
UML Profile for Enterprise
Distributed Object

Computing

Initial Submission

CBOP

(Consortium for Business Object Promotion)

Version 1.0

October 25, 1999
OMG Document ad/99-11-05

Copyright 1999 by CBOP

The submitting companies listed above have all contributed to this joint submission. These companies recognize
that this draft joint submission is the joint intellectual property of all the submitters, and may be used by any of

CBOP Initial Submission UML Profile for EDOC 99/11/17 - ii -

them in the future, regardless of whether they ultimately participate in a revised and or final joint submission.

In future, this documentation will be continuously maintained and enhanced through the activity for
standardizing of CBOP members.
The companies listed above hereby grant a royalty-free license to the Object Management Group, Inc. (OMG) for
worldwide distribution of this document or any derivative works thereof, so long as the OMG reproduces the
copyright notices and the below paragraphs on all distributed copies.
The material in this document is submitted to the OMG for evaluation. Submission of this document does not
represent a commitment to implement any portion of this specification in the products of the submitters.
WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL INCLUDING
BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.
The companies listed above shall not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance or use of this material. The information contained in this
document is subject to change without notice.
This document contains information which is protected by copyright. All Rights Reserved.
Except as otherwise provided herein, no part of this work may be reproduced or used in any form or by any means-
graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval
systems- without the permission of one of the copyright owners. All copies of this document must include the
copyright and other information contained on this page.
The copyright owners grant member companies of the OMG permission to make a limited number of copies of this
document (up to fifty copies) for their internal use as part of the OMG evaluation process.
RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set
forth in subdivision (c)(l)(ii) of the Right in Technical Data and Computer Software Clause at DFARS
252.227.7013.

CORBA and Object Request Broker are trademarks of Object Management Group.

OMG is a trademark of Object Management Group.

CBOP Initial Submission UML Profile for EDOC 99/11/17 - iii -

Table of Contents
1 PREFACE ... 2

1.1 SUBMITTING ORGANIZATION...2
1.2 STATUS OF THIS DOCUMENT..2
1.3 GUIDE TO THE SUBMISSION ..2
1.4 CONVENTIONS...3
1.5 SUBMISSION CONTACT POINTS ...3
1.6 ACKNOWLEDGEMENTS ..4

2 PROOF OF CONCEPT... 5

3 RESPONSE TO RFP REQUIREMENTS .. 6

3.1 MANDATORY REQUIREMENTS ...6
3.1.1 Component Modeling ...6
3.1.2 Modeling of Business Process, Entity, Rule, and Event Objects..........................6
3.1.3 Specification of Business Process Objects ...6
3.1.4 Specification of Relationships ...6
3.1.5 Meta-Object Facility Alignment ..6
3.1.6 Proof of Concept of Profile ...6
3.1.7 Proof of Concept of Mappability ..7

3.2 OPTIONAL REQUIREMENTS..7
3.3 ISSUES TO BE DISCUSSED ..7

4 OVERALL DESIGN RATIONALE ... 8

4.1 GOAL ...8
4.2 SCOPE..8
4.3 RELATIONSHIP TO BFOP ..9

5 FORMAL DESCRIPTION OF THE PROFILE .. 10

5.1 GENERAL DEFINITION OF A UML PROFILE ..10
5.2 THE IDENTIFIED SUBSET OF THE UML METAMODEL...12
5.3 CONTENTS OF THE PROFILE..12
5.4 BUSINESS FUNCTION OBJECT PATTERNS ...12

5.4.1 Background Facts ..12
5.4.1.1 Meta concept and pattern ..12
5.4.1.2 BFOP pattern principle ...14
5.4.1.3 Concept and Mechanism of Patterns...15

5.4.2 UML Profile for BFOP...18
5.4.2.1 BFOP Constraints to collaboration ...18
5.4.2.2 BFOP Collaboration and BFOP Package ..21
5.4.2.3 BFOP Meta Model..21
5.4.2.4 The motivation behind the constraints ...22

6 REPRESENTATION OF BUSINESS FUNCTION OBJECT PATTERNS............ 23

6.1 INTRODUCTION..23
6.1.1 Basic Patterns ..23
6.1.2 Unit Patterns..24
6.1.3 Optional Patterns...25

6.2 PATTERN DEFINITION ...26
6.2.1 Basic Patterns ..26

6.2.1.1 Master & Detail..26
6.2.1.2 Association..27
6.2.1.3 Association-3 ..28
6.2.1.4 Dynamic Hierarchical Structure ...29

CBOP Initial Submission UML Profile for EDOC 99/11/17 - iv -

6.2.1.5 Directed Graph...30
6.2.1.6 DAG (Directed Acyclic Graph) ...31
6.2.1.7 Header & Detail ...32
6.2.1.8 Stock & Flow ..33
6.2.1.9 Period..34
6.2.1.10 Transaction Record ..35

6.2.2 Unit Patterns..36
6.2.2.1 Correspondent-Transaction ...36
6.2.2.2 Product-Stock-Place ...37
6.2.2.3 Employee Assignment..38
6.2.2.4 Organization Structure..39
6.2.2.5 Transaction-Transaction Line-Product ...40
6.2.2.6 Sales Order-Sales Order Line-Product..41
6.2.2.7 Purchase Order-Purchase Order Line-Product ..42
6.2.2.8 Closing ..42
6.2.2.9 Paying or Receiving..44
6.2.2.10 Settlement ..45
6.2.2.11 Settlement for Receiving..46
6.2.2.12 Settlement for Paying ..47
6.2.2.13 Sales Order & Purchase Order (SS) ..48
6.2.2.14 Transport (SS) ..49
6.2.2.15 Direct Transport (SS)...50
6.2.2.16 Product Information (SS)...51
6.2.2.17 Daily Inventory (SS)...52
6.2.2.18 Settlement for Receiving & Paying (SS) ...53
6.2.2.19 Organization (SS)...54
6.2.2.20 Product Configuration (SS)..55

6.2.3 Optional Patterns...56
6.2.3.1 Unit Price by Correspondent ...56
6.2.3.2 Unit Price by Period...57
6.2.3.3 Unit Price by Correspondent and Period ..58
6.2.3.4 Employee Role ..59
6.2.3.5 Employee Role Definition (SS)...60

6.3 OVERALL PACKAGE STRUCTURE...61
6.4 SAMPLE OBJECT MODEL FOR BFOP...63
REFERENCES ..64

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 1 -

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 2 -

1 Preface

1.1 Submitting Organization
This following organization is pleased to submit this proposal in response to the OMG
UML Profile for Enterprise Distributed Object Computing RFP (OMG document ad/99-
03-10):
z Consortium for Business Object Promotion(CBOP)

1.2 Status of this document
This document was created based on CBOP working draft specifications developed by
CBOP members IT Innovation Incorporated and Synergy Research Corporation.
 The original document was developed as a part of CBOP’s business objects
standardization activities for the purpose of improving efficiency in application system
development and encouraging circulation of software’s parts for reuse.
 Also, this documents was created based on the work of many people listed in
References, and we would like to acknowledge all of them. In particular, many of the
proposed patterns were built with the help of excellent books which were written by
Martin Fowler [Fowler 97], Peter Coad [Coad 91], Erich Gamma [Gamma 95],
Desmond F. D'Souza [D’Souza 99], and so on.

