
Applying UML to Design an Inter-Domain Service
Management Application

Mohamed Mancona Kandé1, Shahrzade Mazaher2, Ognjen Prnjat3, Lionel Sacks3, and
Marcus Wittig1

1GMD-Fokus, Kaiserin-Augusta-Allee 31,

D-10589 Berlin, Germany

{kande, Wittig}@fokus.gmd.de
2Norwegian Computing Center, P.O.Box 114 Blindern,

0314 Oslo, Norway

shahrzade.mazaher@nr.no
3University College of London, Dept. of Electrical Engineering, Gower Str.,

London WC1E6BT, UK

{oprnjat, lsacks}@eleceng.ucl.ac.uk

Abstract. We present a component-oriented approach to demonstrate the use of the
Unified Modeling Language (UML) and Open Distributed Processing (ODP) concepts
to design service components of a telecommunications management system. This paper
is based on the work done in the design phase of the ACTS project “TRUMPET” (Inter-
Domain Management with Integrity). This project undertook to produce a service
management architecture suitable for emerging liberalised telecommunications markets.
The criteria where that the system should be highly distributed both technologically and
administratively -- i.e., across many kinds of organisations. TRUMPET project presents
a good model environment to develop not only the service architecture itself but also the
methodologies for producing such designs. In our approach, we use the conceptual
framework of ODP and discuss some methodological issues related to ODP-viewpoint
modelling of distributed systems using UML notations. We conclude with recognising
the power of combining UML and ODP so as to manage the complexity of the problem.

1 Introduction

Designing and implementing complicated distributed control systems in large international
groups or consortia is non-trivial. Techniques are required to ensure that all the participants
understand where their work applies, the work of their collaborators, and the relationship
between these. Further, when building systems which are expected to have some longevity it is
important that people looking at the documentation can understand what is involved. These
considerations motivate the use of architectural design methodologies and semi-formal
methods in system modelling. Another important consideration is that the methodologies used
should facilitate close analysis of the design to ensure, at early stages, that the system is
complete in meeting its requirements and consistent in its operation. This should yield robust,

well-engineered products. Finally, when presenting the product to users, its functionality and
roles within their business practices must be clearly documented and defined (following the
motivations behind the Network Management Forum OMNIPoint Ensembles [9]).

This paper illustrates how two popular techniques can be combined to achieve these goals,
and how this was done in the context of the TRUMPET service management architecture [3].
The TRUMPET project undertook to produce a service management architecture suitable for
emerging liberalised telecommunications markets. The criteria were that the system should be
highly distributed, both technologically and administratively -- i.e., across many kinds of
organisations. Specifically, these organisations include: Public Network Operators (PNOs),
Customer Premises Network centres (CPNs) and third party Value Added Service Providers
(VASPs) or bandwidth retailers. Moreover, the TRUMPET consortium consisted of a number
of engineers, from several companies across Europe who had to collaborate to design, build
and run the system. Thus the TRUMPET project presented a good model environment to
develop not only the service architecture itself, but also the approach for producing such an
architecture.

The two techniques used were the ITU-T Open Distributed Processing (ODP) [10]
architecture and the Universal Modeling Language (UML) [11]. ODP is a framework that
supports the building of distributed systems. At the top level, ODP requires that the system at
hand be modelled from a number of different viewpoints defined within the ODP Reference
Model (RM-ODP)[10]. UML is a semi-formal modelling language which provides a
diagrammatic notation and its semantics using mature object-oriented concepts. By using the
appropriate UML diagrams for each of the ODP viewpoints, it is possible to design a system
with clear traceability between the different viewpoints. UML and ODP, both being well
documented and widely accepted within industry, can be understood by engineers from many
countries and companies. Using the two together therefore makes it possible to present the
designs in an -- almost -- universal language both to collaborating designers and to customers.

The rest of this paper is arranged as follows. In Section 2, a brief overview of the
TRUMPET scenario is given. Section 3 describes the ODP viewpoints and discusses the
rationale behind using UML for describing ODP viewpoints. In Section 4, a Virtual Private
Network service is specified in each of the ODP viewpoints by using the appropriate UML
diagram types. Section 5 concludes the paper by assessing the used approach.

