reuser to modify the software.
These should be identified during the design phase.

G5.3.1.2 In designing for future modification, weigh development cost versus
anticipated reuse benefits.

Building in the capability for modification can increase development cost, and should
not be undertaken without consideration. Some guidelines to consider are:

• If supporting a modification initially is not more costly, do so. Don’t create
needless obstacles to reuse.

• If supporting a modification now is more costly but provides for a modification
that is certain or very likely to be needed in a planned reuse, evaluate the cost of
adding modifiability versus rewriting the component later. Generally, adding
modifiability initially will be the better choice in this case.

• If supporting a modification now is more costly and addresses no known future
need, but might generally increase the component’s reuse potential, evaluate the
modification based on general cost versus benefit to the organization,
recognizing that it is an investment that may or may not be justified.

5-8

G5.3.1.3 Build in the capability for anticipated modifications.

Once anticipated modifications are identified and the decision to support them is made,
the software design can take advantage of that knowledge. Areas of change should be
clearly isolated and easy to find. For example, machine and operating system
dependencies should be isolated for easy replacement. The layered architecture
principles discussed earlier provide a mechanism for localizing areas of potential
change.

5.3.2 Design for a long lifetime.

Reusable software components can be expected to have a long lifetime as they are reused from
one system to the next. This means that they will be maintained, modified, and improved by
many people. This demands that the software be particularly suited to modification—that it be
easy to find the area to be changed, easy to formulate the required change, and easy to
implement the change with “breaking” the rest of the software. Design for this long-term
support is a major principle of developing reusable software.

G5.3.2.1 Follow established design principles that support modifiability and
maintainability.

There are well-accepted principles of software design that lead to more modifiable,
maintainable software. This manual includes some of these; others are available in
software engineering texts. A specific reuse standard should be adopted for all RSC
development. Verification of compliance with this standard should be part of the project
Quality Assurance activity.

5.4 Design Methods

An appropriate design method can provide guidance in organizing
software so as to enhance the reuse potential of individual components.

A design method appropriate to the development of reusable components will provide guidance
for packaging software in self-contained objects or abstractions that can be reused with little or
no modification. Most modern design methods address packaging in a way that supports
reusability.

For example, object-oriented (OO) design methods provide such a focus, designing a system
by identifying its constituent objects, and packaging each object with all its associated
operations. The principle of OO design, closely related to earlier work in abstract data types,
provides a natural basis for reuse. Components that are packaged in this way, because they are
complete in themselves, can be more easily used in other contexts. Even when a full object-
oriented approach is not used, following some of the key principles of OO design will support
reusability. For a discussion of object-oriented design, the reader is referred to (Booch 87) or
other OO texts.

More traditional structured decomposition methods can also support software reusability, by
focusing on clean interfaces with low coupling and high cohesion. These methods give the

5-9

designer more leeway in deciding which entities to group together, and can lead to diminished
reuse potential unless appropriate attention is given to packaging and abstraction principles.

Note that, while much of the guidance in this document refers to “objects”, the same principles
apply to traditional structured methods.

5.4.1 Employ principles of packaging and abstraction.

The way a software system is organized—i.e. the way functions are allocated to software
components—determines the reuse potential of those components. Modern software
engineering principles provide guidance in organizing the software effectively. Packaging
refers to the way operations and data are grouped into software entities—i.e. into modules,
subprograms, or packages. Abstraction refers to the “logical completeness” of such a package,
and to the effectiveness of the way the package presents the user with necessary information
while hiding implementation details. OO techniques provide an excellent way to design
packages that implement useful, reusable abstractions.

G5.4.1.1 Package reusable objects with their associated operations.

This is the key OO packaging guideline, equally applicable to traditional design
methods. OO packages are focused on objects; for example, a radar might be an object.
All operations associated with the object are grouped with the object itself. A package
implementing a radar object would include all the software routines necessary to control
the radar and to process the signals it receives. Such a package, because of its logical
completeness, clearly has high reuse potential. In the radar example, another system
using the radar would very likely be able to reuse the radar package.

G5.4.1.2 Separate the package’s user view from implementation detail.
Consider reuse when defining the user view.

The principles of abstraction and information hiding mean that the essential operations
on the object are made visible to users of the package, while the details necessary to
implement those operations are hidden. Thus, in the radar package example, the user
would be able to create radar objects to correspond to the radars in his system and to
carry out the operations required to control the radars and collect the data they return.
He would not need to be concerned with internal details, like the way I/O to the radar is
handled or the way data is represented within the package. However, it requires some
thought to design an effective user view. The radar package returns complex
information to the calling program—the signal information returned by the radar. There
are many ways this can be done. At what intervals will the radar data be read? Should
one call return information from only a single scan, or should data be collected in a
buffer that can be made accessible to the caller? Should the radar package attempt to
correlate the data, or will the caller do that? What checking will be done in the radar
package, and what by the caller? How will the signal data be represented? The answers
to these questions should be selected with reuse in mind. It is not enough to interface
effectively with the system currently being designed; future systems’ needs should be
considered.

5-10

G5.4.1.3 Identify opportunities for inheritance.

OO design principles view objects as potentially existing in a hierarchical organization,
such that lower-level objects are refinements of, and inherit characteristics of, a higher
level object. For example, an object class “animal” might have a subordinate class
“bird”. “Bird” would inherit properties and functions from “animal”, and have
additional ones appropriate only to birds. In the radar example, a general radar object
might be provided, with a subordinate object for a particular type of radar. The
subordinate object would provide only those operations unique to that particular type of
radar, inheriting the general radar-handling operations from its parent type. Clearly this
sort of structure leads to reuse. In a system with five different radar types, much of the
code need exist only once, in the general radar package. Furthermore, the general
package has reuse potential even in systems with different types of radars than those in
the original system.

G5.4.1.4 Avoid design constructs that do not map to implementation language
(e.g. multiple inheritance to Ada).

Some programming languages are explicitly designed to implement particular concepts.
For example, an OO language will have explicit mechanisms for defining object classes
and class relationships, and for implementing inheritance. However, the chosen
implementation language may not fully support all of the desired design principles. In
particular, many (including Ada) do not support multiple inheritance—an inheritance
hierarchy involving more than one level of subordination. It is important when selecting
a design approach to understand how design constructs will map to the implementation
language. Some OO concepts can be mapped to languages that do not support them
directly. For example, languages that do not explicitly support “packages” as a program
component can still support a package organization with the addition of some human
procedures to implement needed controls. However, a design that depends on multiple
inheritance will not easily map to a traditional language. In selecting a project design
approach, this issue should be considered.

G5.4.1.5 Consider the use of an accepted OO methodology.

As noted in the preceding guidelines, adoption of some OO-related principles is
important to facilitate reuse. A somewhat separate question is whether a project should
select a full object-oriented approach. This would constrain all of the software to be
designed according to OO principles, and would assume mapping to a full OO
implementation. Such an approach can be effective, but it requires a significantly
greater change to the existing mindset of software engineers. It is not hard to adopt some
of the key principles as a packaging guide, but viewing the entire design as a set of
interacting objects is a challenge to traditional engineers. A move toward full OO
design and implementation must be accompanied by training, as well as by some
ongoing support from an experienced source during early stages of use. A full OO
approach, if used effectively, will lead to more overall reuse potential for the software;
used ineffectively, it will make no difference.

5-11

5.5 Designs as RSCs

Design specifications have reuse potential in their own right, and should be
treated as RSCs.

Design specifications can clearly be reused when the associated RSC is reused. They also have
potential for reuse when the code itself is not reused (perhaps, for example, because of a
different language requirement). It is important to organize and manage design specifications
to facilitate this.

5.5.1 Express component designs so as to facilitate their reuse.

Designs should be expressed so that individual design components can be easily extracted and
incorporated into other design specifications.

G5.5.1.1 Employ a uniform design notation.

Reuse of design specifications (and often, therefore, of the resulting code) can be
inhibited if the design specification is expressed inconsistently with the specification for
the potential reuser system. Adopting a uniform style for structuring, formatting, and
describing design components in specifications can facilitate reuse across an
organization.

G5.5.1.2 Represent designs in a machine-readable form.

Extraction and reuse of design specification components is much easier if it can be done
automatically. If design specifications must be retyped, there is a likelihood that
changes will be introduced.

G5.5.1.3 Provide a means of linking the design RSC to associated
requirements and code RSCs.

Design documentation should explicitly identify the requirement(s) that resulted in the
design component, and should clearly indicate which code RSCs will implement the
design. This will facilitate reuse of corresponding RSCs, and will also provide needed
linkage information for later incorporation of the RSCs in a reuse library.

5.6 Selecting CASE Tools

Software engineering tools can do much to support compliance with this
standard and the resulting creation of reusable software components.

CASE tools include tools supporting requirements definition, design, and coding. Tools of
particular importance to reuse are those that support or enforce design methods and principles.
Compiler selection also deserves attention, as it has a significant impact on efficiency tradeoffs.

5.6.1 Use design tools to implement a consistent methodology.

The use of well-chosen CASE tools can support the creation of reusable components. Many
CASE tools are commercially available. Each supports one or more aspects of the software life
cycle and each makes some decisions about the methodology to be employed. It can be difficult

5-12

for the CASE “shopper” to select a suite of tools that work well together to support a selected
methodology. It is all too easy to select several tools, that, while effective individually, are
virtually impossible to integrate. The best approach is to first establish the methodology
suitable for the overall project, considering all activities from requirements analysis to
maintenance, and to then select tools that can be integrated to support that selected
methodology in a consistent manner. It is generally better to do without automated support than
to attempt to use a tool that does not fit the overall methodology; use of a badly fitted tool can
actually be harmful. While the overall problem of constructing an effective tool set is beyond
the scope of this manual, the following guidelines identify some of the points to be considered
in ensuring that the tool set supports reuse goals.

G5.6.1.1 Provide for a machine-readable and portable design representation.

As noted above, machine-readable designs facilitate design, and hence code, reuse.
This is straightforward when dealing with text. However, most modern CASE tools
include graphic descriptions of component designs and interrelationships. These can be
difficult to extract and incorporate into other specifications, particularly if the reusing
system is not using the same design tool. Ideally, the design tool should produce
graphics in some transportable form. At a minimum, they should be compatible with
conventional word processors or publishing systems on the particular computer system.

G5.6.1.2 Support construction of a larger component from smaller
components.

Reuse involves the composition of components—building a larger component from
smaller building blocks. This composition is performed at the design level, as the
desired reusable parts are identified. The design tool should allow design
representations to be merged in some way. This includes the capability to integrate the
graphic depiction of one component in the depiction of another.

G5.6.1.3 Include a mechanism for aiding and/or guaranteeing requirements/
design/code/test correspondence.

Earlier guidelines have noted the importance of requirements/design/code/test
correspondence. CASE tools that support the generation and management of
specifications and code often provide automated mechanisms for representing such
correspondence, and sometimes for checking it (e.g. for ensuring that each requirement
maps to one or more design components). These capabilities, if available, are
particularly supportive of reuse objectives.

G5.6.1.4 Consider tools that can automatically check for conformance to at
least portions of the coding standard.

This manual sets forth, in the next section and in the appendix, a standard for writing
reusable code. Some of the specified requirements can be either automatically enforced
or automatically checked. Including such a capability can help ensure compliance and
cut down on some of the manual checking required.

5-13

5.6.2 When selecting a compiler, consider its support for software reusability.

There is, in general, a trade-off between the generality desired in a reusable component and its
runtime performance. Software designed for reusability will often have capabilities that are
unnecessary for a particular user of that component. This can lead to memory-utilization and/
or execution-time inefficiency. However, the compiler selection can help minimize the impact
of reuse features. (Proper use of the programming language also helps, as discussed in later
sections.)

G5.6.2.1 Examine the compiler’s optimization capabilities.

Reuse can lead to additional code, both because unwanted capabilities are provided and
because some decisions are deferred to runtime (e.g. “if this is message type X, then
check ...”). Much of this excess code can be eliminated by a compiler with good
optimization capabilities. Some of the specific capabilities to examine are:

• Constant folding. This is an optimization that replaces a variable by an
expression that represents its value. This is effective, for example, when an
RSC has a parameter that is not constant for all uses, but is constant for any
single use. Constant folding can allow the compiler, if it can be made aware of
the specific value, to propagate that value throughout the code, eliminating
many computations.

• Dead code elimination. This optimization eliminates code that the compiler can
determine will never be executed. This works in conjunction with a constant to
eliminate entire code paths. In the case of “If this is message type X, then ...”,
the compiler may be able to determine that that message type will not appear in
this particular use of the RSC, and thus to eliminate the check itself and all code
to be performed as a result of the check.

• Support for inline procedures. Some languages (including Ada) allow the
programmer to specify that a particular procedure is to be effectively inserted
inline in the object program when it is called, rather than the usual approach of
generating a call to a single instance of that procedure. This capability, which
trades space for time, is appropriate for small procedures. The extra memory
taken up by the inline expansion can be preferred to the procedure call overhead.
Inline procedures provide more opportunities for constant folding, and can be
effective in handling some of the small procedures that can result from
following generality principles.

• Optimization for generic procedures. Some languages (including Ada) include
a construct called a generic procedure. A generic is, in a sense, a procedure
template that can be used to build specific procedures depending on the data to
be handled. Such a specific procedure is created by instantiating the generic. For
example, a generic sort procedure would include all the mechanisms required to
sort a list of values. It would then be instantiated for each particular data type for
which a sort procedure was desired, e.g. character strings, fixed point numbers,
or personnel records. Such instantiation is explicitly called for by the
programmer when developing his program. Generics thus provide
parameterization in program construction, rather than at runtime. Generics are a

5-14

valuable capability for reuse, but compilers differ in their ability to optimize.
Some considerations are whether or not a compiler allows multiple similar
generic instantiations to be implemented as a call to a single copy (a difficult
optimization) and to what extent generic expansion takes advantage of constant
folding and dead-code elimination opportunities.

Compiler vendors will occasionally implement special optimizations requested by a
customer—for example, to take advantage of a particular hardware feature or to support
a particular usage style. If one’s organization is a major customer of the vendor, such
capabilities are worth considering.