1.3 Guide to the Submission
Chapter 1 provides contact information and a guide to this submission.
Chapter 2 is the proof of concept statement.
Chapter 3 explains how this submission satisfies the mandatory requirements of the
RFP, and how it addresses some optional requirements.
Chapter 4 presents a formal model of the proposed UML Profile for Enterprise
Distributed Object Computing (EDOC).
Chapter 5 presents a formal model of the proposed UML Profile for EDOC.
Chapter 6 provides a detailed explanation of how each pattern is represented in the
proposed profile.
Chapter 7 provides examples of the proposed profile usage(<TBD>).
Chapter 8 specifies the conformance criteria for the proposed profile(<TBD>).

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 3 -

1.4 Conventions
<TBD>

1.5 Submission Contact Points
(General discussions and comments can be sent to boi-wg@omg.org)

Hajime Horiuchi
Tokyo International University
1-13-1 Matoba-kita, Kawagoe-shi
Saitama 350-1102
Japan
Phone: +81-492-32-1111
Email:hori@tiu.ac.jp

Yoshihide Nagase
Technologic Arts Inc.
Shinko Bld. 5F
3-2-15 Hongo, Bunkyo-ku
Tokyo 113-0033
Japan
Phone: +81-3-5803-2788
Email:yoshi@tech-arts.co.jp

Masaharu Obayashi
Kanrikogaku Ltd.
Meguro Suda Bldg.
3-9-1 Meguro, Meguro-ku
Tokyo 153-0063
Japan
Phone: +81-3-3716-6300
Email: obayashi@kthree.co.jp

Tomoo Yoda
Synergy Research Corp.
3-16-306, Roppongi 7-chome,Minato-ku,
Tokyo 106-0032
Japan
Phone: +81-35414-0885
Email: yoda@synergy-res.co.jp

Kyo Suzuki
Sterling Software
1-4-1 Sumitomo Fudosan Bldg.
Koishikawa, Bunkyo-ku
Tokyo 112-0002
Japan
Phone: +81-3-5804-1476
Email: kyo.suzuki@sterling.com

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 4 -

1.6 Acknowledgements
This work and CBOP’s activities are supported in part by Information-technology
Promotion Agency, Japan (IPA). The submitter also appreciate discussion and
cooperation with the members of the Japan National Body’s Subcommittee of ISO/IEC
JTC1/SC32/WG2 “Data Management and Interchange – Metadata”, and others.

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 5 -

2 Proof of Concept

This submission is based upon the CBOP's Business Function Object
Patterns• (BFOP). CBOP's Component Committee task forces, such as ATOLAS Task
Force• (Sterling Software's COOL:Plex based), EJB Task Force (Enterprise Java Bean
based) and Web Component Task• Force (DCOM based) are implementing components
based upon BFOP.

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 6 -

3 Response to RFP
Requirements

The following lists the requirements from the OMG UML Profile for Enterprise
Distributed Object Computing RFP (ad/99-03-10) and describes how this submission
addresses them.

3.1 Mandatory Requirements
3.1.1 Component Modeling
Proposals shall provide mechanisms allowing the specification of information necessary
in a design using UML components for the implementation of a system in an enterprise
distributed computing environment using emerging enterprise-class component models.
<TBD>
3.1.2 Modeling of Business Process, Entity, Rule, and Event Objects
Proposals shall provide mechanisms for the specification, at the design level, of the
distinction between business process objects, business entity objects, business rule
objects, and business event objects.
<TBD>
3.1.3 Specification of Business Process Objects
Proposals shall provide mechanisms for precisely defining the behavior of business
process objects, including
z Specification of business rules and their behavioral semantics
z Manipulation of business process objects at runtime
<TBD>
3.1.4 Specification of Relationships
Proposals shall provide mechanisms for the specification of additional, specialized
relationship semantics beyond the base UML metamodel, including the following;
z Additional properties of relationships to specify constrains or operational semantics
z Classifications of relationships by their properties
z Derivation of per and post conditions for create/read/update/delete (“CRUD”)

operations applied to participants in the relationships, based on the above
properties and classifications

<TBD>
3.1.5 Meta-Object Facility Alignment
The profile shall conform to the OMG Meta-Object Facility (see section 6.3 for
explanation of such conformance).
<TBD>
3.1.6 Proof of Concept of Profile
Submissions shall provide sample models expressed in terms of the profile.

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 7 -

<TBD
3.1.7 Proof of Concept of Mappability
Submissions shall also include a non-normative mapping of the profile to CORBA to
prove that such a mapping is possible.
<TBD>

3.2 Optional requirements

3.3 Issues to be discussed
z Subset Integrity
Submissions should discuss the extent to which the subset defined by the profile is self-
contained. Any dependencies of the profile subset metamodel on portions of the UML
metamodel not in the subset should be noted and justified and the approach to dealing
with them should be discussed.
<TBD>
z Simplification of and Aid to the Development Process
Submissions should discuss if and how the submitted profile simplifies or aids the
development lifecycle.
<TBD>
z Tool support
Submissions shall discuss how the submitted profile enables tool support for object-
oriented enterprise computing system development and how such tools may be judged
more or less compatible with the profile.
<TBD>
z Alignment with Action Semantics for UML
A currently outstanding RFP(ad/98-011-01) addresses the need for more precision in
the UML metamodel for actions, particularly within the context of state machines. The
responses to the Action Semantics RFP will result in revisions to the current UML
metamodel that should enable more precise and complete definition of the steps and
rules of business processes. Proposals shall discuss how the support for specification of
business process objects in the profile aligns with submissions to the Action Semantics
RFP.
<TBD>

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 8 -

4 Overall Design Rationale

4.1 Goal
The proposed UML Profile for EDOC was designed to provide standard means for
expressing object models such as Business Function Object Patterns (BFOP) using
UML notation with pattern applying mechanisms which are required to describe
models.
 Successful implementation of an enterprise computing system requires the system
operation to be directly related to the business processes it supports. In order to build
up a good object-oriented model for enterprise computing reusable standard models
are required.
 The standard models have business entities, processes and rules. They also include a
set of common and reusable patterns of relationship properties which occur in
business modeling. CBOP’s BFOP is being developed to achieve this objective.

4.2 Scope
BFOP is a set of object patterns laid out in a hierarchical multi-layer structure. The
layers are called Basic, Unit, Basic Model, Product (application systems) and Option
layers. Figure 4.2-1 illustrates how “BFOP: Organization(SS)” is composed from
“BFOP: Employee Assignment” and “BFOP: Organization Structure”. The UML
parametric collaboration mechanism is used to materialize the pattern integration.
The right down arrow shows unfolded “BFOP: Organization (SS)”.
 One of the major benefits for using this multi-layered structure is that it enables
reuse (inheritance) of the constraints which have been defined and encapsulated in
patterns in lower layers. It provides a normalized way to define constraints and is
effective in keeping the consistency within the object model.