2 The TRUMPET Scenario

The ACTS project TRUMPET (Inter-Domain Management with Integrity) focuses on the
secure operation of inter-domain management systems within the Open Network Provisioning
framework. The TRUMPET scenario in Fig. 1 involves the following players: two (or more)
Public Network Operators (PNOs), a Value Added Service Provider (VASP), and a number of
customers at various sites -- Customer Premises Networks (CPNs) [2], [15]. The customers see
an end-to-end connection and are not necessarily aware of which PNOs are contributing to
establish the connection. The VASP sees the connection as a set of segments, each supported
by a different PNO, but does not know how each segment has been set up within the
corresponding PNO (i.e., what Asynchronous Transfer Mode-based switches are used).

The management systems of the players mentioned above form a service provisioning
system for management and provision of broadband (Asynchronous Transfer Mode-based)
network connections between two customers/end users. CPN is a dedicated service in the
customer organisation, which already has a contract with the VASP. The VASP management
system provides network connectivity to customers by utilising the resources of one or more
Public Network Operators. The VASP allows customers to create, modify and delete
connections, thus effectively providing the Virtual Private Network (VPN) service to the
customers. PNOs provide the physical infrastructure, i.e., the network, and the adequate
management interface to interact with it.

CPN
OS

PNO A PNO B

VASP

Customer Premises Network 1

Customer Premises Network 2

CPN
OS

Xuser’’

Xuser’ Xuser’

XcoopPNO
OS

VASP
OS

PNO
OS

Xuser’’
Customer1 / end-user

Customer2 / end-user

Fig. 1. TRUMPET Scenario

The TRUMPET management system thus represents a typical component-based application
for distributed service management. Entering the design phase, a need for suitable
methodology and supporting notation for modelling such a distributed system emerged. Having
critically reflected on existing methodologies and notation schemes, the consortium decided to
adapt the Unified Modeling Language concepts to the ODP framework and design the system
in such a fashion.

3 Design Approach: UML and ODP

This section is concerned with the methodology and the notation chosen for the analysis and
design of the TRUMPET management system. It presents the methodology and discusses the
rationale for the choice of the notation to be used.

A Methodology represents a set of rules for structuring the task of developing a system, by
grouping the analysis and design information and defining steps to be followed during system
refinement. Notation refers to the way, either textual or diagrammatic, of representing the
information, and of describing the structure and functionality of the system and its components.

The methodology adopted in TRUMPET is that of the Open Distributed Processing
Reference Model (RM-ODP) [10]. ODP provides a general architectural framework to which
distributed systems, operating in an open, heterogeneous environment, must conform. The
basis of this architectural framework is the development methodology encompassing five
distinct viewpoints. These viewpoints allow different participants in system development to
observe the system from different perspectives and levels of abstraction:
• The Enterprise viewpoint is directed at the needs of the users of a system. The system is

modelled in terms of the required functionality, the domains involved, the actors and their
roles.

• The Information viewpoint describes a consistent, common view of information resources
that support the information requirements of the Enterprise viewpoint. It also defines
relationships between information elements and the information processing.

• The Computational viewpoint is concerned with the functional decomposition of a system,
i.e., the computational objects, the interfaces they offer (the functionality they support), and
the interactions between them.

• The Engineering viewpoint describes the infrastructure needed to support distribution, i.e.,
the provisioning of transparencies. The Engineering viewpoint defines the communication
needs and the deployment of functionality.

• The Technology viewpoint is concerned with the details of the components and platforms
from which the system is constructed.
The viewpoints are partial views of the complete system specification, and the description

of the same component can exist in different viewpoints. This gives rise to a viewpoint
consistency issue, i.e., the consistency of specifications across different viewpoints. For each
viewpoint, ODP has defined a language, meaning a set of concepts and rules to be used when
specifying the system in the corresponding viewpoint. However, it has left open the issue of
which notation to use for these viewpoint languages.