G5.6.2.2 Examine the compiler’s capability to limit the units to be included as
the result of a link.

Normally, a compiler and linker will include all referenced program units whether or
not they are needed. A linker that can eliminate those units not actually used can save
significant code space. For example, a programmer using only a SINE function from a
package of transcendental functions, with an intelligent linker, would need to
incorporate only the SINE function and any subprograms it references. This seemingly
simple improvement can be difficult to implement in cases where subprogram
dependencies are complex. When examining a compiler, the question is not simply
“Does the linker eliminate unnecessary program units?”, but “To what extent does it do
so?”

6-1

Section 6

Detailed Design and Implementation

The detailed design and implementation activities must carry out the
design decisions made earlier, at the same time incorporating
characteristics that specifically contribute to component reusability.

Detailed design and implementation are the activities that actually produce reusable code
components. It is important that a specific standard be followed to ensure that none of the
planned-for benefits is in fact lost by inappropriate mapping to code, and to maximize reuse
potential of the software.

The following subsections address transition from design to code, program structuring,
interfaces, parameterization, handling errors and exceptional conditions, and efficiency.

The guidance presented in this section is, insofar as possible, language independent, so that the
manual is usable with different languages. Specific guidance for the use of Ada is included as
Appendix A.

6.1 Transition from Design to Code

Transition from design to code must follow through with and build upon
the structures defined earlier, and must recognize that code quality is of
vital importance in reuse.

Many of the key software structuring and packaging decisions have been made in earlier
phases. In the transition from design to code, it is important to preserve these decisions in the
implementation. Code quality is also extremely important. Reusable components must be
particularly robust, consistent, and maintainable. A detailed standard is essential to achieving
this quality.

6.1.1 Maintain correspondence from design to code.

Correspondence from design to code must be correct and traceable. It must preserve all
decisions made earlier, in particular those affecting the allocation of function to software
components and the specification of interfaces. Leeway is permissible in the implementation
detail, but the “block box” form and function of the component must exactly comply with the
specification. Any deviation must be handled through an established configuration
management process so that requirements and design specifications are updated to reflect the
change.

G6.1.1.1 Consider automated support.

Today some CASE tools are beginning to be available to assist in the mapping from
design to code. For example, such a tool might construct templates for each procedure,

6-2

including all parameterization identified in the design specification, and might provide
the control flow constructs to implement a design algorithm. Use of a tool like this can
help ensure that code corresponds to design, and can save effort during the coding
phase. Automated tools can also, as noted earlier, help with automated traceability from
design to code.

G6.1.1.2 Consider the use of specific mapping guidelines appropriate to the
design method and source language used.

In the implementation phase, the software engineer’s task is to map each design entity
to an implementation in the source language. With a well-defined design notation (e.g.,
a program design language or a graphic representation), it is possible to specify explicit
guidelines for mapping design constructs to the source language. For example, if the
design approach uses object-oriented packaging concepts, it would be necessary to
specify the mapping of these packages to a FORTRAN implementation. If the design
is specified in an Ada Program Design Language, implementation in another language
(e.g., PASCAL or C) would require guidance in how to map such features as Ada
generics.

6.1.2 Emphasize code quality and reusability properties.

Many of the key decisions affecting reusability—for example, the definition of RSCs and their
interfaces—will have been made in earlier life-cycle phases and need only be followed through
on at this point. However, the detailed design and coding phases still have an important role in
implementing the detailed quality and reusability properties required in an RSC. An RSC must
be of exceptionally high quality; it must be robust, must perform efficiently, and must be easy
to modify and maintain. It must also conform to special requirements specifically intended to
build in the flexibility and generality necessary for reuse.

G6.1.2.1 Employ a detailed-design and coding standard to maximize
reusability.

A concise standard should be employed to ensure the desired code quality and
reusability. This manual provides such a standard. This section includes language-
independent guidance for detailed design and implementation; language-specific
guidance is provided in Appendix A. A project should tailor this guidance to its specific
situation.

G6.1.2.2 In selecting the programming language, consider quality and
reusability factors.

 If a project has the opportunity to select the programming language to be used, it is
desirable to consider the support for high-quality, reusable component construction
provided by a candidate language. Some of the considerations include:

• Its support for the structuring concepts described in this and the preceding
section (e.g., object-oriented programming, implementation hiding, packaging
and abstraction)

• Its support for extended parameterization through a facility such as Ada’s
generic procedures

6-3

• Its ability to guarantee error-free, robust software through such mechanisms as
type checking

• Its support for the creation of readable, modifiable, and maintainable programs
(e.g., structured programming support, readable identifiers, and modularity)

Also, the anticipated language requirements of future systems should be considered.
Other things being equal, it is clearly best to select a language that future systems will
use if reuse is an objective.

6.2 Program Structuring

Choice of program structuring determines the reuse potential of
individual components.

From the reuse perspective, the goal of program structuring (grouping functions and interfaces
into individual software components) is to group together those entities that will typically be
reused together, minimizing dependence on those entities that are not likely to be involved in
that reuse. Traditional software engineering principles of modularity, information hiding, and
separation of concerns apply.

6.2.1 Carry through design principles in the implementation.

The design developed according to these guidelines will incorporate design principles
influencing the organization of software functions and data. The implementation must retain
these properties. This requires particular attention when the language does not directly support
some of the design constructs.

G6.2.1.1 Map design constructs to implementation language.

A specific programming language mapping should be defined for design constructs. In
particular, it is important to understand:

• How will an object be represented in the programming language? If a single
language entity corresponding to an object (i.e., a grouping of the object’s
definition and operations) is not available, so that the object must in fact consist
of several program entities, what human or configuration management
procedures are needed to ensure the object’s integrity?

• Will inheritance be implemented? If so, how? Does the language provide the
desired capability, or must some preprocessor support be provided? Are human
controls necessary to ensure it is done correctly?

• How will information hiding be implemented? If the language does not provide
an explicit mechanism to restrict visibility, how can one ensure that no programs
access “hidden” detail?

Answers to all these questions should be developed before beginning implementation.

6-4

G6.2.1.2 Each RSC should implement a single, complete object.

An RSC should implement a complete object (i.e., an abstraction). It should provide the
reuser with the full set of operations needed to create and manipulate the object.
Without this completeness, users may find it necessary to modify the RSC, resulting in
additional work and loss of commonality. Such a complete object should include
operations (i.e. subprograms) for:

• Creation—includes both creating and initializing an object

• termination— provides a means of ending the life of the object, essentially
making it inaccessible in the remainder of its scope

• Conversion—allows for the change of representation from one abstract type to
another. For example, a conversion function would take as its input two fixed
point numbers and produce as its output a single value of a programmer-defined
type Complex. In this case, the internal representation of the complex object is
not accessible for user manipulation.

• State inquiry—allows a user to inquire about boundary conditions. Consider an
abstract file type. Boundary conditions cover whether the file is empty or
whether its maximum capacity has been reached. Other boundary conditions
refer to end-of-line and end-of-page states. Non-boundary state-inquiry
functions might return the position in the file (line and column number), the
status of the file (open, closed), and the mode of the file (read-only, write-only,
read-and-write).

• Input/output representations—support printing or modification of object values
for debugging purposes. The objective is not to debug the object package but to
allow the user to debug his application. For example, printing out an entire
stack, he may discover that he has omitted a “push” operation.

• State change—allows the user to modify the contents of an abstract object—e.g.
to negate a complex number

G6.2.1.3 Separate externally visible characteristics and operations from
implementation-specific details.

The principles of layered design, separation of concerns, and information hiding all
essentially refer to the concept of making certain information visible (i.e. accessible) to
reusers of an RSC while hiding (making inaccessible) other information. This supports
the view of an RSC as a “software chip”—a black box whose function and interfaces
are well-defined while no knowledge of its implementation is required. For example, a
stack package would provide capability for a reuser to create objects of stack type, and
would provide all the needed operations to manipulate the stack. However, the reuser
need never know whether the stack is implemented as an array, a linked list, or any other
mechanism. This separation allows the implementation details to change without
requiring changes to programs that use the package.

When implementing an RSC, it is important to clearly identify those characteristics that
should be visible from those that can and should be hidden. The programming language

6-5

should then be used to effect this separation. As noted above, this may require project
control procedures to augment the language capabilities.

6.2.2 Control machine and implementation dependencies.

Machine and implementation dependencies limit the scope of reuse of an RSC. Components
with such dependencies can be reused, but only by replacing the dependent portions with code
suitable to the new situation. Such dependencies should be minimized; where they exist, they
must be isolated and documented.

G6.2.2.1 Minimize dependencies within RSCs.

The previously presented design guidelines suggest that not all parts of a system can
realistically be planned as RSCs. Intended RSCs should be identified during the
requirements and top-level phases, and implemented according to this standard. When
creating the initial design architecture, it is appropriate to separate activities with
machine, operating system, or other dependencies from those with more general reuse
potential. Sometimes this will result in RSCs with no dependencies. Often, though,
implementing a complete abstraction will require the inclusion of some dependencies
(e.g., dependence on a particular data base management system interface). These should
be minimized; when necessary they should be treated according to the next two
guidelines.

G6.2.2.2 Isolate dependencies that must occur within RSCs.

When a dependency is necessary, it should not permeate the RSC, but should be isolated
as well as possible to minimize the change required to replace the dependent code. For
example, suppose a message handling package makes use of a relational DBMS to store
messages. Many operations in the package will need to access the DBMS. However,
including DBMS calls throughout the code can create a major dependency on the
particular DBMS. The objective is to be able to replace the DBMS without having to
change all of the procedures in the package; thus a single format for DBMS calls is
required. This can be implemented by building a “filter routine” that all the other
procedures actually call, which in turn generates the appropriate calls to the particular
DBMS. If the DBMS is replaced, changes are localized in the filter routine. Figure 6.1
illustrates this approach. (In the specific case of the DBMS, the SQL interface standard
has been developed precisely to provide such a uniform interface.)

G6.2.2.3 Document all machine and implementation dependencies.

Once the dependencies in an RSC have been identified and localized, they should be
documented for the reuser. This documentation should, first, clearly identify any
dependencies the RSC has. This information should be in a consistent place with each
RSC, as it is one of the first things a potential reuser will want to know. Second, the
documentation should explain how to make the necessary modifications to the isolated
dependent code. In the DBMS example above, this documentation would describe how
to implement a replacement filter package when the DBMS is replaced. It would also
provide an estimate of how much work is required to make the change.

6-6

Figure 6.2 - Using a Filter Routine to Localize Dependencies

6.3 Interfaces

A component’s interfaces, which define its connections to the outside
world, establish the framework within which it can be reused.

In a sense, a component is defined by its interfaces, in that it is completely specified by them.
For the potential reuser of the component, the interface definition provides a basis for
determining whether reuse is possible and a guide for using it if it is.

6.3.1 Develop well-documented interface specifications for all potentially
reusable components.

The physical integration of an RSC into a new application requires the reuser to supply a correct
matching interface for each interface of the RSC. This requires a full understanding of exactly
what interfaces exist and of how each must be treated. It is important to recognize that
interfaces are not only explicit subprogram parameters; any coupling of the RSC to its
environment constitutes an interface. This includes such constructs as shared global data and
task interaction.

G6.3.1.1 Explicitly enumerate the interfaces in the component’s prologue and
documentation.

The interface specification provides the “directions” for component installation. It
should be presented in a consistent format both in the source program itself (in the
prologue, the comment lines preceding the rest of the source program) and in the

re
p

la
ce

ab
le

 D
B

M
S

 fi
lt

er

DBMS

package procedures

6-7

component documentation. It should include all interfaces that exist, whether explicit
parameters or otherwise.

G6.3.1.2 For each interface specified, provide a text description of its meaning,
a type specification, a range of allowable values, and an explanation
of what will occur when a value is outside the allowable range.

A consistent format should be selected for presenting the indicated information. The
meaning of the interface should tell the user how the particular interface influences the
functioning of the RSC. The type specification should be in terms of the source
language, so that the user knows how to declare a variable that matches the RSC’s
expectation. Range and boundary conditions explain the limits of applicability of the
component.

G6.3.1.3 In the interface descriptions, include the types of interfaces identified
in Table 6.1.

This table provides a checklist for ensuring that all interfaces are recognized and
properly documented.

Table 6.1 - A Taxonomy of RSC Interface Types

G6.3.1.4 Consider providing a formal algorithmic description of the relationship
between input and output parameters.

The relationship between input and output parameters defines the RSC in the sense of
“if I put this in, I can expect this out”. Depending on the nature of the RSC, this
relationship can often be expressed algorithmically or formally in a way that provides a
very good, concise description of the component’s function. This is particularly true in
components that perform mathematical operations.

1. RSC is called via subprogram call by reuser.

2. RSC calls subprogram of reuser.

3. RSC is a task invoked by a reuser task.

4. RSC is a task that invokes a reuser task.

5. RSC shares memory with a reuser subprogram.

6. RSC is a task sharing memory with a reuser task.

7. RSC communicates with reuser via a shared file, with one always reading and
the other always writing.

8. RSC communicates with reuser via a shared file with simultaneous access by
both.

9. RSC communicates with reuser via a message passing or “mailbox”
mechanism.

6-8

6.3.2 Provide only the necessary generality; fewer, simpler interfaces support
reuse more effectively.

In general, a component with fewer, simpler interfaces is more reusable than one with a greater
number of more complex interfaces, because it is more easily incorporated into the new
application. Fewer interfaces also reduce the potential for error. However, the interfaces must
be adequate to support the required generality of function.

An example of a sufficient level of generality might be a polynomial evaluation function that
is parameterized to allow the user to specify the order of the polynomial. An example of excess
generality might be a function that was able to evaluate all possible mathematical expressions.
Such a function would almost certainly have an excessively complex interface and involve
excessive runtime overhead.

G6.3.2.1 Consider the principles of coupling and cohesion in designing
component interfaces.

The concepts of coupling and cohesion are useful in considering the interfaces of a
software component intended for reuse. Cohesion means that functions and data
provided by the reusable component are closely related. A component with high
cohesion is one that implements a single functional abstraction. Coupling refers to the
extent to which a component depends on other components. A component with high
coupling has many such dependencies, and a component with low coupling is one with
simpler, fewer interfaces. Established measures of coupling and cohesion are an
objective way of analyzing the reusability of a component from the standpoint of the
necessity and sufficiency of its interfaces.