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 9 -

4.3 Relationship to BFOP
This submission is based on BFOP which is a part of CBOP technologies.

Organization
• Structure

Organization• SS
•

Employee• A
ssignment

<Organization>

OrganizationStructure

Period

<EnterpriseOrg>

<Department>

<Employee>

Assignment

<EnterpriseOrg>

Organization
Structure

<Employee>

Period

Assignment

BFOP:Organization Structure

BFOP:Employee Assignment

BFOP: Organization (SS)BFOP Structure

Organization
Structure

Employee
Assignment

Unfol
d

[Department]

[Organization]

Parametric Collaboration
1

1

*

*

**

**

*

11

1

**

1

*

Figure 4.2-1 Overview of Architecture

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 10 -

5 Formal Description of the
Profile

5.1 General Definition of a UML Profile
There currently is no normative definition of a UML profile. However, the Business
Object Initiative RFPs provide the following working definition of a UML profile.
A UML profile is a specification that does one or more of the following:
• Identifies a subset of the UML metamodel (which may be the entire UML

metamodel).
• Specifies “well-formedness rules” beyond those specified by the identified subset of

the UML metamodel. “Well-formedness rule” is a term used in the normative UML
metamodel specification (ad/97-08-04) to describe a set of constraints written in
UML’s Object Constraint Language (OCL) that contributes to the definition of a
metamodel element.

• Specifies “standard elements” beyond those specified by the identified subset of the
UML metamodel. “Standard element” is a term used in the UML metamodel
specification to describe a standard instance of a UML stereotype, tagged value or
constraint.

• Specifies semantics, expressed in natural language beyond those specified by the
identified subset of the UML metamodel.

• Specifies common model elements (i.e. instances of UML constructs), expressed in
terms of the profile.

If it can be justified as compellingly necessary, a profile can also specify new
metatypes, i.e. new instances of MOF constructs such as MOF Classes, MOF
Associations, etc. (even though this would strictly go beyond a true “profile” of UML).
Figure 5.1-1 uses UML notation to express the definition of a UML profile.

The Business Object Initiative (BOI) roadmap includes four RFPs, Three of which have
been formally issued. Figure 5.1-2 illustrates how the three issued RFPs and the draft
RFP 4 relate to the concept of a UML profile.

UML Meta-Model (Meta)ModelElement

UML Profile

Additional Standard Element

<<subset>>

<<instance>>

1..*

1..*

1..*

0..*

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 11 -

UML Meta-Model

NUTN (RFP 3) UML Profile

Mapping of EDOC Profile to CORBA (RFP 4)

CORBA IDL

Mapping to CORBA

<<subset>>

1
+target

1
+source

EDOC Profile (RFP
1)

CORBA Profile (RFP 2)

<<isomorphic>>

<<isomorphic>>

Figure5.1-2 The Business Object Initiative RFPs

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 12 -

5.2 The Identified Subset of the UML
Metamodel

The “identified subset” of the UML 1.3 metamodel includes the following MOF
Packages in their entirety.
z Core
z Extension Mechanisms
z Common Behavior
Some of the Data Types Package elements are also includes. The following elements of
the Data Types Package are excluded:
z Integer
z UnlimitedInteger
z String
z Time
z Boolean
z PseudostateKind
z LocationReference
All other elements of the Data Types Package are included in the identified subset.

5.3 Contents of the Profile
The proposed UML Profile for EDOC is composed of:
z Pattern notation using UML
z Patterns defined in Basic, Unit, Basic Model, Option and Products layers
The profile does not define any new metamodel elements. Pattern notation is expressed
by using currently available metamodel elements. Patterns are described using the
Pattern notation.

5.4 Business Function Object Patterns
This section presents Business Function Object Patterns (BFOP) defined in the UML
Profile for EDOC. UML currently does not provide guidelines for how to express object
patterns describing business functions. However, such patterns as defined in the BFOP
are useful for developing enterprise systems based on distributed object components.

5.4.1 Background Facts

5.4.1.1 Meta concept and pattern
One of the difficulties in understanding meta data is caused by the arbitrarily use of
“meta” concept.
 So many dimensions can be used to induce a meta hierarchy. Someone use meta
concept to distinguish an object from another object, which describes an object. The
definition of pattern concept is also ambiguous. One would ask if it would be adequate
to recognize a pattern as meta data because it is used to produce an object model, just

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 13 -

like meta data typically do? Clearer definition is required for “ meta concept”.
Following are tentative classifications of meta hierarchy concept discussed in the
CBOP.

1. Type and instance
This is a typical use of meta hierarchy concept. Meta data describes characteristics of
a set in terms of properties. The set can have no, one or more elements in it. Type
definition is typical meta data. Type definition should be used to restrict members in
the set. All properties of a type should be inherited.

2. Description of elements
Description of elements exists in the meta level. However, the description are only used
by human being to generate an instance of the set. It does not restrict characteristics of
existing instances dynamically.
3. Description of format of and relationship of sets.
Meta data in this hierarchy is similar to “type and instance”. However, nothing is
inherited from meta level. Sometime, this type of meta data set is called “repository”.

4. Relationship of lower level elements
Meta data in this hierarchy is dedicated to describe the relationship between elements
in a particular set. Sometime, this type of metadata set is called “registry” or
“directory”. Also, nothing is inherited from meta level.

To cope with the consolidated UML extensions, relationship among UML, MOF,
Profiles and object patterns need to be more clearly defined. This proposal intends to
make a set of object patterns, a profile of UML as a part of it.
 Figure 5.4-2 illustrates the relationship among UML, MOF, Model, and Pattern
(profile). Using the classifications above, the relationship between MOF and UML is (3)
and (1). Also, the relationship between UML and Model is (2). However, relationship
between Pattern and Model should be (1).
 This implies that a model should be developed according to UML rules by inheriting
contents from patterns. Consequently, UML must provide not only notation and
modeling constraints but also those inheritable contents in order to keep consistency
and integrity among models developed by multiple people.

type

instance

description

set

format

set

relationship

set
Figure 5.4-1 Classifications of meta concept

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 14 -

5.4.1.2 BFOP pattern principle
In the world of object modeling, many patterns have been proposed, such as “Design
Pattern” proposed by E.Gamma et.al [Gamma 95], or “Analysis Patterns” proposed by
M. Fowler [Fowler 97], or “Catalysis Approach” proposed by D. D’Souza [D’Souza 99].
 Pattern is something used to represent modeling know-hows or techniques to help
developers in keeping efficiency and consistency among products.
 In its object pattern standardization effort, the CBOP focuses rather on improving
sharability and reusability of object models than on assisting modeling efforts by
showing good modeling techniques to them.
 To improve sharability and reusability of object models, patterns must support the
following features:
1. Model must be consisted using the predefined normative modeling constructs, not

only modeling manners and notations.
2. Predefined modeling constructs should include the common atomic objects, such as,

Date, Currency, Country-code, which are needless to be discussed when they are
used.

3. Common aggregated objects, such as Customer, Company, or Order, which
represent business entities, also should be predefined as normative modeling
constructs. They should be defined using the normative atomic objects,

4. Business concept, such as, Trade, Invoice, or Settlement, which are typically
represented as relationship among objects, should be defined as aggregations of the
common elementary aggregated objects or simple objects. They also have to be
predefined as normative modeling constructs.