There are some major concerns when choosing notations for the ODP viewpoints. First,
since ODP is based on the object paradigm, the notation for each viewpoint should support that
paradigm as well. Second, the notation should be able to express the concepts defined in that
viewpoint. Third, it should be possible to check the consistency of the different viewpoint
specifications of a system. It would be an added advantage if one could trace an entity that
occurs in more than one viewpoint. Another consideration is that the notation should be
intuitive and easy to use and understand. In other words, the notation should ease the
communication among development team members and others outside the team (such as
customers). This latter consideration becomes even more important in a distributed,
international environment such as that of TRUMPET.

Different semi-formal and formal languages are used for specifying different ODP
viewpoints. Formal descriptions are employed in the ODP framework to enable a precise and
unambiguous definition and interpretation of ODP standards. But usually, different languages
are used for different viewpoints, making it difficult to check consistency between different
viewpoint specifications and to trace system components across viewpoints. Applying a single
language/notation to all of the ODP viewpoints will solve these problems, but it requires that
the language/notation have a rich set of core concepts to cover all the viewpoints.

There are several (semi-) formal languages/notations that can be considered for the purpose
of specifying ODP viewpoints. Among those, the notation that best fulfils the requirements

above is the Unified Modeling language (UML). Among the other languages, the Specification
and Description Language (SDL) [12] is also object-oriented and has a graphical notation, but
it lacks the richness of concepts available in UML. Moreover, SDL does not have any
extension mechanism, such as UML’s stereotype, to compensate for the missing concepts. The
lack of extension mechanism also applies to the other formal languages considered. The formal
languages based on mathematical notations, e.g., LOTOS [8] and Z [16], are not only difficult
to understand and communicate, but have a limited set of basic concepts.

The approach proposed in [7] for mapping the different ODP viewpoints to UML diagram
types has been developed and adopted in the TRUMPET project. This approach is illustrated in
Fig. 2. The major benefit of such a mapping consists in supporting both an object-oriented
modelling and design process, and the design of reusable components and distributed services
[6] in the sense of distributed systems as described in the Reference Model for Open
Distributed Processing (RM-ODP) [10]. A combination of ODP and UML helps also to map
and to implement some ODP functions in different technologies like Common Object Request
Broker Architecture (CORBA) and Telecommunications Information Networking Architecture
-- Distributed Processing Environment [13].

Fig. 2 depicts the links between ODP viewpoints [1], and shows the relationships between
these viewpoints and the UML diagrams, as well as between UML diagrams themselves
(which are mapped to the same viewpoint specifying different aspects of same objects). The
design of a distributed management application starts with capturing requirements of the
system in terms of Use Case Diagrams. The results obtained from a use case model may be
used to present high level Static Structure Diagrams/Class Diagrams as indicated in the
Enterprise viewpoint, and these diagrams can be specified in more detail in the Information
viewpoint. The step from Class Diagrams to Statechart Diagrams allows the specification of
the dynamic behaviour of significant information objects.

Information
Viewpoint

Static Structure Diagram

Statechart Diagram

Technology
Viewpoint

Computational
Viewpoint

Sequence Diagram

Component Diagram

Activity Diagram

Collaboration Diagram
Enterprise
Viewpoint

Static Structure Diagram

Use Case Diagram

Engineering
Viewpoint

Deployment Diagram

Component Diagram

Static Structure Diagram

Relationship between specifications of different viewpoints
Relationship between different models of same objects
Relationship between viewpoints in development lifecycle

Fig. 2. Relationships between UML Diagrams and ODP Viewpoints

The Computational viewpoint maps to the UML Collaboration, Sequence, Activity and
Component Diagram types. While the UML Collaboration Diagram shows the interactions
among instances and their links to each other, the Sequence Diagram describes object
interactions arranged in a time sequence. The Activity Diagram allows the specification of the
order in which activities (such as operations provided by a computational object interface) have
to be executed. The Component Diagram shows the organisations and dependencies among
components.