G6.3.2.2 Develop QA procedures that explicitly examine the interfaces of
components intended for reuse.

Such procedures should assess each interface for its necessity and sufficiency to meet
established requirements, and might require application of an explicit metric such as a
coupling and cohesion measure.

6.3.3 Provide reuser “hooks” for dealing with boundary conditions.

In some cases, it is not clear in designing a reusable component what action the user would
prefer in the event of a boundary condition. For example, if the reuser attempts to store an
element in a queue that is full, he may wish to receive some signal of an error. He may also
wish to expand the queue space or delete some earlier elements of the queue. A component that
provides these alternatives in its user interface has additional flexibility. Each interface should
be examined from the point of view of what alternative reuser actions might be desired, and an
appropriate implementation selected to provide the desired flexibility.

G6.3.3.1 Allow the RSC reuser to provide a subprogram to be executed when
boundary conditions occur.

If the programming language provides a mechanism for this, it can give a great deal of
flexibility. There are two ways this can be accomplished. If the language allows
subprograms as parameters to other subprograms, the RSC can call that subprogram

6-9

when the condition occurs. This approach allows the reuser program to tailor the
boundary condition behaviour at runtime. Alternatively (e.g., in Ada), the RSC can be
implemented as a generic, with the reuser’s boundary condition subprogram provided
as a generic formal subprogram parameter. This approach binds the boundary condition
handling selection at compilation time. In a language without generics, a similar effect
can be achieved with conditional compilation.

G6.3.3.2 Raise an exception that the RSC reuser can handle as appropriate to
his needs.

If the programming language provides exceptions (a means of signalling an exceptional
condition by transferring execution control to a routine specifically provided to handle
that condition), this can be another way of handling boundary conditions flexibly. The
RSC might also provide auxiliary routines for getting additional information about what
caused the exception.

G6.3.3.3 Include output parameters that provide information about whether a
subprogram completes its action appropriately, and if not, why not.

This approach does not explicitly provide the reuser with a way to control the behaviour
of the RSC. It does, however, provide information he may need to react to its behaviour.

6.4 Parameterization

Specific use can be made of component parameterization to increase the
component’s reusability potential.

In addition to the usual parameterization required to implement a component’s functionality,
additional parameterization may be useful to enhance reusability.

6.4.1 Provide a means to supply system-specific parameter values prior to
execution time.

Certain information about the system configuration or operating environment for an RSC is
variable from one use of the RSC to another, but is fixed for any single use of the RSC. The
RSC implementation should identify such information and implement a means for the reuser to
provide that information when incorporating the RSC in his application. Providing such
parameterization before execution time increases execution efficiency by permitting more
compiler optimizations (see G5.6.2.1) to be performed.

G6.4.1.1 Use generic constants to supply system parameters.

If the selected programming has generic procedures, generic parameters provide a
means to parameterize the component at the time the generic is instantiated. A generic
constant parameter is simply a constant value supplied for each instantiation of the
generic. For example, a generic stack package might include a constant parameter that
specifies the stack depth. The programmer using that package to create a stack supplies
the desired constant value for his application.

6-10

G6.4.1.2 Use compile-time variables or a source code preprocessor to supply
system parameters.

These methods essentially provide parameterization that “modifies” the view of source
code as seen by the compiler, without actually changing the source itself. Some
languages (e.g. PL/I) provide compile-time variables that allow the compiler to
substitute a constant value for the variable while it is compiling the code. Alternatively,
a source code preprocessor can scan the source code and substitute a parameter value
for some target string. Either method would allow an RSC that contains the parameter
Stack_Depth to be compiled with a constant value for Stack_Depth, without any
modification to the RSC source code.

G6.4.1.3 Identify required changes in RSC source code.

A final alternative is to require the reuser to supply the change in the RSC source code
itself. This is less desirable, as it is better to avoid a requirement to modify the source.
If this approach is used, it is important to make the directions very explicit in the RSC’s
documentation, in its header, and at the location of the source to be changed. Comments
like “!!! WARNING—REPLACE THIS WITH AN INTEGER CONSTANT
INDICATING STACK DEPTH !!!” are appropriate. Also, the RSC implementation
should include a check to be sure that a value was supplied, so that the RSC does not
attempt to execute with an unknown or zero value.

6.4.2 Ensure that all objects are initialized.

A package implementing an object provides a capability for a reuser to create objects (program
variables with appropriate associated operations) of that type. Safety of the package is
improved by making it impossible for the reuser to create uninitialized objects. Initialization
should be a necessary part of object creation, rather than a separate and therefore optional
activity. If the package does not guarantee initialization when creating objects, it would have
to check for it on every call to one of the operations on the object, an obviously inefficient
approach.

G6.4.2.1 Provide default values for each element of the object type in the type
definition.

The easiest way to initialize objects, if the language permits it, is for the package
implementing an object type to specify that type with default initial values. All objects
declared with that type simply acquire the initial value.

G6.4.2.2 Execute initialization code as an automatic (i.e., outside the control of
the reuser) part of object creation.

Another way the object package can initialize objects is to provide an explicit
initialization routine that it calls as part of the creation process. This is appropriate
either when default values as part of the declaration are not supported by the language,
or when the desired initial values are not readily specified as constants, but require some
form of computation.

6-11

G6.4.2.3 Require initial values to be supplied as part of the object creation
operation.

A third alternative is to require the reuser to supply the initial value as parameters in
object creation. The object creation operation would have additional parameters for
each element of the type. For example, a call like

New_Value := Complex_Number (3,-5);

would create a complex_number object called New_Value with initial value 3-5i.

6.4.3 Provide a means to remove unnecessary checks.

A “safe” reusable component will likely include a number of checks to ensure that the
component does not accidentally crash. For example, there may be checks on expressions for
division by zero, for exceeding some bounds (e.g., -pi to +pi), for checking that a queue is
empty or full, for hardware read errors when reading from disk, etc. Depending on the
instantiation of the RSC, these checks may not apply because the case being checked for can
be guaranteed to never arise. An optimizing compiler may not necessarily recognize such
checks as dead code. In order to help the compiler remove these checks and make the resulting
code more efficient, some means of indicating that a check may be suppressed is desirable.

G6.4.3.1 Use a generic Boolean constant to suppress unwanted safety
checks.

A generic Boolean constant (see the description of generic constants in G6.4.1.1) can
cause execution of unwanted checks to be skipped at runtime. The compiled code will
effectively be “if FALSE, then check ...”. A good compiler will remove the if statement,
as well as the checking code.

G6.4.3.2 Use a compile-time variable or a preprocessor to remove unwanted
safety checks.

A compile-time variable or a preprocessor (see G6.4.1.2) can be used to cause the
compiler to not compile the checking code based on a value supplied at compilation
time.

6.5 Handling Errors and Exceptional Conditions

Reusable components must be especially robust and safe; attention to
error handling adds assurance that they will be.

Users of a reusable component can be expected to differ in their desire for what should happen
if the component encounters an error. The component should provide the flexibility to meet
these different needs.

Note: Several of the following paragraphs refer to the concept of raising an exception. This
capability (sometimes referred to by other names) is explicitly present in many, though not all,
programming languages (including Ada). Workarounds can allow a similar capability in other
languages, as noted in the first guideline below. It refers to the capability to specify blocks of

6-12

code (called exception handlers) to which control will be transferred in the event of certain
types of execution errors. This transfer may happen automatically (i.e., under the control of the
runtime system)—for example, on detection of an attempt to divide by zero. It may also happen
under program control. A procedure may—for example, on detecting an invalid parameter
value—explicitly raise an exception. Exception handlers can occur in the subprogram that
raises the exception, or in the calling program (and so on up the chain). Normally, reusable
subprograms will return exceptions to the caller.

6.5.1 Provide a mechanism for returning control to the calling program when
parameters are invalid or other anomalous conditions occur.

Reusable components must be “safe”, i.e., they should guarantee against crashing. One aspect
of implementing this safety is to reject calls that will result in failure. This should be done in an
orderly way, returning control to the calling program with some indication of what is wrong.

G6.5.1.1 When the language provides exceptions, use them to inform the
caller of problems.

Exceptions provide the cleanest way of handling problem conditions. They are clearly
distinguished from other code, they isolate exception handling behaviour so it can be
easily modified, and they provide the caller with flexibility in handling the problem.

G6.5.1.2 If exceptions are not supported, but procedure parameters are, use a
procedure parameter to indicate a reuser routine to call in the event
of error.

Some languages allow procedure names to be passed as parameters, permitting the
called RSC to call that procedure. This is an effective way to allow the user to specify
an action—a procedure to be called—when problems occur. Naming conventions
should be used to clearly indicate that this parameter is an error-handling procedure.

G6.5.1.3 If no other mechanisms are available, use return-code parameters to
indicate problem conditions.

Return-code parameters are status or indicator parameters returned by an RSC to
indicate successful or unsuccessful completion, and to indicate reasons for unsuccessful
completion. This mechanism provides the desired capability to the calling program, but
it does not require the calling program to use it. If the calling program does not include
code to check the return parameter value, it will not be informed of the problem.
Correct behaviour by the calling program requires a check after each call to the RSC,
which is somewhat time-consuming and unwieldy. A lexical convention should be used
to distinguish these parameters as return code parameters.

6.5.2 Use exception handling to implement “safe” RSCs.

Exception handling, by whatever mechanism chosen to implement it, should be used to ensure
the safety of an RSC and to provide the reuser with the information needed to support error-free
use in all cases.

6-13

G6.5.2.1 Provide checks for all assumptions the component depends on to
operate correctly.

Instead of defining an RSC such that its reuser is responsible for ensuring that certain
assumptions are satisfied, specify exceptions that are raised when these assumptions are
violated. For example, instead of saying “Don’t call the Stack.Pop function if the stack
is empty,” say “Stack.Pop raises Stack.Empty if called when the stack is empty.”
Raising an exception allows the reuser to decide what to do about the situation. In
essence, the usability of the RSC is extended to include empty stacks.

G6.5.2.2 Recognize instances in which runtime checks are too costly, and
instead raise an exception if a violation occurs.

In some cases the preceding guideline is costly to implement, because some
assumptions are expensive to check. For example, a lookup RSC that uses binary search
must assume that the table being searched is sorted. If it is not sorted, the search will
return incorrect results. Checking that the table is sorted is expensive, and since speed
is the reason for using binary search, making such a check would be contrary to the
purpose of the RSC. Instead, an exception can be raised when unordered table elements
are encountered during execution.

G6.5.2.3 Where possible, provide an alternative means to avoid raising an
exception.

Exceptions are raised to indicate the existence of conditions that prevent an RSC from
producing its normally expected result. An RSC is more reusable (reusable in a wider
variety of situations) if functions are available to check for the presence of such a
condition in advance of calling the RSC. For example, a stack package should, in
addition to the Stack.Empty exception, provide a function Stack.Is_Empty, which
returns True if stack is empty. Similarly, a file handling package should provide the
function Is_End_of_File as well as the exception End_of_File to indicate when there
are no more items to be read. These functions help control program logic, and are
particularly useful in a tasking environment—e.g., for specifying a guard on an Ada
accept statement:

select
when not Stack.Is_Empty => -- closed if nothing is on stack
accept Get (...) do

Item := Stack.Pop; -- no exception will be raised
end Get;

or
when not Stack.Is_Full => -- closed if stack is full
accept Put (...) do

Stack.Push (Item); -- no exception will be raised
end Put;

end select;

If such functions are not available, it is awkward to provide the equivalent capability by
just using exceptions.

Note, however, that such functions are not practical if the amount of computation
needed to decide whether the exception will be raised is comparable to performing the

6-14

operation that will raise the exception. For example, in a matrix inversion RSC, it is not
practical to try to determine in advance if the matrix has an inverse, since the way to do
that is to try to invert the matrix. In such a case, simply raise an exception when
executing the function.

G6.5.2.4 If reinvocation after an exception is raised would be too costly,
consider an alternative mechanism to allow the user to correct the
error.

One purpose in raising exceptions is to allow the user to correct the condition that
caused the exception and then retry the operation (as opposed to simply trying to fix the
problem within the RSC). This is practical if it is relatively cheap to retry the operation.
For example, when writing a tape, if the end-of-volume is encountered, it is quite
reasonable to raise an exception, since not much work is lost by calling the write routine
again after a new tape has been mounted. In some cases, however, considerable
computation will be lost. In this case, it is better to attempt a fix by calling a reuser-
provided procedure (specified as a procedure parameter).

G6.5.2.5 When additional information is available describing the nature of an
exception situation, provide a subprogram to return all available
information.

It is sometimes the case that a lot of information can be provided to a reuser when an
exception situation is encountered. For example, tape drives can signal a variety of error
conditions, ranging from lack of a write ring to parity error, to end of tape, etc. Instead
of defining one exception for each possible error condition, it may be reasonable to
handle all the situations with a single exceptions—e.g., DEVICE_ERROR—and then
provide an additional subprogram that can be called to obtain all information available
about the reason for raising an exception. Providing such a subprogram is more general
than providing a global variable that can be read after an exception is raised, since any
computation involved in producing the information need not be done unless the reuser
wants the information. If such a subprogram is provided, it should be defined as part of
the RSC interface.

6.6 Efficiency

Performance penalties can result from added generality, and can
discourage reuse; these can be largely overcome by appropriate
development techniques.

Reusability can impact performance by adding runtime decision-making and hence additional
processing. These difficulties can be addressed by effective choice of language constructs, by
choice of binding time, by using language processing tools effectively, and by allowing for
tuning by the reuser.

6-15

6.6.1 Use the implementation language effectively to minimize performance
penalties.

Attention to performance impact during RSC design and development can go a long way
toward minimizing performance penalties from reuse. It is important to select each
implementation construct with a view to performance implications.

G6.6.1.1 Recognize high-impact constructs.