5. Those aggregations could be defined as object patterns, which can be predefined
using the more basic and elementary patterns as base.

6. Patterns can represent business concept with the aggregation of more elementary
patterns. Therefore, aggregation or composition mechanism of pattern must be
provided.

7. Business rules which govern business concept can be represented with a pattern as
constraints encapsulated in it. Therefore, the mechanism for constraint inheritance
among patterns must also be provided.

 MOF

UML Patterns

Model

(1),(2),(4) (4)

(2),(3) (1)

Figure 5.4-2 The relationship among UML, MOF, Model, and Pattern
(profile)

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 15 -

5.4.1.3 Concept and Mechanism of Patterns
In this section, the concept and mechanism of patterns are discussed from the
viewpoint of pattern notation, relationships among patterns and pattern types and
their instances.

5.4.1.3.1 Notation for Pattern
We considered that there are three basic forms on expressing patterns. First, simple
pattern which is a pattern consisting of minimal elements needed to form a pattern.
Second, inherited pattern which is a pattern defined by inheriting from another
pattern. And the third one is composite pattern which is a pattern defined as a result of
combining more than two patterns. The composite pattern concept is an extension of
the inherited pattern. Using the above three basic pattern forms as the base, we
propose the following notations for expressing patterns and their mata model prototype
.

• Simple Pattern
A simple pattern consists of minimal elements and does not involve another pattern.
In BFOP, type (i.e. an abstract class) and relationship among types are significant
elements for specifying the static structure of a simple pattern. In addition to the
static structure, operations are defined to characterize the pattern's behaviors.
Constraints for the operation can be specified as the pre/post conditions described in
OCL. Figure 5.4-3 illustrates the notation for simple pattern and its meta model.

• Inheritance pattern
The pattern inheritance mechanism is provided to describe a pattern which is defined
in conjunction with another already existing pattern. The names of types and
attributes in the inherited pattern can be renamed as appropriate for the inheriting
pattern. This provides the way to build various patterns for specific usages.
 For instance, pattern <header>-<detail> can be used to generate many patterns which
share the common characteristics of the header-detail. Typically, patterns inherited
from the <header>-<detail> need stricter constraints than the original pattern. If the
pattern <A’>-<B’> is created from the pattern <A>-, the types A and B are replaced
with A' and B' respectively.
 Figure 5.4-4 shows the notation and mechanism of the inherited pattern and its meta
model. The diagram of meta model indicates that a pattern has relationship with
another pattern.

Pattern

Class operation

OCLoperation

Figure 5.4-3 The notation of Simple Pattern and its
Metamodel

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 16 -

• Composite pattern
Third form of pattern, composite pattern provides a way to build more complex
patterns. When combining two patterns to describe a composite pattern, a new type
(i.e. logical class) which share the common characteristics of the original patterns. The
new combining type is expressed using the parameterized collaboration in UML 1.3.
The pattern composition is useful for building hierarchical structure of patterns. Figure
5.4-5 is a brief diagram illustrating the notation of composite pattern and its meta
model.

5.4.1.3.2 Relationship among Pattern Mechanisms

The relationship among pattern mechanisms described above can be explained using
package diagram in UML notation as the following figure 5.4-6. Also, see the section
5.4.2.1.

Pattern

Class operation

OCL

operation

A B

operation

A’ B’

Figure 5.4-4 The notation of Pattern Inheritance and its metamodel

Class operation

OCL
operation

C

A

B

Pattern

Figure 5.4-5 The notation of Pattern Composition and its Metamodel

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 17 -

5.4.1.3.3 Applying Patterns
As previously discussed in section 5.4.1.1, when one works at the meta level, he/she
must always thinks from the viewpoint of types and their instantiations. To apply this
discussion to patterns, patterns are what object models are instantiated from. On the
other hand, to extract types as meta from object models is to produce patterns. Having
many patterns as common "types" of object models means that you are equipped with
various templates which are reusable.
 When patterns are organized in hierarchy using pattern composition mechanism,
instantiations are realized through a series of resolutions of composite patterns by
performing "unfold". If composite patterns are granular enough to include components,
instantiations can be performed not only by unfolding patterns into patterns at meta
level but also by unfolding patterns into instantiated object models. This means that
this pattern concept can be effectively utilized for component based development which
is a requirement for the EDOC.

A/A’
B/B’

Simple
Pattern

Pattern
Inheritance

Pattern
Composition

Figure 5.4-6 The relationship for pattern mechanisms

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 18 -

5.4.2 UML Profile for BFOP

5.4.2.1 BFOP Constraints to collaboration
We have introduced some constraints to the standard UML collaboration in order to
simplify the structure and the pattern interactions within BFOP. This simplification is
achieved by constraining the abilities of the BFOP classes. To model those constraints
virtually at meta level, we have introduced two stereotypes as extensions of the
standard UML class which are BFOP Owner Class and BFOP Member Class defined
with the following constraints.

1. BFOP Owner Class

9 has no association with BFOP member classes
9 has only one instance in a collaboration
9 the instance does not know any member instance in a structural way
9 the instance finds its member instances only through parameter visibility when

owner operation is invoked

2. BFOP Member Class

9 may have associations with other BFOP Member Classes
9 uses its associations only to know other member instances
9 can not invoke other member’s operations

operation

C

A

B

operation

A B

operation

A’ B’

operation

C

Instantiation

pattern

model

Figure 5.4-7 Instantiation of Patterns

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 19 -

attrA1
attrA2

ClassA

opA

attrB1
attrB2

ClassB

opB

attrC1
attrC2

ClassC

opC

1 1

Structural Part

:ClassA

1.opA
2.opB 3.opC

Dynamic Part

:ClassB :ClassC

collaboration

Figure 5.4.2-1 Collaboration has two aspects:
a structural part and a dynamic part

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 20 -

<<BFOPMember>
>

ClassB
attrB1
attrB2

opB

1

Structural Part

:ClassA

1.opA
2.opB 3.opC

Dynamic Part

:ClassB :ClassC

<<BFOPCollaboration>>
collaboration

attrA1
attrA2

opA

<<BFOPOwner>
>

ClassA

attrC1
attrC2

opC

<<BFOPMember>
>

ClassC

Figure 5.4.2-2 Collaboration also has two aspects:
 a structural part and a dynamic part. However, BFOP owner class has
no association with BFOP member classes and BFOP member class
instance does not interact with other member instances.

collaboration

collaboration

Package B

collaboration

collaboration

Package C

BFOP
collaboration

BFOP Package
B

BFOP
collaboration

BFOP Package
C

Package A

BFOP collaboration

<<BFOP Package>>
A

Figure 5.4.2-3 BFOP Package always contains only one
BFOP collaboration.

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 21 -

5.4.2.2 BFOP Collaboration and BFOP Package
BFOP Collaboration is simply a UML collaboration realized only by BFOP Owner
Class and BFOP Member Class.
BFOP Package is a UML Package with only one BFOP Collaboration inside of it.

5.4.2.3 BFOP Meta Model
It is not necessary to define BFOP meta model since its all model elements are already
defined in UML standard meta model and BFOP does not define anything which
violates the UML standard.
 However, we have created a virtual meta model highlighting BFOP constraints
represented in the simplified standard UML meta model in order to help people
understand the concept in BFOP. Fig. 5.4.2-5 and constraints table Table 5.4.2-1 are
provided for this purpose.