In addition to the Component Diagram, the Deployment Diagram is also mapped to the
Engineering viewpoint. This latter diagram type shows how components and objects are
distributed and moved around the system [4]. There is no mapping between UML and the
Technology viewpoint offered by this approach.

4 Case Study

This section describes how, within the ODP framework, different UML concepts and notations
were used to design the TRUMPET management system. A separate section is dedicated to
each of the five ODP viewpoints by projecting the Virtual Private Network service in the
corresponding viewpoint using the appropriate UML notation schemes.

Each viewpoint first gives an overall view of the TRUMPET management system, and then
focuses on a more detailed description of the VPN service within the Value Added Service
Provider domain.

4.1 Enterprise Viewpoint

The ODP Enterprise viewpoint represents an overview of the system’s aims, constraints and
functionality as seen by the enterprise. This viewpoint models the basic system decomposition
into components, identifies actors, policies and domains, and describes the general scenarios of
the system’s use.

The TRUMPET system incorporates three domains (or enterprise objects in ODP
terminology) namely the Customer Premises Network, CPN, the Value Added Service
Provider, VASP, and the Public Network Operator, PNO. The PNO domain is further
subdivided into PNO Service Layer and PNO Network Layer. These four entities were
modelled as UML Packages with interdependencies, using UML Class Diagram notation as
shown on Fig. 3.

<<community>>
TrumpetManagementSystem

<<domain>>
PNO

CPN
<<domain>>

VASP
<<domain>> PNONetwork

Management
PNOService
Management

Fig. 3. The TRUMPET Class Diagram Enterprise Package

Next, the desired functionality of the system is described. In the ODP context, this is done
by specifying the scenarios, or Use Cases, that describe how actors/entities interact in the
context of using the system.

<<Community>>
TrumpetManagementSystem

Reserve
Connection

Status
Request

Modify

Release
Connection

Notify
Activation

Connection
Release

Notification

<<user>>

<<pno>>

Fig. 4. The Use-Case Diagram

The TRUMPET scenarios were specified using the UML Use Case diagram, depicting the
actors, sets of Use Cases (ellipses) within a system, and associations between actors and Use
Cases -- illustrated in Fig. 4. Note that the UML stereotype <<community>> has been used to
classify the high-level enterprise object “TrumpetManagementSystem“ as community in the
sense of ODP.

Fig. 4 depicts the functionality (or Management Functions) identified in the Value Added
Service Provider management service as Use Cases, and the interaction of the different users
with the Use Case package. As shown, there are six Use Cases. Customers/end users are
capable of reserving end-to-end connections (of a given duration and desired Quality of
Service), modifying them (changing duration, Quality of Service, or both), and releasing, i.e.,
deleting these connections. Public Network Operators are capable of notifying the users via the
Value Added Service Provider of connection activation, or notifying the users of the
connection release due to a segment/link failure.

4.2 Information Viewpoint

In the ODP Information viewpoint, the information objects of the system are identified and
their structures and relationships described. UML Class Diagrams were used to describe the
static structure of the information objects.

VPNContract

Vasp
<<information entity>>

EndUser
VPNConnection

Pno
<<information entity>>

1..*

1

Cpn
<<information entity>>

Segment

establishes/maintains

uses

connects to

maps/retrieves

<<domain>>
CPN

<<domain>>
VASP

<<domain>>
PNO

Fig. 5. The Class Diagram of the VPN Service

Fig. 5 illustrates, by means of a UML Class Diagram, the overall structure of the Virtual
Private Network service. That is, what entities are involved, what their relationships are, and
how they interact.

In the following, the emphasis is put on the Value Added Service Provider (VASP) entity of
the above diagram, and a more detailed description of this entity is given. In the Class Diagram
of Fig. 6, the VASP is decomposed into its three main components: the CustomerServer which
handles the communication with the customer domain (CPN), the ControlServer which, after
negotiations with the involved Public Network Operators, establishes, modifies, or releases the
Virtual Private Network connections, and the MIB (Management Information Base) which
contains all the Managed Objects. These objects contain information about the different entities
that the VASP either interacts with or manages, e.g., objects containing information about the
VASP customers or objects representing the connections that the VASP manages. Both the
CustomerServer and the ControlServer have access to the MIB for either retrieving information
from it or updating it.