In any programming language, some constructs involve far more execution and space
overhead than others. To some extent, this depends on the compiler (Guidance on
compiler selection criteria is given in G5.6.2.1.); however, much of the information is
independent of the implementation, and perhaps even of the language. Some constructs
are inherently more expensive to implement. It is best to try to obtain specific
information about this from the compiler vendor. However, some general rules of
thumb are:

• Subprogram calls are expensive, due to the need to save and restore values of
variables. If a subprogram activity involves only a few lines of code, an inline
expansion approach will be more efficient. (Note that Ada inline procedures
have the performance benefit of inline code without the negative impact on
modularity and readability.)

• Tasking operations are expensive, due to the need to perform context switching.
Some compilers provide a “fast task” that eliminates some of the overhead of
more general tasks. If available and appropriate to the particular need, these can
effectively reduce overhead, but at the expense of portability.

• Operations on data aggregates (records and arrays) are more expensive than
operations on scalars. This is fairly obvious, but can be forgotten because the
source code can still appear simple. A single-line assignment statement, if
assigning one array of records to another, can result in the execution of hundreds
or thousands of machine instructions.

• Exceptions are more expensive than parameter passing.

• Variable-length strings and aggregates are more expensive than fixed-length
strings and aggregates.

• Linked-list data structures are more expensive than arrays.

• Hidden checks—e.g., to implement exception handling by testing for such
situations as zero-divide before they occur—add cost.

G6.6.1.2 Where possible, allow reuser to make decisions prior to runtime.

While it is important to build generality into reusable components, it is desirable, where
possible, to allow the reuser to customize the component prior to runtime. A primary
way of doing this, if supported by the language, is by the use of generic procedures.
Generics are instantiated with many of the reuser’s specific requirements, avoiding the
need to test for alternatives at runtime. Alternative approaches include compiler-time
variables and preprocessors. These are described in G6.4.1.2. Any such techniques to

6-16

bind parameter values before runtime will eliminate unnecessary checks during
execution.

6.6.2 Provide opportunities for performance tuning.

Design RSCs for flexibility, modifiability, maintainability, and robustness. Recognize that
performance tuning can occur later. Don’t shortcut design goals. Instead, provide
opportunities for subsequent performance tuning.

G6.6.2.1 Give the reuser the ability to tune later.

In many cases, the reuser can tune RSC performance simply by working with the
existing parameterization capabilities. We have already presented a number of ways the
RSC can support reuser tuning—e.g., by providing parameter values that suppress
unnecessary checks and by providing alternative mechanisms for handling error
conditions. Sometimes, however, this will not be enough; the reuser will want to
actually modify the source code, perhaps even replacing key low-level routines by
machine-code implementations. It is important to help the reuser who has this need to
do so without “breaking” the code. Ways to do this include:

• Provide explicit guidance in what parts of the RSC have the greatest
performance impact. It might be desirable to consider running an analysis to
determine the execution-heavy areas. (For example, this might be a service
performed by a reuse library organization.)

• Provide guidance in what code can be eliminated if the reuser’s needs are
specialized or if he is willing to guarantee correctness in certain areas and hence
dispense with safety checks. (But be sure the risk of this is noted.)

• Identify any performance assumptions that are likely to be dependent on a
particular platform, compiler, or runtime. Suggest any alternatives that might
help performance if any of these are changed. (Often the original programmer
has the best knowledge of this; he should capture that knowledge in guidance to
the reuser.)

G6.6.2.2 Help the compiler optimize by correct choice of language constructs.

Guideline G.5.6.2.1 briefly discussed some common compiler optimization techniques.
In general, most compilers can be expected to implement such techniques as constant
folding and dead code elimination, though the extent of the support varies. A
compiler’s optimization opportunity is determined by the information available to it at
runtime. In particular, any computation for which the compiler can already predict the
result need not be performed. As noted earlier, for example, generic constant
parameters turn into constant values (rather than variables) at runtime, thus providing
code elimination opportunities. Often compiler vendors will provide some guidance to
users on how to help the optimizer. These are worth following even if the RSC might
be ported to an environment with a different compiler; most compiler developers
employ similar optimization techniques.

6-17

6.7 Detailed Coding Standard

A language-specific coding standard provides detailed guidance for
implementing the principles already identified.

The body of this manual is a standard that deals with requirements, design, and other issues that
are largely independent of choice of programming language. To carry through these principles
to the implementation, a language-specific coding standard is appropriate. Appendix A
contains a coding standard for Ada. This manual can be used with other languages by replacing
Appendix A with standards appropriate to those other languages.

Note: Techniques for implementing reusable code are, in many cases, identical to those for
implementing good code. The same properties that make code good—modularity,
maintainability, and portability—contribute to its quality and utility as an RSC. Appendix A
includes many guidelines that support these general quality goals, in addition to those directly
motivated by reusability.

7-1

Section 7

Quality Assurance and Test

Quality Assurance (QA) and test activities can help ensure the reuse
potential of developed software.

This section provides guidance for QA and test activities to help ensure that the standards and
guidelines presented in this manual are followed. This section should be used in conjunction
with appropriate NATO STANAGs and AQAPs or other military standards quoted.

The following subsections address evaluation activities, metrics, test procedures, and problem
resolution.

7.1 Evaluation Activities

A standard must be used to be successful; QA monitoring activities can
help ensure that success.

Conformance to the project reuse standard should be among the specific aspects audited by QA.
QA traceability review is particularly critical for ensuring that reusability properties are not lost
in phase-to-phase transitions.

7.1.1 Develop a QA procedure for auditing conformance to the project reuse
standard.

An explicit project requirement should be established based on this manual. Each paragraph of
the standard should be addressed; guidelines should be selected as appropriate to the project
situation and tailored as necessary (for example, to adapt to the selected programming language
and documentation standards). The QA program should then include evaluation activities to
ensure conformance to this project-specific requirement. These should be integrated with the
QA activities that are already practiced.

G7.1.1.1 Recognize that QA has a continuing role; carry out appropriate
evaluations at each phase of the life-cycle.

QA cannot wait until code is finished before evaluations begin. At each phase of the
life-cycle, QA should carry out appropriate evaluations to ensure that the appropriate
requirements for that phase are being followed. QA review should be included in each
design review, with an established audit procedure for each product and activity. From
the reuse perspective, it is particularly important that the guidance for the requirements
and top-level design phases is followed, as these phases form the basis for all
development of reusable software. If the guidance is ignored in these early phases, little
benefit will be gained from following it in the detailed design and coding phases.

7-2

G7.1.1.2 Audit the process, not just the products.

QA evaluations and audits usually focus on products—specifications, code, etc. These
are usually amenable to objective quality measures. It is important to also audit the
process—the work activities that influence the quality of the product. For example,
such evaluations might address:

• whether CASE tools are being used as expected, and whether they are serving
the intended purpose

• whether changes to RSCs are strictly controlled by configuration management
procedures

• whether testing is being carried out according to plan

G7.1.1.3 Use checklists and/or automated tools to support product audit.

Product evaluation should be objective, and should be assisted by a checklist to ensure
that all key points are covered. Such a checklist also provides a mechanism for
documenting audit results and preparing discrepancy reports. Automated tools can help
with this activity (see subsection 7.2, below).

G7.1.1.4 Carry out requirements/design/code/test traceability procedures.

One activity that is normally part of a traditional QA program is tracing capabilities
from requirements to design to code to tests, to ensure that no capabilities are lost and
no changes are inadvertently introduced. This is especially important for reusable
software components, as noted in earlier sections, as it is critical that RSCs conform to
their specification and that linkages to earlier and later life-cycle products be explicit.

G7.1.1.5 Assess the effectiveness of the project reusability standard, and
improve it as appropriate.

Throughout the QA activity, there will be opportunities to determine how effective the
project reusability standard is. It is important to evaluate its effectiveness and make
appropriate improvements. Note that if the standard was obtained from a customer or
other organization, it may be necessary to have any such change approved. Even if
change approval is not required, it would be helpful to provide the suggested
improvements to that organization.

7.2 Metrics

Metrics can help measure reuse potential and expected payback.

Metrics can have three roles—measuring the reuse qualities of a component, providing an
estimating and justification base in support of a reuse program, and providing information
needed by a reuse library organization.

7.2.1 Use metrics to promote RSC quality and to further the practice of reuse.

Metrics essentially just means measurements. In a reuse organization, measurements can be
made of the software itself—e.g., its extent of conformance to a reuse guideline—and of the

7-3

process—e.g., the savings in labor and cost that result from reuse. The real value of such
metrics is not primarily to the initial development project but to the organization in general.
Metrics help assure the quality of RSCs, help demonstrate the success of reuse, and help
improve the ability to estimate future projects that take advantage of reuse.

G7.2.1.1 Collect RSC quality metrics.

As noted earlier, code quality is an important aspect of the effectiveness of an RSC. It
can be very effective to establish a program of explicitly measuring the quality of RSCs
by assessing them against an established set of guidelines, such as those provided in this
manual. Note that it is important to define the specific set of measurements and the
relevance of each of those measurements before beginning metrics collections. These
metrics can then be used to help assess the reuse potential of each component. It might
be appropriate to establish a project requirement that each component explicitly
designated as an RSC achieve some minimum score on this metrics assessment.

G7.2.1.2 Consider use of a metrics tool.

Tools are available to automatically process source code to measure code quality. One
well-known tool, available for several languages, is McCabe’s complexity
measurement tool (McCabe 76). Another, specific to the Ada language, is Dynamics
Research Corporation’s AdaMAT (DRC 87). These tools can significantly ease the task
of measuring code quality, and hence permit a more ambitious metrics program.

G7.2.1.3 Collect reuse metrics.

Reuse metrics refer to measurements of the experience and impact of reuse. For
example:

• What were the added costs associated with making software reusable?

• How often has a particular RSC been reused?

• What percentage of reused components were requirements, design, code, etc.

• How much RSC code modification occurred?

• How many lines of code in an application were obtained via reuse?

• How did reuse impact schedule?

• How did reuse affect development cost?

These metrics will help justify the cost of operating a reuse program, and will provide
an estimating base for scheduling and costing future efforts.

G7.2.1.4 Collect any metrics required by the reuse library.

Often a reuse library organization will want to provide its “customers” with a measure
of the quality of the RSCs it offers. The organization may implement this policy by
requiring the submitting organization to provide the necessary metrics. If so, this
should be integrated in the project metrics program.

7-4

7.3 Test Procedures

If reusability is to be considered a real program requirement, it must be
tested as a requirement.

Testing is particularly important for reusable software components, to ensure that they have the
quality and robustness expected of an RSC, as well as to ensure that explicit reusability
requirements are met. The tests associated with RSCs are themselves RSCs, and should be
delivered to the reuse library.

7.3.1 Test RSCs as independent products.

In its initial development, an RSC is part of an overall system. It will clearly be tested as part
of the normal development process, through unit, integration, and system test. However, the
RSC is also an independent product with a well-defined specification. It must be tested for
conformance to that specification.

G7.3.1.1 Test each RSC as an entity.

Each RSC should have its own set of tests. These tests should be usable independently
of the overall system; they cannot depend on other parts of the system outside the RSC
to support the test. In a sense these are comparable to the unit tests performed on each
software component in a normal development process. However, they should be much
more formal than the usual unit test. Unit tests are often informal and cursory, because
it is assumed that all requisite capability will be fully tested during system test. In a
sense, the RSC is a system in its own right; it has a well-specified requirement that must
be met. Tests should demonstrate conformance to that requirement.

G7.3.1.2 Test all RSC interfaces over their full range of values.

An RSC can be considered as a “black box” with a specified behaviour for a given range
of inputs. It should be tested for all combinations of allowable inputs, across their full
range of values. Such tests should be performed even when it is known that some of the
conditions the RSC addresses will not occur in the overall system of which the RSC is
initially a part.

G7.3.1.3 Test for conformance to any explicit reusability requirements.

Sometimes an RSC will have explicit reusability requirements such as “It shall be
possible to port this component to the ABC hardware/operating system.” or “The
message handling package shall be extensible to support the XYZ message type.” In
such cases, this requirement should be tested like any other system requirement. An
explicit portability requirement can be tested only by actually porting the software. An
explicit additional function such as handling another message type can be tested only
by implementing that capability. Such tests can be costly, but are imposed by such
requirements. If a customer imposes requirements of this sort, it is important that the
test implications be understood. In some cases, the customer might want to relax the
requirement to something like “The component shall conform to all the portability
guidelines in document QRS.” This would limit the test requirement to a full audit for
conformance to the referenced guidelines.

7-5

7.3.2 Manage tests as RSCs themselves.

RSC tests form a valuable addition to a reuse library. The reuser who can obtain tests in
addition to the code RSC has both a way to evaluate the RSC for his situation and a significant
help in meeting his own test requirements.

G7.3.2.1 Establish traceability back to requirements.

Tests should be directly traceable to requirements. It is not enough (for a nontrivial
RSC) to simply say “This test goes with RSC X”. There should be a number of RSC
tests each keyed to a particular RSC requirement. This is particularly important because
it allows the reuser who might wish to adapt the RSC’s functionality or make partial use
of its features to tailor the test set accordingly.

G7.3.2.2 Do not build in platform/system dependencies in the tests that are not
present in the RSC itself.

RSC tests should be at least as portable as the RSC itself. They should not rely on
system characteristics or debugging/analysis aids that will not be available to the reuser.
These tools can support unit test of the RSC within the initial project, but they cannot
substitute for the formal RSC tests.

G7.3.2.3 Provide information on any modifications to the tests that would be
required if the RSC is modified.

Clearly, not all modifications to an RSC can be anticipated; however, many can be. As
noted in an earlier section, the RSC designer should provide guidance to the reuser in
how to make these anticipated changes. Changes in the RSC will require corresponding
changes to the tests, and corresponding guidance should be provided. This might be as
simple as providing the same kinds of parameterization to a test that are provided in the
RSC—essentially a generic test that is instantiated just like a generic RSC—or it might
involve replacing parts of the test procedure, data, or expected results. The key is
simply to capture the test designer’s knowledge about likely modifications.

7.4 Problem Resolution

To ensure that they have an impact, QA and test activities must be
accompanied by a problem-resolution procedure.

All problems uncovered in QA and test activities must be tracked and resolved. Such resolution
may consist of a requirement for corrective action, or may permit the deviation with
justification.