Collaboration

Class

Package

<<stereotype>>
BFOPCollaboration

<<stereotype>>
BFOPPackage

<<stereotype>>
BFOPMemberClass

<<stereotype>>
BFOPOwnerClass

<<extend>><<extend>>

<<extend>>

<<extend>>

Figure 5.4.2-4 UML Extension for BFOP

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 22 -

Table 5.4.2-1

5.4.2.4 The motivation behind the constraints

1. Comprehensive organization

While BFOP member classes typically have persistence, BFOP owner classes do not, so
a designer who refers to BFOP packages for reusing them can easily recognize that the
owner could be a class working as a coordinator for the member classes that
implements the business logic unique to the data stored in database.

2. Easy reuse

In BFOP, classes are connected to each other to meet high cohesion and low coupling
principle that promote efficient reuse

Type
Classifier Operation

Parameter Attribute AssociationEnd AssociationEnd
Cardinality

BFOPOwner BFOPMember
DataType DataType - 0

BFOPMember BFOPMember
DataType

BFOPMember
DataType BFOPMember 0..*

Operation

Attribute

Feature

Parameter

Classifier

Class DataType

AssociationEnd Association

<<stereotype>>
BFOPOwnerClass

<<stereotype>>
BFOPMemberClass

*

<<extend>>
<<extend>>

1 +type 0..1

2..*
*

1 +type

1 +type

Figure 5.4.2-5 Simplified Standard UML Meta-model and
BFOP extension

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 23 -

6 Representation of Business
Function Object Patterns

6.1 Introduction

6.1.1 Basic Patterns

No. Pattern Name Description

1010 Master & Detail A Detail refers to zero or one Master. A Master
should be referred by many Details. For
example customer-Order, Product type-
Product.

1020 Association An Association Class exists between two
classes. Stock-Warehouse and product.

1030 Association-3 An Association exists for three classes. Price-
Product, Supplier, Period.

1040 Dynamic Hierarchical
Structure

It’s same as tree structure. Organization of
company.

1050 Directed Graph It’s same as network structure. Rout of
delivery.

1060 DAG (Directed Acyclic
Graph)

This is extended from DAG. This is not allowed
loop. Built of Material.

1070 Header & Detail Parent and children. Order-Order Line. Bank-
Branch.

1080 Stock & Flow This is restricted DAG. This does not have
multiple levels. Transportation-Location.
Currency-Exchange Rate.

1090 Period Period has From Date and To Date. Otherwise
From (To) Date and Period notify TO (From)
Date.

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 24 -

1110 Transaction Record Many Transactions are summarized by one
Time Bucket. Sales-Closing Period. Sale
Balance-Financial year.

6.1.2 Unit Patterns

No. Pattern Name Description

2010 Correspondent-
Transaction

Correspondent has many Transactions.

2020 Product-Stock-Place Product and Stock Place Keep Stock. As Stock
Place, Warehouse, Rack or Lot number are
available.

2030 Employee Assignment An Employee can be assigned multiple
sections.

2040 Organization Structure Organization can be kept in each period.

2050 Transaction-Transaction
Line-Product

A Transaction can handle many Products,
because of Product Line. Shipping Header-
Shipping Detail-Product.

2060 Sales Order-Sales Order
Line-Product

This is specialize 2050 for sales order.

2070 Purchase Order-
Purchase Order Line-
Product

This is specialize 2050 for purchase order.

2080 Closing Many Transactions are summarized by one
Time Bucket. And these summary becomes
Closing.

2090 Paying or Receiving Paying (Receiving) are related by Paying
(Receiving) Date.

2100 Settlement Closing and Paying (Receiving) are related by
Period, and keep balance.

2110 Settlement for Receiving Closing for sales. Invoice will be issued.

2120 Settlement for Paying Closing for Purchase.

2130 Sales Order & Purchase
Order (SS)

Sales Order and Purchase Order are related by
same Product.

2140 Transport (SS) Transportation from one place to another one
place. Shipping, Goods Receiving, Moving
between two Warehouses, etc.

2150 Direct Transport(SS) Purchase Order will be created by sales Order.
These shipping and Receiving will be related
automatically.

2160 Product Information
(SS)

Who supply, how to make order, etc.

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 25 -

2170 Daily Inventory (SS) Balance of Input and Output for Product is
summarized by each period.

2180 Settlement for Receiving
& Paying(SS)

Paying and Receiving are related by one
Period.

2190 Organization (SS) Organization and Assignment by Period.

2200 Product Configuration
(SS)

Set Product configuration.

6.1.3 Optional Patterns

No. Pattern Name Description

3010 Unit Price by
Correspondent

Product Price is defined by Customer (or
Supplier).

3020 Unit Price by Period Product Price is defined by Date.
3030 Unit Price by

Correspondent /Period
Product Price is defined by Customer (or
Supplier) by Date.

3040 Employee-Role Employee can have multiple roles.

3050 Employee Role
Definition (SS)

Role has an object what is managed. Purchase
by supplier. Sales by area. Support by Product.

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 26 -

6.2 Pattern Definition
6.2.1 Basic Patterns
6.2.1.1 Master & Detail

BFOP No. 1010
BFOP Name Master & Detail
Inherited BFOP none
Parameter <Master>, <Detail>
Revision Rev.2
Description Master is referred by Detail, e.g. Area: Customer, License-

Employee, Order type-Order

ddDetail (m:Master, d:Detail)
 pre not m.detail -> includes(d)
 post d.master.detail ->includes(d)
removeDetail(d:Detail)
 pre d.master.detail -> includes(d)
 post not m.detail -> includes(d)

<detail><master
>

0..1

0.. n

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 27 -

6.2.1.2 Association
BFOP No. 1020
BFOP Name Association
BFOP to be inherited none
Parameter <A>, , <Association>
Revision Rev.2
Description One of the basic patterns. Widely applicable, for example,

assignment of stock and duty and so on.

addAssociation(a:A, b:B, assoc:Association)
 pre not a.association -> includes(assoc) and
 not b.association -> includes(assoc)
 post a.association -> includes(assoc) and
 b.association -> includes(assoc)
removeAssociation(assoc:Association)
 pre a.association -> includes(assoc)and
 b.association -> includes(assoc)
 post not a.association -> includes(assoc)and
 not b.association -> includes(assoc)

<association><A>

1..1

0.. n 0.. n

1..1

{
There is 0 or 1 association for a
relationship between A and B.
}

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 28 -

6.2.1.3 Association-3
BFOP No. 1030
BFOP Name Association-3
BFOP to be inherited none
Parameter <A>, , <C>, <Association>
Revision Rev.2
Description Derived from 1020 (Association).