CustomerMib

ControlServer

ConnetionMib

Mib
CustomerServer

Vasp
<<information entity>>

<<information view>>
VASP

. . .

Fig. 6. The Overall Class Diagram of the VASP

Among the different components of the VASP, the Management Information Base
represents the pure informational objects. The other two entities can be regarded as information
processing units (manipulating the MIB) although each of them contains information about the
current state of the VASP.

The customer MIB contains information pertaining to the VASP customers, their respective
service profiles, and the terms of their subscriptions. A corresponding MIB exists for the Public
Network Operators whom the VASP is dealing with. These MIBs are rather static, in the sense
that the information they contain is seldom updated. The Connection MIB contains information
about all the connections that the VASP is currently supporting. Furthermore, its structure
reflects the view that the VASP has of a connection, i.e., a connection consisting of segments
individually supported by a Public Network Operator. This MIB is being constantly updated
(therefore dynamic) as requests for new Virtual Private Connections and change/release of the
existing ones are received from the customers.

4.3 Computational Viewpoint

The Computational viewpoint describes how the management functions, identified via
Enterprise Use Cases, are performed by the management system. Each management function is
described in terms of computational objects and computational activities, the latter representing
sequences of operations invoked on computational objects.

As a starting point for the computational design, the components identified in the Enterprise
viewpoint can be mapped to computational objects which provide an abstract, course grain
computational view of the management system. Each component can then be broken further
down into a set of computational objects representing the detailed computational object model.
At this level, the UML Class Diagrams have been used to describe the structure of
computational objects, their interfaces, and the relationships between them. At the abstract
level, UML Component Diagrams have been used to describe the system components and their
external interfaces.

Fig. 7 depicts the design of the VaspVpnManager component (referred to in the Information
Viewpoint as the Control Server). We distinguish the VaspVpnManagerFacade package
containing the external structure (client view of the component) from the
VaspVpnManagerImpl package that contains the implementation details about the internal class
structure.

 VaspVpnManager Imp l

VaspVpnManagerFacad
e

 RouteF inder

 << in ter face>>
 VPNEventHand le r

 <<abst rac t>>
 V a s p V P N M n g r

 <<c l ien t>>
 Customer-Server

ca l ls

 V a s p V P S e g m e n t

 of fers

 VaspVPConnec t i on

 of fers

 << in ter face>>
 VPNServ ice

 <<c l ien t>>
 PnoConnec t ionManager

ca l ls

 Cus tomerEndPo in t

 <<c l ien t>>
 PnoConnec t ionManager

 <<c l ien t>>
 Customer-Server

 VaspVpnMngr

 VPNEventHand le r

Fig. 7. Internal Structure of the VASP-VPN-Manager Computational Object Type

The VaspVpnManagerImpl package realises the interfaces contained in the “façade“ package.
It does so by implementing objects that directly support the management functions offered by
the interfaces, and objects that support the former objects in carrying out their task.

CustomerServer

...

VASP-VPN-Manager

<<VPNServiceInterface>>
reserveConnetion()
modify()
getStatus()
releaseConnection()
<<VPConnSEHInterface>>
activateConnectionNotify()
releaseConnectionNotify()
connectionNotify()

VPNService

VPConnServEventHandler

Fig. 8. The VASP-VPN-Manager Computational Object Type Diagram with Interfaces

Note that the interface type diagrams of Fig. 8 and Fig. 9 provide the information necessary
to easily produce an OMG-IDL (interface definition language) file. This would be the first step
in mapping the computational design to a concrete CORBA-compliant implementation
platform. The UML diagrams thus support directly and ease the implementation task for those
platforms.

reserveConnetion()
modify()
getStatus()
releaseConnection()

VPNService
<<interface>> <<interface>>

VPConnServEventHandler

activateConnectionNotify()
releaseConnectionNotify()
connectionNotify()