7.4.1 Document and resolve all deviations from established policy or
discrepancies with requirements.

Problems may arise either from failure to comply with an established policy (e.g., the reuse
standard) or from failure to meet a program requirement (e.g., testing shows that functionality
differs from that established in the requirements specification). In either case, the problem must
be identified and tracked through resolution as part of the QA process.

7-6

G7.4.1.1 Document and manage problems as part of each QA evaluation
activity.

Section 7.1 identifies QA evaluation activities to be performed, recognizing that these
are especially important in the development of reusable software components. In each
of these evaluation activities, there should be a step involving the identification and
logging of all deviations. Subsequently, the open problems should be tracked and
reviewed at regular intervals. Part of each program milestone should be a review of all
outstanding problems and their resolution status. Each problem should have an
established resolution date, and a means for verifying that the problem has been
resolved. If any problems remain outstanding when an RSC is delivered to the customer
or to the reuse library, these should be clearly documented with the delivery.

G7.4.1.2 Establish a mechanism for handling problems reported by the reuse
library.

After an RSC is submitted to the reuse library, the library’s procedures may include
reporting back to the submitting organization on any problems encountered with the
RSC. Whether or not the submitting organization has maintenance responsibility for the
RSC (something determined by the library’s policy), the problem report requires
handling. If the RSC is still in use, either in ongoing or completed systems, it is
necessary to determine whether the problem will occur in those systems and, if so, to
treat it like any other problem encountered during the life cycle.

G7.4.1.3 Identify criteria for allowing deviations.

Sometimes a deviation, either from policy or from requirements, may be justified. There
should be a specific QA policy for judging such requested deviations. In the specific
case of conformance with the reuse standard, some of the possible justifications for
deviation might be:

• The reuse goal implied by the standard is met in another manner not explicitly
addressed in the standard document.

• The known scope of reuse is narrower than the general case addressed by the
standard (e.g., there is no anticipated need to port the component to a different
processor) and hence conformance can be relaxed.

• Compliance with some aspect of the standard is very costly in terms of human
resources (e.g., full testing for reusability) or in terms of component
performance (e.g., adding some kinds of component generality). Management
decides to relax the reuse goal rather than make the extra investment.

Any such proposed deviation should be subject to an established review process. Any
approved deviation should be documented, with rationale, when closing the problem.

8-1

Section 8

Documentation

Documentation of reusable software provides a key part of its reuse value.

Documentation of reusable software serves a dual role; it fills the traditional role of
documentation, and also provides explicit guidance to the reuser.

The following subsections address the application of conventional documentation standards,
documentation for the reuse library, the reuser’s manual, and the role of formal specification
methods.

8.1 Application of Conventional Documentation Standards

The normal documentation accompanying a reusable software component
is, in effect, part of the RSC, and must conform to comparable standards.

Reusable components are normally developed in the course of carrying out a contract, and thus
contractually-required documentation is normally prepared. If there is an objective of reusing
the software, particular attention should be given to various aspects of this documentation to
facilitate this reuse.

8.1.1 When developing the normally required documents, address the
specific needs of the reuser.

The system documentation for an RSC serves a dual purpose; in addition to serving as a
deliverable on the development contract, it supports the reuser. It must provide the reuser with
guidance in understanding and using the RSC, and also must itself serve as reusable
documentation components. It must be organized to allow the reuser to quickly access the
information he needs, to understand that information, and to extract it for reuse.

G8.1.1.1 Comply with any accepted documentation standards of the potential
user community.

If it is the case that most organizations in the potential user community follow a
particular documentation standard (e.g., for the U.S. DOD, MIL-STD-490A) the reuse
potential of the documentation is significantly enhanced by conformance to that
standard. This may be worth adopting as a project policy for RSCs even if not otherwise
contractually required.

G8.1.1.2 Use consistent organization and formats.

Clearly, a consistent approach to organizing and formatting system specifications will
support the reuser. A consistent structure makes the documents more readable and
understandable, helps the reuser find the relevant parts of the document, and increases
the likelihood that the documentation will be reusable in his program. Some kind of

8-2

documentation standard (if possible, using and perhaps augmenting a military standard)
is necessary to ensure this consistency.

G8.1.1.3 Organize documentation so that it is separable into the same units as
the reusable code components—documentation for each RSC
should be complete and self-contained.

When a reuser elects to reuse a particular RSC, he should be able to access the
documentation specifically applying to that RSC, without having to “untangle” it from
surrounding documentation. This means that the RSC’s requirements, design, test, and
user (if applicable) documentation should stand alone, not be full of dependencies and
references to other parts of the document. (Such documentation interdependency is
likely to lead to code interdependency, which interferes with reusability.)

G8.1.1.4 Ensure that documentation remains consistent with code.

The documentation for an RSC is far more heavily used than most design
documentation. Often, once a design specification is written and passed through the
design review, it is never referred to again. Code often deviates from the specification
without any update to the specification. This situation is not acceptable for reusable
component documentation. Because the design specification (and other documentation)
will be propagated to each system using the RSC, and will actually be read by reuser’s
desiring to understand the RSC, it is essential that it be consistent and accurate.

G8.1.1.5 Supply all documentation in machine-readable form.

RSC documentation can be far more easily reused if it can be mechanically extracted
from its initial document and inserted in another one. Ideally, this documentation
should be representable in a form not dependent on a particular choice of word
processor.

G8.1.1.6 Recognize that documentation should be understandable by others.

Completeness, clarity, and understandability are goals in all system documentation, but
are particularly important in fostering reuse. As noted above, reusers may be among the
few who actually read design specifications with a need for real understanding. It may
be desirable to develop a set of project guidelines specifically addressing
documentation style.

8.2 Documentation for the Reuse Library

Special documentation is required for components submitted to a reuse
library organization.

If documentation is to be submitted to a reuse library, the library will usually require special-
purpose documentation to help the library support classification, identification, and retrieval of
the component. This documentation is usually separate from the normally required
documentation developed by a project.

8-3

8.2.1 Provide a “quick look” view of the component’s functionality.

It must be possible for the library staff to obtain a quick understanding of the general function
and characteristics of an RSC, so that the component can be properly classified in the library.
Likewise, the potential reuser should be able to obtain a quick understanding to make an initial
judgement of whether to further consider the RSC for reuse.

G8.2.1.1 Provide an abstract describing the function of the component for use
in classification and searching for the component.

A component abstract is a brief statement of the function performed by a component. It
should be limited to one or two paragraphs, so that it can be quickly browsed and can
be displayed on a single screen during a lookup process. The library organization may
specify the information to be included in the abstract. At a minimum, it should indicate
the capabilities provided by the RSC, including an explicit list of operations provided.

G8.2.1.2 Identify any dependencies of the component.

One of the first things a potential reuser will want to examine, after finding the basic
functionality acceptable, is a list of dependencies of the RSC. For example, does it
depend on the availability of a particular DBMS, only work when data is represented in
a particular form, or only work with Ada compilers with a particular tasking model?
Any such dependencies should be identified in an easily found way; again, library
policy may determine a format.

G8.2.1.3 Provide classification information as requested.

The library organization will ordinarily classify its RSCs in some manner to promote
easy lookup. This can most easily be done if the submitting organization provides the
necessary classifying information. This may, for example, consist of selecting from a
list of terms for such aspects of the RSC as function, object, source language, etc. The
specific requirement will be established by the reuse library.

8.2.2 Provide RSC assessment information.

The reuse library will wish to provide “customers” with information about the quality and
usability of the RSCs. The developer is one of the sources of such information; any that is
available should be supplied with the RSC.

G8.2.2.1 Include any available reusability and quality metrics.

As recommended in the preceding section, the project may have gathered metrics about
the quality and reusability of intended RSCs. The library may require particular
information, in which case that particular information should be supplied. In the
absence of such a requirement, it is important to provide whatever is available.

G8.2.2.2 Identify any outstanding problem reports.

If any problem reports are outstanding against an RSC, this should be clearly explained
when submitting the RSC. Normally, an RSC would not be submitted when it contains
known errors. However, such reports might indicate desired improvements or areas in
which additional testing or documentation would be desirable.

8-4

G8.2.2.3 Identify any recommended enhancements.

Often the RSC developer is aware of enhancements that would improve the
component—improve performance, make it more robust, improve maintainability, or
extend the scope of reuse. Such enhancements, and any information the developer may
have about how to make the change, should be identified with the RSC submission.
Enhancement requests from the RSCs initial users should be treated similarly. In many
cases the library will have a reuser who wishes to make the recommended
improvement; the result will then be available to the originating project, if desired.

8.2.3 Provide any special information needed by a potential reuser.

Sometimes special cases require the reuser to know something special about a component
before attempting to reuse it. This might apply if there are some constraints on how the
component is obtained or on the environments in which it can be used.

G8.2.3.1 Identify any commercial or legal restrictions on use of the component.

Sometimes the use of components is restricted. This might be because the component
is a commercial product requiring purchase or special license. It might be because the
component is classified in some way and its use requires special permission. Use of the
component might require execution of some sort of nondisclosure agreement. In any
such case, it is important to make this information immediately clear in the component’s
abstract and documentation. It is also desirable to identify the restriction in the source-
code prologue, if possible.

G8.2.3.2 Explain how to access the component, if it is not physically available
in the library.

Sometimes a component itself may exist but not be physically available from the
library. This might occur in any of the cases noted above, or simply because some
physical restriction (e.g., host machine dependence or limited storage resources)
precludes its inclusion. In these cases, it is necessary to provide specific information
about how to access the component.

8.3 The Reuser’s Manual

Normal documentation does not fully meet the needs of the RSC reuser;
additional support should be provided in a reuser’s manual.

Section 8.1 discusses ways the normal project documentation can be made more useful to the
reuser. However, it will still fall short of the support a reuser really requires. Additional reuser
documentation should be provided, specifically directed to the concerns of the individual trying
to evaluate, modify, and incorporate the RSC.

8.3.1 In addition to the usual documentation, provide documentation that
specifically explains how to reuse the component.

Some additional documentation is essential to support the reuser. At a minimum, this might be
simply the abstract identified in the preceding subsection. However, it is far better to develop a
reuser’s manual specifically intended to support reuse of the component. The reuser’s manual

8-5

should include, in addition to an expanded description of the RSCs function, information on
how to install, modify, and tune the component, and guidance on how to obtain support. If
resources do not permit development of a reuser’s manual, this information must be obtainable
from the normal documentation.

G8.3.1.1 A reuser’s manual should follow a standard format.

Figure 8.1 is a recommended outline for a reuser’s manual. An individual organization
may tailor this format as appropriate, consistent with library policy.

Figure 8.3 - Example Outline for a Reuser’s Manual

REUSER’S MANUAL

1. INTRODUCTION
• purpose of the document
• overview of the component

2. FUNCTION
• operation
• scope

3. INTERFACES
• RSC specification (identify all externally visible operations)
• external references and parameters
• interfaces by class (see taxonomy in Section 6.3)

4. PERFORMANCE
• assumptions
• resource requirements
• exceptions (how the RSC responds to incorrect inputs)
• test results (any performance measurements)
• known limitations

5. INSTALLATION
• how to instantiate the component (e.g., generic parameters)
• interfaces (enumerate and use)
• partial reuse provisions
• modification provisions
• diagnostic procedures (what to do if a problem occurs)
• usage examples

6. PROCUREMENT AND SUPPORT
• source (if not in library)
• ownership (any legal or contractual restrictions)
• maintenance (what support is available; points of contact)

7. REFERENCES (any available documentation)

8. APPENDICES (as appropriate)

8-6

8.4 Formal Specification

Formal specifications can support the reuse potential of RSC’s developed
for particularly critical applications.

Formal specification techniques, in general, have not proven an effective cost/benefit choice in
software development. In certain areas— e.g., trusted software development—however, they
can be valuable. Formal specification might be required for such RSCs.

8.4.1 Consider requiring formal RSC specifications in special cases.

Formal specifications can enhance the reuse potential of a software component by helping to
guarantee its correctness and safety. However, the guarantee is not absolute and the
methodology is costly, both in labor and in supporting tools. Their use should normally be
considered only in special cases. (Such specifications may also be valuable to support the
automated generation of systems from reusable parts, but this capability is still a research area.)

G8.4.1.1 Evaluate RSCs for potential formal specification on a case-by-case
basis.

If formal specification is to be applied at all, evaluate each RSC independently to assess
its desirability. Some of the factors to be considered are:

• Is the RSC likely to be reused in systems with a formal specification
requirement, e.g., trusted systems or systems with a high reliability or safety
requirement?

• Does the RSC implement a critical function that is relatively straightforward to
specify/validate and relatively harmful if incorrect?

• How much cost is involved in the formal specification?

• Are trained personnel and tools available?

• Is the anticipated level of reuse so great that the investment initially is justified
in terms of saving maintenance effort later?

G8.4.1.2 Couple formal specification with verification.

Formal specifications are most valuable when coupled with a verification method that
assesses compliance with the specification. If a formal specification for an RSC is
developed, such a verification should also be performed. Otherwise, not only is the
correctness benefit lost; the reuser will have no certainty that the specification matches
the implementation and therefore it will be useless to him.

G8.4.1.3 Plan for any formal specification from the beginning.

Formal specification and verification requires steps throughout the software life cycle,
beginning with the requirements phase. It is necessary to identify up front those RSCs
for which formal procedures are followed, so that the steps can be performed in
sequence.

8-7

G8.4.1.4 Consider the validity of a formal specification in a new operating
environment.

There are aspects of formal specification and verification that are dependent on
characteristics of the host system, especially the operating system and any supporting
software such as X-Windows or a DBMS. When the component is reused in a system
with different characteristics, much of the specification and verification may be
invalidated. It is important to consider this impact, both in assessing whether to carry
out the activity and in structuring and documenting it so as to clarify the requirements
to adapt it to a different environment.

G8.4.1.5 Capture any formal specification results for reusers.

If a formal specification and verification are carried out, clearly reusers will want the
results for evaluation and incorporation in their systems. All results should be
documented, organized consistently, and submitted to the library just as other RSC
documentation is handled.

APPENDIX

A-1

Appendix A

Ada Coding Standard

What is now recognized as good modern software engineering practice, especially in the Ada
community, includes many principles which inherently support software reuse; the Ada
language itself was designed with software reuse as a principal objective. This section differs
slightly from typical Ada coding standards because of its emphasis on software reuse. Some
guidance has been added or given greater weight.