Association is decided by relationship among 3 contents.

addAssociation(a:A, b:B, c:C, assoc:Association)
 pre not a.association -> includes(assoc) and
 not b.association -> includes(assoc) and
 not c.association -> includes(assoc)
 post a.association -> includes(assoc) and
 b.association -> includes(assoc)and
 c.association -> includes(assoc)
removeAssociation(assoc:Association)
 pre a.association -> includes(assoc)and
 b.association -> includes(assoc)and
 c.association -> includes(assoc)
 post not a.association -> includes(assoc)and
 not b.association -> includes(assoc)and
 not c.association -> includes(assoc)

<association><A>

1..1

0.. n <C>
0.. n

1..1

{
There is 0 or 1 association for a
relationship between A and B and
C.
}

1..1

0.. n

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 29 -

6.2.1.4 Dynamic Hierarchical Structure
BFOP No. 1040
BFOP Name Dynamic Hierarchical Structure
BFOP to be inherited 1060 DAG
Parameter <Hierarchical Entity>, <Hierarchical Configuration>,

<Configuration Effective Period>
Revision Rev.2
Description It is same as tree structure. Organization of company.

<hierachicalConfigurati
on>

1..1

Period
[fromDate /<effectiveDate>,
toDate /<Expiry Date>]

{If <hierarchicalConfigurationTO> is same,
then <ConfigurationEffectivePeriod> does not
overlap. A HierarchicalEntity has O or 1
parent. }

<hierarchicalEntity
>

DAG edge
[DAG_FROM /<Hierarchical:StructureFROM>,
DAT_TO /<Hierachical:StructureTO>]

DAG vertex

1060
DAG

<configurationEffectivePeri
od>1090

Period

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 30 -

6.2.1.5 Directed Graph
BFOP No. 1050
BFOP Name Directed Graph
BFOP to be inherited none
Parameter <Vertex>, <Edge>, <From>,<To>
Revision Rev.2
Description Graph structure composed of Vertex and Edge.

Edge has a starting vertex and an ending vertex.

addEdge(from:Vertex, to:Vertex, e:Edge)
 pre not from.out -> includes(e) and
 not to.in -> includes(e)
 post e.from.out -> includes(e) and
 e.to.in -> includes(e)
removeEdge(e:Edge)
 pre e.from.out -> includes(e)and
 e.to.in -> includes(e)
 post not from.out -> includes(e)and
 not to.in -> includes(e)

<vertex>

1..1

0.. n

<edge>

0.. n

1..1 <FROM> <TO>

out in

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 31 -

6.2.1.6 DAG (Directed Acyclic Graph)
BFOP No. 1060
BFOP Name DAG (Directed Acyclic Graph)
BFOP to be inherited Directed

Graph[Vertex/Vertex.Edge/Edge,FROM/FROM,TO/TO]
Parameter <Vertex>, <Edge>, <FROM>,<TO>
Revision Rev.2
Description Derivation added a restriction of Acyclic to 1050 (Directed

Graph). For example, children items never use their parent
items on the expression of item structure.

<vertex>

<edge>

vertex

1060
DAG

edge
[FROM/DAG_FROM, TO/DAG_TO]

{
Graph must not be cyclic.
}

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 32 -

6.2.1.7 Header & Detail
BFOP No. 1070
BFOP Name Header & Detail
Inherited BFOP none
Parameter <Header>, <Detail>
Revision Rev.2
Description Header and Detail have a relationship of parent and children.

e.g. Order and Order line, Bank and Bank branch, Division and
section.

ddDetail (h:Header, d:Detail)
 pre not .detail -> includes(d)
 post d.header.detail ->includes(d)
removeDetail(d:Detail)
 pre d.header.detail -> includes(d)
 post not .header.detail -> includes(d)

-lineNo:sequenceNumber

<detail>

-noOfLine:Counter

<header
>

1..1

0.. n

{ordered}

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 33 -

6.2.1.8 Stock & Flow
BFOP No. 1080
BFOP Name Stock & Flow
BFOP to be inherited none
Parameter <Source>, <Flow>, <Sink>
Revision Rev.2
Description A level of Stock quantity is decided by the difference of the

accumulative input and output levels. Pattern expressed
inventory control together with item’s distribution on supply
chains.

addFlow(i:Source, o:Sink, flow:Flow)
 pre not i.flow -> includes(flow) and
 not o.flow -> includes(flow)
 post flow.source.flow -> includes(flow) and
 flow.sink.flow -> includes(flow)and
 flow.source.accumlativeInputQuantity=
 flow.source.accumlativeInputQuantity@pre
 +flow.flowQuantity and
 flow.sink.accumlativeInputQuantity=
 flow.sink.accumlativeInputQuantity@pre
 +flow.flowQuantity
removeFlow(flow:Flow)
 pre i.flow -> includes(flow)and
 o.flow -> includes(flow)
 post not low.source.flow -> includes(flow)and
 not flow.sink.flow -> includes(flow)and
 flow.source.accumlativeInputQuantity=
 flow.source.accumlativeInputQuantity@pre
 -flow.flowQuantity and
 flow.sink.accumlativeInputQuantity=
 flow.sink.accumlativeInputQuantity@pre
 -flow.flowQuantity

-<flowQuantity>:quantity

<flow><source>

1..1

0.. n <sink>0.. n

1..1

-<initialLevel>:quantity
-<accumulativeInput>:quantity
-<accumulativeOutput>:quantity
/<currentLevel>:quantity

stock

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 34 -

6.2.1.9 Period
BFOP No. 1090
BFOP Name Period
BFOP to be inherited none
Parameter <Period>, <From Date>, <To Date>
Revision Rev.2
Description Period has two types of dates, From Date and To Date, and

has the difference of them as Duration.
BFOP uses an alternative to Period (e.g. Period-Date)
instead of Date in case Date is handled as Period. By doing
so, you can easily sum from daily data to monthly and
yearly.
Referring the book listed below.
BFOP assumes that all the instance needed beforehand exist
on this pattern.

+fromTo(t1,t2:Date)
+isBefore(p:Period):boolean
+overlaps(p:Period):boolean
+includes(t:Date):boolean

<period
>

1.. 1

Reference
Jos Warmer, Anneke Kleppe: The Object
Constraint Language, Addison-Wesley, 1999
P83, Figure 5-1

-nOfYears:Integer
-nOfMonths:Integer
-nOfDays:Integer

duration

+fromDays(days:Integer)
+periodBefore(t:Date):duration
+periodAfter(t:Date):duration
+plus(d:Long of Period):duration
+minus(d:Long of Period):duration
+<(d:duration):boolean
+>(d:duration):boolean
+=(d:duration):boolean

-now:Date
-year:Integer
-month:Integer
-day:Integer

 date

+fromYMD(year,month,day:Integer):Date
+plus(d:duration):Date
+minus(d:duration):Date
+isBefore(t:Date):boolean
+isAfter(t:Date):boolean
+periodUnit(t:Date):duration
+between(t:Date):duration
+addYear(i:Integer):Date
+addMonth(I:Integer):Date
+addDay(I:Integer):Date
+=(t:Date):boolean

1.. 1

1.. 1

<From Date>

<To Date>

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 35 -

6.2.1.10 Transaction Record
BFOP No. 1110
BFOP Name Transaction Record
BFOP to be inherited 1080 (Stack & Flow)
Parameter <Participant>, <Transaction>, <Arbitrary Period>,

<Arbitrary period Type>
Revision Rev.2
Description Transaction usually has two attributes. Occurrence Date and