Fig. 9. Computational Object Interface Type for VASP-VPN-Manager

Next, the computational activities are described. Computational activities are the
interactions between the computational objects in order to perform the management functions
defined through Use Cases in the Enterprise viewpoint. Interaction between computational

objects is described in terms of an operation invocation initiated by a client object requesting
an operation to be performed by a server object. Precedence rules are used to define the
sequence of operations performed when an interaction takes place. To describe the
computational objects interactions UML Collaboration diagrams and Sequence diagrams have
been used. These two diagram types convey mostly the same information. Depending on how
important the time dimension or the lifetime of computational objects are, one could use one or
both of the diagram types.

:Customer
Server

:VASP-VP-Seg
ment

:PnoConnetion
Manager

:RouteFinder:VASP-VPN-
Manager

:VASP-VP-Conn :Customer
EndPoint

 1: reserveConnection()

2: findeRoute(CustId, CustId)

3: create(VaspId, CustId, CustId, Duration, Bw)

5: create(ConnId, AccessP, AccessP, Bw)

4: reserveConnection(VaspId, VaspId, AccessP, AccessP, Duration, Bw)

6: allocateConnection(VaspId, VaspId, AccessP, AccessP, Duration, BW)

7: create(CustId, CPNConnId, AccessP, Bw)

Fig. 10. The Reserve Connection Sequence Diagram

The UML Sequence and Collaboration Diagrams as depicted in FIg. 10 and Fig. 11 describe
the Reserve Connection Use Case defined in the Enterprise viewpoint. These diagrams
illustrate the interactions, sequences of messages, and relationships among computational
components (such as PnoConnectionManager, VaspVpnManager) as well as programming
level objects (e.g., instances of UML objects within the VaspVpnMamager package) [7].

:CustomerServer

:VASP-VP-Segment

:Customer-CPN

:PnoConnetionManager :RouteFinder

:VASP-VPN-Manager :VASP-VP-Conn

:CustomerEndPoint

1: reserveConnection()

2: findRoute(CustId, CustId)

3: create(VaspId, CustId, CustId, Duration, Bw)

5: create(ConnId, AccessP, AccessP, Bw)

4: reserveConnection(VaspId, VaspId, AccessP, AccessP, Duration, Bw)

6: allocateConnection(VaspId, VaspId, AccessP, AccessP, Duration, Bw)

7: create(CustId, CPNConnId, AccessP, Bw)

Fig. 11. The Reserve Connection Collaboration Diagram

4.4 Engineering Viewpoint

This viewpoint focuses on the actual realisation of interactions between distributed objects and
on the resources needed to accomplish this interaction. It comprises concepts, rules and
structures for the specification of the system viewed from the engineering perspective.

This viewpoint introduces three main concepts, namely, nodes, clusters and capsules. ODP
nodes match quite closely UML nodes, therefore, as depicted in Fig. 12, the concept of UML-
nodes was applied to design PNO-Host, VASP-Host, and CPN-Host.

ODP capsules are a grouping of engineering objects forming a single unit for the purpose of
encapsulation, processing and storage (e.g., VpnManagerServer and PNOConnMngrServer in
Fig. 12). They can be thought of as runtime modules. The UML Component Diagram is
therefore the appropriate candidate to specify the set of runtime modules and their interactions.
The overall view of the system, i.e., how the capsules are distributed across the nodes, is then
most naturally conveyed by the UML Deployment Diagram.

An ODP cluster refers to a group of objects that are always together and can migrate only as
a whole from one capsule to another (whether on the same node or not). The tight coupling that
exists among the cluster objects can be best conveyed by the UML Composition concept of
Class Diagrams. In Fig. 12, the Capsule Customer-Server contains a cluster, a composite object
tagged with the stereotype <<cluster>>, that can migrate from the VASP-Host to the CPN-
Host as indicated by the <<becomes>> stereotype.