Each regularly numbered paragraph forms part of the standard, and is considered mandatory for
achievement of intended reuse goals; any deviation must be justified and approved. The
standard is augmented by a number of guidelines (indicated by paragraph numbers beginning
with the letter “G”), which provide non-mandatory guidance on ways to implement the
standard.

Standard paragraphs and guidelines specifically intended to support reuse (as opposed to
supporting overall quality and reliability) are marked with an asterisk (*).

The guidance in this section is arranged in the following categories:

1. Names

2. Format and Layout

3. Commentary

4. Types and Subtypes

5. Named Numbers, Constants, and Literals

6. Expressions

7. Control Structures

8. Exceptions

9. Program Structure and Compilation Units

10. Parameters

11. Tasks

12. Other Areas

A-2

A.1 Identifiers

A.1.1 Choose identifiers to enhance readability and understandability.

Well-chosen identifier names make the difference between a highly readable program and a
meaningless one. Identifiers should be chosen to convey meaning, avoid unclarity, and assist
readability.

GA.1.1.1 Use mnemonic identifiers.

A name should indicate the meaning and purpose of the entity it represents. For
example, the identifier Message_ID is more meaningful than the identifier M
(assuming it refers to a message identifier and not to a square root!).

GA.1.1.2 * Avoid jargon in identifier names.

As far as possible, identifiers in reusable software should be general, related to the
abstract concept of the function performed, rather than jargon peculiar to one
application or another. An exception exists where a particular application is
universally understood (e.g., mathematics, screen and menu management); in that case
the terminology of that application is, effectively, a general term, applying to other
applications by analogy.

GA.1.1.3 Choose identifiers in a way that reflects their relationship, if any,
with each other.

Choosing identifiers that express the relationship among different entities makes it
easier for the reader to remember the relationship and reduces the number of names to
memorize.

GA.1.1.4 Select identifier names long enough to be meaningful, but not so
long as to be unmanageable.

Identifiers should be long enough to be meaningful throughout their entire scope, but
should not be so long that they are difficult to read at one glance. In general, identifiers
should be between 5 and 20 characters. An excessively long identifier is hard to
perceive as a single item. This distraction makes it harder to grasp the program
structure, resulting in a less readable program.

GA.1.1.5 Use abbreviations for long words in an identifier.

Abbreviations help to shorten words but keep meaning intact, making the program
more readable. Abbreviations should be used consistently throughout the system so
that no confusion results from them. If abbreviations are used, a reference list,
including their spelled out form, should be provided in the software documentation.
Including such a list that might otherwise occur because of different interpretations of
an abbreviation. A good place for this list is directly in the code, for example, in the
“header” comments.

A-3

GA.1.1.6 Use underscores to separate words in an identifier.

The use of underscores to separate parts of an identifier that are intended to be seen as
separate words (e.g., Radar_Scan_Rate) allows the reader both to perceive the separate
words making up the identifier and to see the identifier as a single entity.

A.1.2 Use distinct identifiers in lexically nested scopes.

No identifier should be named the same as one in an outer enclosing scope. Although this is
permitted by the Ada visibility rules, it is poor practice. A reader must know where an identifier
comes from in order to understand the program logic. If identifiers are duplicated in nested
scopes, it may not be immediately apparent which one is being used.

A.1.3 Select identifiers that clearly distinguish among Ada program entities.

Identifiers should be selected in such a way that their form or part of speech clearly identifies
their role in the program. Such distinctions can materially aid in the understanding of the
program by making clear the role of an identifier without requiring diversion of the reader’s
attention to search for the declaration of the identifier. Ideally, code should read like a book.
The relationships of the entitles in the code should parallel those of the English language as
much as possible.

GA.1.3.1 Use nouns for most object and function identifiers.

Object and function identifiers each represent individual data objects. Since data
objects are the basic “things” on which computing is done, it is natural that nouns,
which name things, be used to represent them.

GA.1.3.2 Use declarative statements for Boolean identifiers.

An identifier representing a Boolean object or function may, however, be a statement
that can be true or false or a question answerable by “true” or “false.” A Boolean
object or function, in effect, asks a question about some condition that may occur. In
English, we may ask a question by making a statement with a rising inflection at the
end. Naming the Boolean as a statement (e.g., Stack_Is_Empty) allows that same
linguistic technique to be used as the program is read.

GA.1.3.3 Use verb phrases for procedure and task entry identifiers.

Procedures and task entries are imperative statements that cause actions to happen.
Naming them as verb phrases indicating the action accomplished makes their
imperative nature clear.

GA.1.3.4 Consider a naming convention that distinguishes type names from
identifier names.

In some cases, it may not be immediately obvious to a reader whether a name is that of
a type or an identifier. (The only real confusion for a reader who is fluent in Ada is
between type conversions and function calls.) Some organizations find it helpful to
require a distinctive way of naming types, e.g., appending “_Type” to the name, as in
“Matrix_Type”. However, others find this convention unwieldy.

A-4

A.1.4 Use name overloading only to improve understandability, not to
obscure it.

Overloading allow the same name to have multiple meanings. It may be used to show similarity
and hide differences that are irrelevant to the user. However, it can also create substantial
confusion, which must be avoided.

GA.1.4.1 Do not overload type names defined in package STANDARD.

Type names defined in package STANDARD are recognized by most Ada programmers
almost as though they are language keywords. Overloading these (e.g., giving the
name “Boolean” to a type representing employee records) would be very misleading.

GA.1.4.2 Limit the use of overloading to operators and widely used
procedures or functions that perform similar operations on different
types.

Cross_Product_Vector := (others => O);
function “*” (Matrix_A, Matrix_B: Matrix)
 return Vector;
...
Cross_Product_Vector := Position_Matrix * Transform_Matrix;

or

function TAN (Angle : Radians) return Small_Number;
function TAN (Angle : Degrees) return Small_Number;

GA.1.4.3 Never use overloading to give the same name to dissimilar
operations.

The converse of the preceding guideline is that overloading should not be used to give
the misleading impression that two operations are the same when in fact they are quite
dissimilar. For example, using a function named “Move” to identify a function that
moves a character string as well as to a function that moves a radar would be
unreasonable. Both should have unique, more explicit names.

A.1.5 Minimize the use of use clauses.

Use clauses make identifiers visible without their declarations being present. This
makes it difficult for readers and maintainers to find the declaration of an identifier. A
widely accepted exception is “use Text I0”. Instead, either qualify identifiers
explicitly or use rename and subtype declarations to relate the identifiers to their
qualified referents. In general, exceptions to this rule should not be permitted without
independent approval.

A-5

A.2 Format and Layout

A.2.1 Format so as to make the program’s logical structure apparent.

The goal of programming conventions is to achieve reliability and maintainability by making
programs readable and understandable. An important element of readability is that the program
structure and the lower-level structures within it be easily seen. The visual layout of the code
can emphasize the program structure.

GA.2.1.1 There should be no more than one statement or declaration per
line.

A second statement or declaration on a line can be easily overlooked by a reader who
is scanning the program to find something particular.

GA.2.1.2 If it is necessary to break a statement or declaration across
program lines, make the break(s) consistent and at the highest
level of abstraction.

The way in which a long statement is broken may influence its interpretation. It should
be broken at the highest level of abstraction—at the outermost level of nesting of the
statement’s operation. For example, if a statement adds three long parenthesized
expressions, the break should occur between the expressions rather than in the middle
of any of them. The statement, if broken at all, should break at all such points at the
same level. For example, a statement adding three long expressions should use three
lines to break between all of them, not just between the second and third. If lines are
broken without regard to these logical abstractions, it is possible that they may be
misinterpreted.

A.2.2 Use spacing and indenting to indicate program structure.

Spaces and blank lines, when used effectively, can greatly enhance program readability. Tools
that support this need, such as source code reformatters, language-sensitive editors, and pretty
printers, are readily available.

GA.2.2.1 Use blank lines to emphasize the grouping of related statements
and declarations.

Blank lines allow adjacent blocks at the same nesting level to be distinguished visually.

GA.2.2.2 Use blank spaces to emphasize the structure within a statement or
declaration.

Blanks should be used consistently before and after the highest level operators in a
statement. In complicated statements or expressions, blanks may be used before and
after operators at lower levels. This use of horizontal space to emphasize the structure
within a statement or declaration aids the reader in grasping the composition of the
statement or declaration.

A-6

GA.2.2.3 Do not use TAB characters for spacing or alignment.

Tab-stop settings are environment-dependent. It they change, the formatting or
alignment will be disrupted.

A.2.3 Use consistent indentation to indicate program structure.

Ada programs are structured as a nested series of blocks. Indentation graphically shows the
block structure of the program.

GA.2.3.1 Use indenting to indicate nesting level.

Declarations and statements on the same level (i.e., those belonging to the same
declarative part, sequence of statements, or compound statement) should be equally
indented. This is in accordance with the basic principle of making the underlying
program structure visible.

GA.2.3.2 Matching key words should be vertically aligned.

Matching key words (if-elsif-else-end if, while-for-end loop, declare-begin-
exception-end, case-end case, record-end record, generic-package-private-end,
package body-begin-exception-end, generic-procedure, procedure-begin-exception-
end, generic-function, function-begin-exception-end, task-end, task body-begin-
exception-end, accept-do-end, select-or-else-end select) should be aligned vertically
(i.e., beneath one another on separate lines). The key word then should be aligned
vertically with if when it does not fit on the same line. The key word loop should be
aligned vertically with while or for when it does not fit on the same line. This is a key
technique for improving code readability. It allows easy visual matching of the parts
of compound statements, making the nesting structure more clearly visible.

GA.2.3.3 Indent logically contained constructs within containing structures.

The statements and declarations contained within other statements or declarations
should be indented consistently within the containing structure. This also helps to
make the nesting structure of the program clearer.

GA.2.3.4 Indent succeeding lines of a continued statement.

This helps the reader to see that several lines constitute a single statement.

GA.2.3.5 Place block and loop identifiers to the left of the main text.

This improves visibility, allowing the reader to find quickly the beginning and end of a
loop. Loops are more difficult to identify if their identifiers are not set off
conspicuously.

A.2.4 Use letter case to facilitate readability.

A consistent use of letter case (upper and lower case) is essential to readability. It should be
used as a mechanism to make program intent clearer—for example, by providing a way to
distinguish identifiers from Ada reserved words. Identifier-naming conventions should also
make consistent use of case.

A-7

GA.2.4.1 Write Ada reserved words entirely in lower case letters.

Text written with a high proportion of lower case letters is easier to read than all upper
case text. Furthermore this convention, used in the Ada language reference manual
and in most Ada texts, is widely accepted.

GA.2.4.2 Use capitalization to distinguish identifier names from reserved
words.

Identifier names can be written with initial capitals, or all in capitals. The initial
capital form is often considered easier to read; the all capitals form makes identifiers
more distinctive. Whichever approach is chosen, it should be consistent.

If using initial capitals, capitalize the first word and each significant subsequent word.
A good rule of thumb is to use the same case convention as in a title, for example,
Naming_Conventions_for_RSCs.

GA.2.4.3 Use all uppercase letters in type and enumeration value identifiers.

Ada syntax does not provide an obvious way to distinguish between type conversions
and function calls. Type names written in all uppercase can help avoid confusion in
understanding program structure.

GA.2.4.4 Consider a notational convention that distinguishes type names
from identifiers.

In some cases, it may not be immediately obvious to a reader whether a name is that of
a type or an identifier. (The only real confusion for a reader who is fluent in Ada is
between type conversions and function calls.) One way of distinguishing type names is
given in GA.1.3.4, page A-3. An alternative is to use capitalization differently—for
example, using initial capitals in identifiers and all capitals in type names.

A-8

A.3 Commentary

A.3.1 Use embedded commentary to enhance program readability and
understandability.

In general, code should be written to be self-documenting. Commentary should augment clear
structure and naming, not substitute for them. It should be reserved for those instances when
additional explanation enhances the readability and understandability of the code.

GA.3.1.1 Be sure embedded commentary is grammatically correct.

This is particularly important when reusable components are propagated to many
different systems. Ideally, embedded commentary should be subject to the same
scrutiny that design documentation is.

GA.3.1.2 Use embedded commentary to describe the code in a higher level
or generalized manner.

Embedded commentary can detract from program readability if it is too detailed. A
knowledgable software engineer can extract the details from the code once the concept
or abstraction has been outlined in the commentary. For example:

-- Search for the first occurrence of the requested item
Next_Position := O;
for Index in Message _Text’range loop

Next_Position := Index;
exit when Message_Text (Next_Position) = Requested_Item;

end loop;

GA.3.1.3 *Use generally understood terminology in embedded commentary.

Avoid application-specific jargon. When code implements a general function, describe
it in general terms rather than application-specific terms. For example, a package
implementing variable-length character strings should be described as such, rather than
as a package for manipulating employee job descriptions (which may be its specific
use in the initial application). Terminology from generally understood application
areas such as mathematics, data bases, and user interfaces is acceptable.

GA.3.1.4 Use embedded commentary to explain any hidden but significant
implications.

A comment should give the reader enough information to provide a general
understanding of the code that follows. It may be important to know why something
was coded in a particular way. Sometimes changing a particular code segment can
have non-apparent effects. This information is vital, especially when many
programmers have overlapping responsibilities.

GA.3.1.5 Position embedded commentary to enhance understandability.

To avoid disrupting the flow of the code, embedded commentary should be placed to
the side of or between blocks of related statements. Comments on multiple lines should
be aligned vertically.

A-9

GA.3.1.6 Comment each begin-end block.

Every begin corresponding to a subprogram, package, or task should have, on the same
line, an attached comment indicating the name of the subprogram, package, or task.
The matching end should also include the name of the subprogram, package, or task.
This clarifies the structure of the program by allowing visual matching of begins with
ends. This practice helps focus attention on the boundaries of the subprogram or
package. The reader can easily tell which code belongs to which program unit.

GA.3.1.7 Use comments to make declarations more understandable.