Participant. It can be connected to its Arbitrary Period
through the Period Pattern of the Occurrence Date. Arbitrary
Period is Period generated using Arbitrary Period Type as its
rule. For example, in case “closing date is 25th every month”,
Period Type is defined as “from 26th to 25th of the following
month” and Period has data from 032699 to 042599. A Sale
transaction of 040199 is connected to its Period, then the
Receiving Amount for the corresponding Arbitrary Period is
decided.

addTransaction(o:Participant, d:Date, t:Transaction)
 pre not o.transaction -> includes(t) and
 not d.association -> includes(t)
 post t.participant.transaction -> includes(t) and
 t.date.transaction -> includes(t)and
 t.arbitraryPeriod.start<=t.occurenceDate<=
 t.arbitraryPeriod.end
removeTransaction(t:Transaction)
 pre t.participant.transaction -> includes(t) and
 t.date.transaction -> includes(t)
 post not o.transaction -> includes(t) and
 not d.transaction -> includes(t)

<arbitraryPeriodTyp
e>

<arbitraryPerio
d>

1..1
0.. n

0.. n

1..1

Date defined at 1090
(Period)

<participant
>

1..1
0.. n

<transaction
>

 1090.date

1..1

0.. n

occurenceDate

1090
Period

Period

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 36 -

6.2.2 Unit Patterns
6.2.2.1 Correspondent-Transaction

BFOP No. 2010
BFOP Name Correspondent-Transaction
BFOP to be inherited 1010 (Master & Detail)
Parameter <Correspondent>, <Transaction>, <Payer or Receiver>
Revision Rev.2
Description Transaction occurs to Correspondent.

Transaction means Sale Order, Purchase Order, Shipping,
Returning goods, and Service Request and so on.

-correspondentName:Name
-abbreviation:Alias
-adderes:Address
-tel:Tel
-fax:Tel

<party>

<payerOrReceive
r>

1..1

<transaction
>

1..n

<corresponden
t>

Detail

1010
masterDetail

Master

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 37 -

6.2.2.2 Product-Stock-Place
BFOP No. 2020
BFOP Name Product-Stock-Place
BFOP to be inherited 1020 (Association)
Parameter <Place>, <Stock Product>, <Stock>
Revision Rev.2
Description Sock of products are controlled for Place. Place can be

replaced to Warehouse, Rack, or Lot number.

-productName:Description
-basicUnit:Unit
-packingType:Description
-quantity:Quantity
-size:Mesure

<product
>

-placeName:Name
-address:Address

<place><stock>

B

 1020
association

association
A

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 38 -

6.2.2.3 Employee Assignment
BFOP No. 2030
BFOP Name Employee Assignment
BFOP to be inherited 1020 (Association)
Parameter <Organization>, <Employee>
Revision Rev.2
Description An employee can be assigned to multiple sections.

-employeeName:Name

<employee>

 assignment

B

 1020
association

association

A

-organizationName:Name

<organization
>

concurrentTa
sk

competentTas
k

assignmentStatus

1..1

boss

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 39 -

6.2.2.4 Organization Structure
BFOP No. 2040
BFOP Name Organization Structure
BFOP to be inherited 1040 (dynamic Hierarchical Structure)
Parameter <Organization Entity>, <Organization Structure>
Revision Rev.2
Description Organization Structure is hierarchical structure.

Since hierarchical structure has Period, Organization
Structure on this pattern can have Effective Period. So,
future changes of Organization and their tracks can be
expressed.

-organizationName:Name

<organization
Entity>

<organization
Structure>

hierarchicalEntity

 1040
dynamic Hierarchical Structure

hierarchicalStructure
[hierarchicalStructureFrom<organizationStructureForm>,
hierarchicalStructureTo<organizationStructureTo>]

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 40 -

6.2.2.5 Transaction-Transaction Line-Product
BFOP No. 2050
BFOP Name Transaction-Transaction Line-Product
BFOP to be inherited 1010 (Master & Detail), 1020 (Header & Detail), 2010

(Correspondent-Transaction)
Parameter <Transaction>,<TransactionLine>,<Product>,

<correspondent>,<Payer or Receiver>
Revision Rev.2
Description This is a pattern described that a Correspondent has

Transaction of multiple products.
Can be used for estimate, sales order, and purchase order has
no sales order connected.

-lineNo.:number
-productNo.:Code
-transactionQuanity:Quantity
-transactionUnitPrice:Price
-transactionAmount:Amount

<transactionDetail
>-transactionNo.Number

-totalAmount:Amount

<transactio
n>

<correspondent
>

header

 1070
headerDetail

detail

detail

 1010
masterDtail

 2010
correspondent-Transaction

<payerOrReceive
r>

-productNo.:Code
-productName:Description
-productUnitPrice:Price

 <product>

master

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 41 -

6.2.2.6 Sales Order-Sales Order Line-Product
BFOP No. 2060
BFOP Name Sales Order-Sales Order Line-Product
BFOP to be inherited 2050 (Transaction-Transaction Line-Product)
Parameter <Product>,<Customer>,<Payer>, <Goods Receiver>
Revision Rev.2
Description A Customer puts an order of many products.

-lineNo.:Number
-productNo.:Code
-salesOrderQuanity:Quantity
-salesOrderPrice:Price
-salesOrderAmount:Amount
-deliveryDate:Date

salesOrderLine
-salesOrderNo.:Number
-salesOrderTotalAmount:Amount

salesOrder

<product>

transactionDetail

correspondent product

 2050
Transaction-TransactionLine-Product

-ReceivingMeth:ID
-creditLimit:Amount
-receivingOutstandingBalance:Amount

<payer>

transaction

-goodsReceiverName:Name
-goodsReceiverAddress:Address

<goodsReceiver
>

-customerName:Name
-customerContactName:Name

<customer>

payerOrReceiver

1..1

0..1

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 42 -

6.2.2.7 Purchase Order-Purchase Order Line-Product
BFOP No. 2070
BFOP Name Purchase Order-Purchase Order Line-Product
BFOP to be inherited 2050 (Transaction-Transaction Line-Product)
Parameter <Product>,<supplier>,<Receiver>
Revision Rev.2
Description Purchase Order of many products to a supplier.

6.2.2.8 Closing
BFOP No. 2080
BFOP Name Closing
BFOP to be inherited 1100 (Transaction Record)
Parameter <Correspondent>, <Transaction Occurrence Date>,

<Closing Period>,<Closing Period Type>,
<Transaction Type>,<Settlement for Receiving>

Revision Rev.2
Description Transaction summarized by time bucket is totaled for

Transaction Type.
For example, Sales in the Receiving Period can be divided
into separate Receiving according to their contractual

-lineNo.:Number
-productNo.:Code
-purchaseOrderQuanity:Quantity
-purchaseOrderUnitPrice:Price
-purchaseOrderAmount:Amount
-desirableDeliveryDate:Date
-appontedDeliveryDate:Date

purchaseOrderLin
e-purchaseOrderNo.:Number

-purchaseOrderTotalAmount:Amount

<purchaseOrder
>

<product>

transactionLine

correspondent product

 2050
Transaction-TransactionLine-Product

-payingMethod:ID
-payingOutstandingBalance:Amount

<payer>

transaction

-supplierContactName:Name

<supplier>

payerOrReceiver

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 43 -

condition..