P N O - H o s t

P N O C o n n M n g r
Server <<ca l l s>>

< < b e c o m e s > >
V A S P - H o s t

V p n M a n a g e r -
Server

Cus tomer -
Server

<<C lus te r>>
G U I a G U I b

C P N - H o s t

<<C lus te r>>
 G U I a G U I b

UserAppl ica t ion

Fig. 12. Deployment Diagram

4.5 Technology Viewpoint

The ODP Technology viewpoint describes the choice of implementation technologies used to
bring the design accomplished through the four previous viewpoints to life. This viewpoint
describes the configuration of the hardware and software on which the distributed system
relies. Although there are no dedicated UML diagrams to describe this viewpoint, the object-
oriented concepts of encapsulation and abstraction provided by UML in previous design steps
allow the system to be implemented in an heterogeneous environment in terms of computer
architectures, programming languages and operating systems. This is one of the main
advantages of the object-oriented approach adopted by UML. The Technology viewpoint was
therefore described using plain English.

The Customer Premises Network is realised as a group of Java objects providing an
interface to the Value Added Service Provider’s Virtual Private Network functionality. A
HTML based user interface is also provided as the end-user interface to CPN Java objects. The
CPN-VASP communications are implemented in Voyager, a Java-based communications
mechanism. The VASP is fully implemented in Java, apart from the Management Information
Base which is based on the Lightweight Directory Access Protocol (LDAP) which effectively
supports functionality required by the Telecommunications Management Network [5] for
(TMN)-like Management Information Base. Public Network Operator’s management system is
a TMN-OSI platform, the HP-OpenView, which communicates via Common Management
Information Protocol (CMIP). Thus, VASP implementation requires a JAVA-to-CMIP
gateway, which is realised as a platform-independent CORBA gateway. These technologies
were chosen so as to fulfil the trial requirements and project aims.

5 Conclusion: Experiences and Lessons Learned

This paper discussed the rationale behind the choice of UML as a notation scheme for
describing ODP viewpoints and its application in the context of the ODP framework for the
design of elecommunications management services. A case study describing the development
of the TRUMPET inter-domain service management system illustrated the approach. This
approach proved to have some advantages that validated the choice of UML as well as some
drawbacks.

There were two main advantages in using the ODP-UML combination. First, there was no
need to shift paradigm when trying to represent ODP core concepts in UML, since both are
base on object-oriented principles. This eased the task of mapping by allowing to focus solely
on finding the most suitable UML representation for the entities to be specified -- different
paradigms would entail mapping (the building blocks of) the two paradigms to each other first.

Second, both UML and ODP look at a system from different perspectives. UML’s versatile
diagram types made it possible to use only one notation to specify all of ODP’s five viewpoints,
illustrated by the example used throughout the paper (Use Cases were used in the Enterprise,
Class Dagrams in the Information, Collaboration Diagrams and interface types in the
Computational, and Component Diagrams and Deployment Diagrams in the Engineering
viewpoints).

Furthermore, the use of a single notation for all ODP viewpoints resulted in a shorter start-
up phase for the project. It also had the benefit that consistency checks between the different
viewpoint specifications could be done more easily, as needed, by the project members.
Conversely, the ODP framework proved to be an efficient way of structuring different UML
notations and thus managing the potential high complexity of large models.

Although the UML notation has many attractive aspects for use in the design of a
distributed system, it also has some drawbacks. Many of the ODP core concepts are not
directly supported by UML. For such reasons, UML introduces the concept of stereotypes to
provide for extensibility. In the example of the previous sections, stereotypes have been
extensively used to map ODP concepts that did not have a direct counterpart in the UML
notation, such as enterprise objects, communities, clusters, etc. Moreover, although the concept
of an interface is part of UML, its description uses the same notation as for a class. Again a
stereotype, <<interface>>, has been used to differentiate between the class and the interface
descriptions. The existence of an extension mechanism compensates for the lack of suitable
basic concepts, but the extensive use of the same notation to express quite different concepts
becomes at best confusing. One of the main benefits of a pictorial notation is to be able to get a
general understanding of a given diagram without having to rely on the annotation text. This
benefit is lost when the same representation is used for many different core entities.