Comments should be attached to declarations when it is desirable to provide additional
information about the purpose, properties, and usage of the item being declared that is
not apparent from the name of the item. Attaching comments to declarations is a way
of identifying the concept behind the items being declared. Sometimes there are
characteristics of these items that are not obvious. These should be included in the
comment. Note that not all declarations need comments; well-chosen names are better.

GA.3.1.8 Use comments to summarize the effect of statement groups.

Comments should be used to explain the net effect of a group of statements occurring
at a lower level. In particular, there should be comments attached to the then and else
clauses of an if statement explaining the net effect of each clause. There should also
be a comment attached to each loop statement indicating the effect of one pass through
the loop body. Comments offer immediate information about actions being performed
within a control structure. When the parts of a control structure consist of several
statements, a reader can easily get lost in the logic. A comment explaining the
function of those statements will focus attention on the important issues. Comments
on the then and else clauses reinforce the abstraction involved in the control structure
by providing a place for an explanation of the effect of the entire group of statements
making up the clause. This allows a first reading of the program to be made by reading
only the comments below an if statement.

GA.3.1.9 Use embedded commentary to provide a rationale for the selection
of critical algorithms.

When more than one approach to solving a particular problem is possible, the rationale
for a particular approach should be briefly documented in the source code. Including
this rationale can avoid a maintainer replacing the algorithm without understanding the
consequences.

-- Sort the temporary-table. An insertion sort was chosen due to the large size
-- of the table and high frequency of sorting.

for Index in Table’range loop
...
Insertion Sort Algorithm
...

end loop;

A-10

GA.3.1.10 Use embedded commentary to identify and justify deviations from
the coding standard presented in this document.

If compliance with this standard is normally required, it may be desirable to document
deviations from it. This would suggest that there is a reason for the deviation, so that
someone will not inadvertently “fix” it and undo the intent.

A.3.2 Provide a consistently formatted prologue for each program unit.

A prologue containing a consistently formatted set of comments should be required at the
beginning of each program unit (package, subprogram, or task) explaining the purpose and
function of the unit and its relationship to the rest of the software. Any special usage
information should be included. A standard-form prologue provides information about the
program unit in a form that is familiar and readily apparent to the reader. It provides a checklist
to ensure that all relevant information is available. This immediate form of documentation is
also more likely to be kept up-to-date than off-line documentation. Each project should
establish a detailed standard for the content and format of prologues.

GA.3.2.1 * Use the prologue to provide information specifically required for
RSCs.

The prologue for an RSC should prominently identify it as an RSC, and should
indicate a point of contact for problem reports, enhancement requests, and
maintenance. This ensures that application maintainers don’t inadvertently duplicate
library maintenance efforts or create new, independent versions that call for individual
maintenance and configuration management. It also ensures that all users of an RSC
benefit from problem reports and maintenance.

A.3.3 * Include any usage restrictions in the prologue.

The prologue for a reusable software component must warn the user of copyrights, licenses, or
any other restrictions on the use of the component. Including this information in the prologue
helps ensure that it will not be overlooked.

A-11

A.4 Types and Subtypes

A.4.1 Use types and subtypes to limit the program’s properties to the
desired purpose.

Types and subtypes restrict program behaviour in accordance with specific requirements. They
are an important mechanism both for making intent explicit and for increasing implementation
safety (by avoiding operation on inappropriate values).

GA.4.1.1 Use different types to represent different concepts or value sets.

The reader usually associates a particular type with a set of concepts related to a
particular abstraction. If the same type is used to represent logically different
concepts, this interferes with this process of understanding. For example, a program
that includes:

type My_Range is Integer range 1 .. 31;
...
Day_of_the_Month: My_Range;
Childs_Age: My_Range;

interferes with understanding, compared with a program that includes:

type Day is Integer range 1 .. 31;
type Age is Integer range 1 .. 31;
...
Day_of_the_Month: Day;
Childs_Age: Age;

Note that the first example, apart from being counter-intuitive, makes it impossible to
change the allowable range for Childs_Age without also changing the allowable range
for Day_of_the_Month.

GA.4.1.2 Use subtypes to retain concept but restrict value set.

This simply tightens the control over the objects of the type. It forces an even more
exact meaning and purpose to the objects. Therefore, subtyping can offer the reader a
clearer picture of the relationships between objects and a better understanding of the
program. For example:

type Temperature is Integer range -100 .. 100;
subtype Comfort_Zone is Temperature range 15 .. 25;

This makes it clear that Comfort_Zone represents a Temperature, but restricts values to
a desired range. (Note that using two type declarations would not preserve the
relationship between the two, and would not allow values of one type to be assigned to
variables of the other.)

GA.4.1.3 Constrain all real types.

Definitions of floating point or fixed point types should include the range constraint.
This models the abstraction more accurately, makes good use of range checking, and
helps detect machine dependencies at compilation time. For example:

A-12

type Vacuum is digits 3 range 0.0 .. 14.7;

A.4.2 Use enumeration types to enhance understandability.

Types should be used to model the “real world” concept as clearly as possible. Programmers
have traditionally had to use numbers to represent many concepts that are not really numeric;
Ada enumeration types offer a far more readable alternative.

GA.4.2.1 Use enumeration types as opposed to integer ranges when that
more clearly reflects meaning.

Enumeration types give the values of a type meaningful names. For example, rather
than writing:

type Month is Integer range 1 .. 12;
This_Month: Month;
...
if This_Month = 3 then ...

use

type Month is (January, February, March, April, May, June,
 July, August, September, October, November, December);
This_Month: Month;
if This_Month = March then ...

Enumeration types are particularly effective in indexing arrays.

GA.4.2.2 Use two-valued enumeration types in preference to Booleans
when that more clearly reflects meaning.

Examples of such two-valued pairs are on/off, open/closed, up/down, yes/no, male/
female, etc. Values with these names are clearly more meaningful than true/false.
They make the relationship of the pair explicit, and also eliminate the need for
negation or testing for false values, thus reducing the potential for confusion and error.

A.4.3 Avoid anonymous types and subtypes where possible.

Declaring objects of anonymous types obscures the fact that each such object is of its own type,
incompatible with others, regardless of the programmer’s intent. An example of a permissible
deviation from this guideline is declaring a reference table as a constant array, deliberately
preventing any other object from having the same type, for example:

Days_in_Month : constant array (Month) of Day_Count :=
(January => 31,
February => 28,
March => 31,
April => 30,
May => 31,
June => 30,
July => 31,
August => 31,
September => 30,

A-13

October => 31,
November => 30,
December => 31);

GA.4.3.1 If anonymous array types must be used, each such declaration
should contain only one object.

Creating two objects of the same anonymous type, as in:

Stack1, Stack2: array (1..Max) of Element;
creates a strong, but false, impression that the objects are of the same type.

A.4.4 Use private types to hide implementation detail.

Private types are a good way of hiding unnecessary information. preventing the user from
inadvertently including inappropriate dependencies. They offer security for the software,
reducing the potential for misuse by allowing the user access only to abstract operations that
are appropriate. If the representation of the values should change, only a change to the body
will be required. It will not affect the use of the objects and, hence, not require any
recompilations. These are particularly important properties for reusable software.

GA.4.4.1 Use limited private types to control unsafe usage and undesired
modification.

Limited private types severely restrict the use of objects of that type, essentially
restricting use to operations explicitly declared in the package defining the object.
This provides total usage control, inhibiting the user’s ability to corrupt the object or
use it in an unanticipated way. In a reusable component, it also eliminates most
undesired dependencies that other system components might create.

GA.4.4.2 To guarantee automatic initialization, implement private types as
records with default values.

The Ada language does not guarantee initialization of objects when they are created,
and erroneous situations could arise since a user cannot initialize objects of private
types. This does not restrict the design. Any type can be implemented as a record with
a single component of the desired type, allowing an initial value to be specified. The
additional layer of data structure is transparent to the user and, with an optimizing
compiler, will not affect efficiency. This additional safety provision is particularly
important in RSCs.

GA.4.4.3 * To avoid user’s dependency on an object’s implementation,
implement private types using incomplete type declarations and
access types.

For example:

package Stacks is
type Stack is private;
...
private
type Specific_Stack;

A-14

type Stack is access Specific_Stack;
end Stacks;

The actual implementation of Stacks is deferred to the package body, where
Specific_Stack is defined. Thus, changing the implementation will not require
recompilation of the package specification and all the user’s programs that depend
upon the package.

A.4.5 *Use type declarations to help support component portability.

Type declarations can help eliminate implementation dependencies. These dependencies arise
from such characteristics as the minimum and maximum representable values, floating point
representation, implemented fixed point precision, and system clock period. If the range or
precision of values for a type is not defined explicitly in the type declaration, the actual range
or precision will be implementation dependent, causing the software to perform differently (or
not at all) when ported to a different environment. Explicit specification of these properties can
control this problem.

GA.4.5.1 * Fixed-point type declarations should include a length clause for
the attribute ‘small.

A length clause specifies the precision to be used. Without it, the accuracy would be
implementation-dependent. For example,

type Degree is delta 0.1 range -360.0 .. 360.0;
for Degree’small use 360.0 / (2**31);

provides an implementation-independent provision for Degree. (However, note that
some implementations may not be able to support a particular precision. The above
example assumes a 32-bit fixed-point representation. If the implementation cannot
support the precision, the program will not compile, and hence not be portable as is.
An alternative is to state the length in terms of a system-defined constant
(SYSTEM.STORAGE_UNIT - 1) in the declaration. This will let the code compile on
any machine, but its operation will vary depending on the implemented precision.

GA.4.5.2 For real types, specify the minimum accuracy/precision necessary
to meet problem requirements.

The more stringent the accuracy (for float types) and/or precision (for fixed types)
requirements, the more limited is the range of environments to which a component can
be ported. Furthermore, excessive accuracy/precision can sometimes result in an
unexpected leap in memory or execution cost, due to the need for an alternative
implementation (e.g., a two-word representation). An analysis of accuracy/precision
needs should address the potential reuse scope, but this is not the place to add
unneeded capability. Once an accuracy/precision is determined, the component’s
operating characteristics should be defined accordingly.

A-15

A.5 Named Numbers, Constants, and Literals

A.5.1 Use named numbers and constants wherever appropriate for clarity,
maintainability, and safety.

Named numbers and constants can more fully express the intent of the programmer, thus
making the program easier to understand and helping to guarantee that it is used as intended.

GA.5.1.1 Declare an object as a constant if it is not intended to change
during execution.

This makes the programmer’s intent more obvious to the reader. It also promotes
safety by disallowing incorrect attempts to change the value. It can also be used to
isolate system-dependent features (for example screen size, terminal colour, or
function keys) to simplify maintenance.

GA.5.1.2 Except for a few special cases (for example, the numbers 0 or 1),
use named numbers or constant numeric objects rather than
numeric literals.

This has two advantages. First it provides a name for the number that can help explain
its significance. Second, it provides a single point for changing the value of the number
if that becomes necessary, thus supporting maintenance and modification. Note that
each of these advantages may apply in the case of a string constant versus a string
literal. On the other hand, string literals are often self-documenting, making the
program more readily understandable than if a named constant were used.

A-16

A.6 Expressions

A.6.1 Structure expressions to avoid ambiguity, reduce complexity, and
increase clarity.

GA.6.1.1 Use parentheses to make operator precedence easily visible to the
reader.

In a long expression it can be difficult for the reader to see the intended evaluation
order, e.g.:

Earnings := Salary * Base_Hours + Salary * 1.5 * Overtime_Hours - FICA -
 State_Tax - Local_Tax;

is difficult to interpret at a quick glance. A more readable alternative is:

Earnings := (Salary * Base_Hours + Salary * 1.5 * Overtime_Hours)
 - (FICA + State_Tax + Local_Tax);

GA.6.1.2 Do not build in dependencies on the evaluation order of operands.

In many instances, the order in which operands of an expression are evaluated is not
defined by the language, and is therefore implementation-dependent. For example,
consider:

Value := Function1 (Value1) + Function2 (Value2);
It may appear unimportant whether the left or right operand of the “+” operator is
evaluated first. However, suppose Function2 is called first, and in the course of its
processing it changes Value1. This would cause a different result than if the evaluation
order were reversed. This may work correctly for the life of a component in its initial
system (perhaps because the implementation will always call Function1 first), but
malfunction when the component is reused with another compiler. It may be necessary
to break the statement into two statements to control evaluation order.

GA.6.1.3 Use Boolean expressions in preference to the equivalent control
structures.

For example,

return Possible_Prime >= Smallest_Prime;
is clear and concise, while

if Possible_Prime < Smallest_Prime then
return False;

else
return True;

end if;
adds an unnecessary branch construct to the code and makes the assignment seem
more complicated than it is.

A-17

GA.6.1.4 In referring to elements of record aggregates, use named
associations instead of positional ones.

Named associations make explicit which components of the record are being
referenced, and thus make the program more readable. When positional associations
were to be used, it is necessary to look back to the declaration to determine this
correspondence.

A-18

A.7 Control Structures

A.7.1 Select control structures to support understandability of algorithms.

GA.7.1.1 Avoid the use of labels and goto statements.

Labels and goto statements are generally agreed to be opposed to the principles of
good software engineering practice, and are rarely necessary. Some uses that may be
justified are:

• In some algorithms it might be desired to jump out of a loop back to its
beginning in order to restart it.

• Sometimes a program is developed by translating from an algorithm originally
designed for another language. It may be very difficult to determine how to
restructure the algorithm to avoid a goto, and safer to simply use the same
structure.

Any use of labels and gotos should be subject to independent scrutiny to determine if it
cannot be better avoided. Also, the scope of the label should be limited by using a
begin-end block, so that transfers to the label cannot occur from elsewhere.

GA.7.1.2 Be sure that each loop’s exit condition is explicit and apparent.

Most loop exits are determined by the bounds on a for clause or the condition on a
while clause, making it clear how the loop will terminate. However, it is legal to write
a loop without such a clause. This should occur in only two cases:

• The loop includes an exit statement.

• The loop is part of a task body intended for continuous execution.

In both instances, the loop statement should be commented to that effect. Comments
may also be appropriate at the point at which exit statements occur, if exits are nested
and it is not readily apparent where control will go.

GA.7.1.3 Avoid deeply nested loop exit statements.

As discussed in GA.7.1.2, difficulty of understanding increases with depth of nesting of
exits.

GA.7.1.4 Do not use case statements when if statements are more
appropriate, and vice versa.

An if statement should be used when selection of alternatives depends on a test of
Boolean conditions. Use of a case statement in this situation adds unneeded
complexity. A case statement should be used when the selection is based on the value
of a single variable or expression of a discrete type other than Boolean. Using instead
a sequence of ifs again adds unneeded complexity.

A-19

Choices of a case statement are mutually exclusive, while if statements allow the
possibility that one test depends on another. Correct use of these control structures
makes algorithms more understandable.

GA.7.1.5 Use control structures instead of highly complex expressions to
make algorithms more understandable.

For example, a single expression could be used to calculate the number of days in a
month, taking into account the complicated rules for leap years. A reader who didn’t
know these rules would have no way of verifying the correctness of the algorithm. On
the other hand, the individual rules could be expressed as if or case statements,
presenting each rule individually and allowing room for explanatory comments.

A.7.2 Select control structures that promote safety.

GA.7.2.1 Do not use when others as a programming shortcut.

The use of when others reduces the compiler’s ability to detect omitted cases and as a
result may allow erroneous values to go through. This makes use less safe and
maintenance more difficult. However, the use of when others is preferable when
enumerating the other values would be cumbersome because of their number.

A-20

A.8 Exceptions

A.8.1 Use exceptions only to provide the clearest and most flexible way of
handling unusual situations.

Exceptions are included in Ada as a way of breaking control flow when unusual errors occur
that prevent the execution of the normal statement sequence. They allow for separation of the
code for handling unusual situations from the normal code flow, making both aspects easier to
understand.

GA.8.1.1 Do not use exceptions as a normal control flow mechanism.

If the situation handled by an exception can be expected to occur during normal
processing, an exception is not the best construct. This technique obscures flow of
control when it should be explicit. Also, exceptions are a somewhat expensive
programming construct and are often not a major target of compiler optimization
(since they are expected to occur infrequently). Using them as regular programming
mechanism adds unneeded overhead.

GA.8.1.2 Use caution in interpreting the occurrence of predefined
exceptions.

There may be many reasons why a particular predefined exception is raised. It is not
always clear at any one point exactly what those circumstances are. Making
assumptions about these circumstances may later lead to difficulties in determining the
cause of errors. For example, the exception Numeric Error will be raised by an
attempt to divide by zero. However, the exception handler should not assume that
every Numeric Error means a division by zero; it may just as well have been raised by
an overflow condition.

GA.8.1.3 Do not explicitly raise a predefined exception.

This simply obscures the programmer’s intent. Presumably a specific condition is
anticipated by the programmer, and it should be represented by a specific user-defined
exception. Also, this “exception overloading” can cause a problem if the user of the
procedure that raises the exception wants to treat that exception differently than
unanticipated occurrences of the same predefined exception.

GA.8.1.4 Clearly indicate all possible exceptions and the conditions under
which they may be raised.

This can be accomplished by declaring all the exceptions in one place, with
appropriate comments, or by including a section in the prologue discussing exceptions.

A.8.2 *Provide user flexibility in the way exceptional conditions are
handled.

Users of a reusable software component may have varying needs for the handling of
exceptional conditions. A component that provides alternatives has greater reuse potential.

A-21

GA.8.2.1 *Where possible, provide an alternative means to avoid raising an
exception.

In some instance in which a component might be reused, the reuser might wish to
avoid the occurrence of exceptions. If it is possible to straightforwardly check to
determine if an exception would occur, offer such a check function to the user. For
example, a stack package might include a check function Stack.Is_Empty in addition to
the defined exception Stack_Empty. A user who wishes to avoid an exception could
call the check function before a call to Stack_Push. (Sometimes such check functions
are too costly to be practical.)

GA.8.2.2 * Provide a way to let the user correct problems.

The RSC should raise an exception if recovery can be easily accomplished outside the
RSC. If raising an exception would result in loss of information, provision should
instead be made for the user to supply a subprogram to correct the problem.

GA.8.2.3 * In a reusable component, recognize that users’ desired exception
handling will vary.

If exceptions are handled within a reusable component, a generic formal subprogram
parameter will allow the user to provide the specific operation to be performed by the
exception handler. With this approach, a default handler should also be provided.
Alternatively, the reusable component can propagate the exception to the caller. In this
case, the exception is a part of the component’s defined interface.

A.8.3 *Do not build in implementation dependencies through use of
exceptions.

Components intended for reuse should not explicitly raise, or depend upon, implementation-
defined exceptions. Such exceptions make software non-portable.

A-22

A.9 Program Structure and Compilation Units

A.9.1 Structure a program to maximize the independence and modularity of
its components.

Programs should be composed of independent, modular components. Such a structure
enhances understandability, makes the program more maintainable, and maximizes the reuse
potential of individual components.

GA.9.1.1 Emphasize the principles of coupling and cohesion.

A general principle of good programming says that actions within a program unit
should be highly cohesive. This is maximized when a subprogram carries out a single
function. The second basic principle is that of minimal coupling between separate
program units—i.e., simple interfaces with little interdependence. These principles are
mutually supporting.

GA.9.1.2 Limit subprogram length to a manageable level—perhaps two
pages.

An individual project should establish a length limit for subprograms, with exceptions
subject to some independent approval. A recommended length is two pages, exclusive
of any header comments that precede the start of the subprogram specification.
Limiting a subprogram to two pages means that the subprogram listing can be opened
up so the entire subprogram structure can be seen at one time. It also has the advantage
of forcing the program to be broken up into “bite-sized” pieces, encouraging
modularity and cohesion. If necessary, the Ada inline code feature can minimize any
performance impact of this convention.

GA.9.1.3 Use separate compilation to add clarity and maintainability.

Separately compiled subprograms facilitate maintenance by minimizing the
recompilation required by a change. Subunits—separately compiled bodies of program
units declared within another program unit—also provide a mechanism for limiting
length of program units.

A.9.2 Use packages to implement objects.

Packages provide a mechanism for implementing abstract objects (as in object-oriented
programming methods). Packages should be used to create complete objects by grouping the
data representation with the appropriate operations.

GA.9.2.1 * Provide a basic set of operations for each object.

The following basic operations should be provided if applicable, unless there is a
specific desire to exclude that capability from the user.

• Create and initialize an object.

• Determine an object’s value and attributes.

• Assign/change the value and attributes of an object.

A-23

• Destroy an object.

• Convert between types.

• Visit (iterate through) all elements of a compound object.

GA.9.2.2 * Do not split object implementations across packages.

Objects should not be split across packages at the same level. The object definition and
its operations should be in a single package. The package may, however, make use of
layered packages to partition the object into layered objects. There should be well-
defined interfaces between layers. An example is the layered database management
system with separate layers for transaction processing, data manipulation, logical I/O,
and physical I/O. Each layer effectively implements a different object.

A.9.3 Hide unnecessary detail and capability.

The principal of information hiding dictates that only the information and capability the
package user needs should be made visible and available to him. Other information and
capability should be hidden. This helps make programs more understandable by presenting
only “interesting” information to a reader. It also supports safe usage by avoiding inadvertent
change or misuse of package data.

GA.9.3.1 Include only visible properties of an object in the package
specification; hide all non-visible details in the package body.

A package specification should include only those properties (i.e., types, variables, and
subprograms) intended for use by the package user. The additional types, variables,
and subprograms required to implement the package should be in the package body,
where they are not accessible by the package user.

GA.9.3.2 Use the private part of a package specification only for information
that must be in the private part, not as a general hiding
mechanism.

Only the full definitions of private types and deferred constants should be in the private
part of a package specification. Any other hidden declarations should be in the
package body. Both hide the declarations from the user; however, a change to a
declaration in the private part will require that any dependent packages be recompiled.
This is an unnecessary dependency that can be avoided by placing these declarations in
the body.

GA.9.3.3 Hide the use of machine and implementation dependent features
in package bodies.

If these dependencies are localized, moving to another machine will require changes
only to the body of the package and not to all places that use the information.

A-24

A.10 Parameters

A.10.1 Make the purpose and use of each parameter clear.

Parameters define the interfaces of a software component. The user needs to know how each
parameter will be used by the component, and how to provide a correct value for each
parameter.

GA.10.1.1 Name parameters to clearly identify their meaning to the
subprogram.

Parameter names should give some indication of the role the particular parameter plays
in the subprogram. For example, instead of:

procedure Divide (Value1 : in Integer;
 Value2 : in Integer;
 Value3 : out Integer);

use

procedure Divide (Dividend : in Integer;
 Divisor : in Integer;
 Quotient : out Integer);

GA.10.1.2 Use types to constrain the allowable values for parameters.

Ada’s type matching capabilities can help avoid unallowable parameter values, making
parameter requirements clear and eliminating the need for the subprogram to check
explicitly. For example, the preceding procedure could use a type other than Integer to
constrain Divisor to a nonzero value.

GA.10.1.3 Make parameter modes explicit.

Ada provides that when no parameter mode is stated, the default mode is in. However,
using the default mode makes the reader wonder whether the omission was intended.
An exception to this rule applies to function parameters; the mode in is the only legal
mode, so it need not be declared explicitly.

A.10.2 *Use generics to enhance reuse potential.

Ada generics increase the parameterization potential of a component, and hence add flexibility
that makes the component reusable in a wider range of circumstances.

GA.10.2.1 * Explicitly consider whether each intended reusable component
should be a generic.

Each component intended for reuse should be considered from the standpoint of what
range of reuse is possible—i.e., in what ways can the procedure be varied and still be
useful. If this analysis indicates that generic parameterization can increase reuse
potential without unacceptable performance overhead or impact on understandability,
the component should be implemented as a generic.

A-25

GA.10.2.2 * Use generic formal constants (in preference to generic
parameters) for values that do not change within a given
application.

Parameters that vary from one target application to another, but do not vary within a
particular application, should be generic formal constants and not subprogram
parameters. A value that does not change throughout an application is effectively a
constant (compare with the conventions in Section 5, Named Numbers, Constants. and
Literals). Passing such a value as a parameter in each subprogram call adds needless
overhead. Making it a generic parameter on instantiation avoids this overhead and
allows the compiler to treat it as a constant by applying standard optimization
techniques.

GA.10.2.3 * Use generic parameters to support tailoring of a component for
an individual instantiation.

In general, parameters used to tailor a component to an application should be
implemented as generic constants, types, and subprograms. Parameters used in the
operation of the component should be implemented as subprogram parameters.

A-26

A.11 Tasks

A.11.1 Use Ada tasks to implement parallel processing.

GA.11.1.1 Use separate tasks to perform synchronization.

A task should be either an active task or a synchronizing task, but not both. Active
tasks spend most of their time performing particular actions in order to achieve their
objective, and will, on occasion, interact with other tasks. Synchronizing tasks control
these active tasks, usually to provide some kind of protection from undesirable results.
For example, they may protect a data structure from simultaneous reading and writing.
The major advantage of tasking is that it allows for the separation of function and
control. A task that performs both the active and synchronizing roles violates this
principle. It will be confusing to the reader, and will make the job of maintaining the
software more difficult.

GA.11.1.2 Within an accept statement, carry out only those actions that must
occur during the rendezvous.

This minimizes the time during which the calling task is idle as the result of a
rendezvous.

A.11.2 Avoid implementation dependencies in the use of tasks.

GA.11.2.1 Make no assumptions about the order or speed of execution of
different tasks except that implied by Ada rendezvous semantics.

Ada semantics provide no assurances about the relative speed or order of execution of
different tasks. Any program that depends on a specific order may work in some cases
and not in others. In particular, it may well work differently when ported to a different
operating environment. To avoid such latent errors, no assumptions should be made
about the order of execution.

GA.11.2.2 Do not rely on pragma PRIORITY to implement task
synchronization.

Task priorities defined by pragma PRIORITY should be used only to indicate relative
degrees of urgency, not for task synchronization. Priorities do not imply that a lower
priority task should be interrupted to execute a higher priority task. Also, in a
multiprocessor environment, the lower priority task may execute simultaneously with
the higher priority task on another processor. Thus assumptions about how PRIORITY
influences execution order should be avoided.

GA.11.2.3 Keep task priorities simple and understandable.

The number of different task priorities should be kept small, and each priority level
should be given a name by declaring constants of predefined type PRIORITY. A
program that uses many different priority levels is harder to understand because it
quickly becomes difficult to assess the effect of the priorities. Task processing is more
clearly understood if constant objects are used for the priorities instead of numeric
literals, because they indicate more of a relative ordering than an exact one. The
program is more portable if these constant names are used, because only the values of

A-27

the constants would need to change as a result of a change to the predefined type
PRIORITY.

A-28

A.12 Other Areas

A.12.1 Minimize the use of machine-dependent and implementation-
dependent features.

Machine-dependent and implementation-dependent features should be used only to permit
access to specific machine features, or when determined to be critical to achieving required
performance. These features make a program less portable, and also add detail that may
overwhelm the reader. Any use of these features should be subject to independent review.

GA.12.1.1 If any machine- or implementation-dependent features must be
used, localize them in a package.

If these features are used, they should be localized inside packages with comments that
explain why they are needed and what effect they have. These features are normally
difficult to understand and require some additional explanation; comments prevent
misunderstandings. Localizing them into packages isolates them for modification and
helps reduce dependencies.

A.12.2 Avoid suppression of built-in checks unless required for
performance.

Built-in checks should not be suppressed (by using the generic function
Unchecked_Conversion or the generic procedure Unchecked_Deallocation) unless required to
achieve acceptable program efficiency. If such suppression is necessary, it should be done only
after the program has been proven reliable and then only after all other means of achieving
acceptable efficiency have been exhausted. If checks are omitted, this should be clearly
documented in the prologue.

A.12.3 Make pragmas conspicuous by their position in the source text.

If pragmas can be seen, they are more likely to be understood. It they are not positioned in a
way that calls attention to them, they run the risk of being overlooked.

A.12.4 Explicitly close all files.

Relying on the operating system or runtime environment to close files at termination introduces
an unnecessary implementation dependence. In particular, exception handlers must close any
open files.