UML did not prove to have enough power to fully describe the ODP concept of the
computational object. During the design, only the external interfaces provided by a component
were specified, and concepts like binding rules and lifetime aspects were not included.

In conclusion, the use of the ODP-UML methodology in TRUMPET proved efficient in
supporting collaborative work in a large, geographically distributed consortium. After the
initial methodology was decided upon, the work assignment was agreed on and understood
within an afternoon of discussions. After the labour division was made, the consortium
undertook to design the system according to the approach defined.

UML being quite widespread in both industry and academia, most people involved in the
project had had some kind of experience with it before. Those less fluent in UML picked it up
rather easily partly because of its graphical notation and intuitiveness and partly because of
their knowledge of other similar notations. The introduction of UML in the project was
therefore quite smooth and established a common base of communication among the members
of the development team.

The design was developed within the contractual deadline (three months). There were 15
individuals involved in producing the design document. A high quality design was achieved
despite the size of the TRUMPET system and the limited development resources available. The
documents produced in this phase, were also extensively used by the trials team, which helped
run the system in the operational environment.

The shortcomings of the approach were mainly due to the lack of direct support in UML of
ODP’s core concepts. That would be greatly alleviated if UML would offer a graphical
extension mechanism.

Acknowledgements

This paper is based on the original work developed by the ACTS project TRUMPET. The
authors wish to thank all the partners of the TRUMPET consortium who contributed to this
work. Ognjen Prnjat wishes to acknowledge the financial support provided by the British
Council Overseas Research Scholarship. More information on the TRUMPET project can be
found at http://ascom.eurecom.fr/ASRL/TRUMPET/Trumpet_public/.

References

1. Berquist, K., Berquist. A. (Eds.): Managing Information Highways. The PRISM book: Principles,
Methods and Case Studies for Designing Telecommunications Management Systems. Lecture Notes
in Computer Science, Vol. 1164, Springer –Verlag, Berlin Heidelberg New York (1996).

2. ACTS Project AC112 TRUMPET: NIL-Security Prototype Report, Deliverable 6 (1997).
3. ACTS Project AC112 TRUMPET: Detailed Component and Scenario Designs, Deliverable 8

(1997).
4. Fowler, M., Scott, K.: UML Distilled: Applying the Standard Object Modeling Language. Addison-

Wesley (1995).
5. Hall, J. (Ed.): Management of Telecommunication Systems and Services: Modeling and

Implementing TMN-based Multi-domain Management. Springer-Verlag, Berlin New York Tokyo
(1996).

6. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse: Architecture, Process and Organization for
Business Success. Addison-Wesley (1997).

7. Kandé, M. M., Tai, S., Wittig, M.: On the Use of UML for ODP-Viewpoint modeling. In OOPSLA
97 Workshop on Object Oriented Technology for Service, System and Network Management.
Atlanta, Georgia (1997).

8. ISO 8807: LOTOS: A formal description technique based on the temporal ordering of the
observational behaviour. (1989).

9. The Network Management Forum: The OMNIPoint Strategic Framework. A Service-Based
Approach to the Management of Network and systems. NJ (1993).

10. ISO/IEC 10746-1/2/3: Reference Model for Open Distributed Processing ­Part1:Overview/Part2:
Foundations/Part3: Architecture. (1995).

11. Rational Software, Microsoft, Hewlett-Packard, Oracle, Texas Instruments, MCI Systemhouse,
Unisys, ICON Computing, IntelliCorp: The Unified Modeling Language, Joint Submission, OMG
TC doc ad/97-01-01 ­ ad/97-01-14 .

12. CCITT: Recommendation Z100 Specification and Description Language (SDL). (1992).

13. Graubmann, P., Mercouroff, N.: Engineering Modeling Concepts (DPE Architecture). In TINA
Baseline document TB_NS0005_2.0_0.94 (1994).

14. Sacks, L., et. al.: TRUMPET Service Management Architecture. In Proceedings of the 2nd

International Enterprise Distributed Object Computing Workshop (1998).
15. ISO JTC1/SC22/WG19: Z Notation (draft version 1.4). (1998).