<closingPeriodTyp
e>

<closingPeriod
> 1..1

arbitraryPeriodType
0.. n

<participant
>

arbitraryPeriod

0.. n

<transaction
>

<transactionTyp
e>

1..1

participant

 1100
transactionRecord

Transaction
[occurrenceDate /<transactionOccurenneDate>]

 contract default

-receiving Amout:Amount

<settlementForReceivin
g>

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 44 -

6.2.2.9 Paying or Receiving
BFOP No. 2090
BFOP Name Paying or Receiving
BFOP to be inherited 1100 (Transaction Record)
Parameter <Payer or Receiver>, <Paying or Receiving>,

<Paying or Receiving Date>,<Paying or Receiving Period>,
<Paying or Receiving Period Type>

Revision Rev.2
Description Paying Or Receiving is identified its Paying Or Receiving

Period by the Paying Or Receiving Date.

<payingOrReceivingPeriodTy
pe>

<payingOrReceivingPerio
d>

arbitraryPeriodType

<payerOrReceiver
>

arbitraryPeriod

<payingOrReceivin
g>

participant

 1100
transactionRecord

Transaction
[occurrenceDate /<payingOrReceivingDate>]

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 45 -

6.2.2.10 Settlement
BFOP No. 2100
BFOP Name Settlement
BFOP to be inherited 2080 (Closing),

2090 (Paying or Receiving)
Parameter <Closing Period Type>, <Paying or Receiving Period Type>,

<Correspondent>,<Payer or Receiver>,<Transaction>,
<Paying or Receiving>

Revision Rev.2
Description Closing Period is calculated by Closing Date of the Paying

Condition.(e.g. closing on 20th, the end of month, 15th and the
end of month, etc.) Paying Limit is calculated by Paying Date
of the Paying Condition.(e.g. by the end of the next month, by
15th of the next month, by 10th of the month after next month,
etc.)
Paying Period (bucket) starts with the final date of the Closing
Period and ends with paying Limit.

<payingOrReceivingPeriodT
ype>

<payerOrReceive
r>

<payingOrReceiving
>

 2090
payingOrReceiving

<closingPeriodTyp
e>

1..1

<corresponden
t>

<transaction
>

1..1

 2080
 closing

BankRemittanc
e

 cash

PayingOrReceivingmet
hod

-closingPeriod:Code
-payingLimit:Code

 payingCondtion

1..1

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 46 -

6.2.2.11 Settlement for Receiving
BFOP No. 2110
BFOP Name Settlement for Receiving
BFOP to be inherited 2100 (Settlement)
Parameter <Obvention>, <Sale>
Revision Rev.2
Description Totaling Sales on charge, it is charged to Payer.

Checking the money received, Receiving Outstanding
Balance is calculated..

-receivingOutstandingBalance:Amount

 payer

-obventionAmount:Amount

 <obvention>

receivingPeri
od

transaction

customer

-saleAmount:Amount

 <sale>

closingPeriodTime

 2100
 settlement

 payingPeriod

payingOrReceiving

correspondent

payerOrReceiver
payingOrRecevingPeriodType

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 47 -

6.2.2.12 Settlement for Paying
BFOP No. 2120
BFOP Name Settlement for Paying
BFOP to be inherited 2100 (Settlement)
Parameter <Settlement for Paying>
Revision Rev.2
Description Totaling Purchase on payment, it is paid to the Supplier.

In case of transfer through bank, rate is calculated.

-receivingOutstandingBalance:Amount

 Reciver

-payingAmount:Amount

 <paying>

receivingPeri
od

transaction

Supplier

-purchaseAmount:Amount

 Purchase

closingPeriodTime

 2100
 settlement

 PayingPeriod

payingOrReceiving

correspondent

payerOrReceiver

payingOrRecevingPeriodType

-accountNo.:Code

 account

-remittanceRate:Amount

 remittanceRate

-remittanceAmount:Amount

 remittance

companyAccount
 bank

receivingAccount

payingAccount

1..n

from to

1..n

1..1

1..1

1..11..1

1..1

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 48 -

6.2.2.13 Sales Order & Purchase Order (SS)
BFOP No. 2130
BFOP Name Sales Order & Purchase Order (SS)
BFOP to be inherited 2060 (Sales Order - Sales Order Line - Product)

2070 (Purchase Order - Purchase Order Line - Product)
Parameter
Revision Rev.2
Description Product is referred by Sales Order and Purchase Order.

-remainderOfSalesOrder:Quantity
remainderOfPurchaseOrder:Quantity

 item

item

 2060
salesOrder-salesOrderLine-Product

 2070
purchaseOrder-puchaseOrderLine-Product

item

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 49 -

6.2.2.14 Transport (SS)
BFOP No. 2140
BFOP Name Transport (SS)
BFOP to be inherited 1080 (Stock & Flow)
Parameter <Transport Instruction>, <Transport>, <Transport From>,

<Transport To>
Revision Rev.2
Description This pattern is an improvement considered logistics on 1080,

Stock & Flow. Transport may be based on Transport
Instruction. This Transport Instruction becomes Sales Order
Line or Purchase Order Line after improving, and
Stock/Shipping is connected to a transaction system.

<transportInstructio
n>

source

 1080
 stock&Flow

 <transport>

<transportTo
>

<transportFrom
>

sink

flow

0..n
0..1

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 50 -

6.2.2.15 Direct Transport (SS)
BFOP No. 2150
BFOP Name Direct Transport (SS)
BFOP to be inherited none
Parameter
Revision Rev.2
Description Purchase Order connected to Sales Order is created.

Purchase Order for many Sales Orders can be put an order.
Sales Order may be divided into many Purchase Orders.
Purchase Order connected to the Sales Order can be
delivered directly.

<directTransport
>

purchaseOrderLin
e

salesOrderLine

1..n1..n

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 51 -

6.2.2.16 Product Information (SS)
BFOP No. 2160
BFOP Name Product Information (SS)
BFOP to be inherited 1020 (Association)
Parameter <Product Information>, <Participant>
Revision Rev.2
Description Can store different information for each products, e.g.

Supplier and its leadtime, Customer and its productNo, etc.

 <itemInformation>produc
t

associationA

<participant

B

 1020
 association

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 52 -

6.2.2.17 Daily Inventory (SS)
BFOP No. 2170
BFOP Name Daily Inventory (SS)
BFOP to be inherited 2020 (Product-Stock-Place)

1090 (Period)
Parameter <Daily Inventory>, <Daily Period>
Revision Rev.2
Description This is a pattern which is modeled on DailyInventory you

often find on Sales or Production management system.
Inventory expressed here is “Inventory of a product in a
warehouse on a day”.
Because Daily Inventory has no Date but Daily Period
replaced by Period as an attribute, it’s easy to sum to
monthly and yearly inventory.

<dailyInventory
>stock

period
<dailyPeriod

1..1

 1090
 Period

 2020
 product-stock-place

{
fromDate=toDate
}

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 53 -

6.2.2.18 Settlement for Receiving & Paying (SS)
BFOP No. 2180
BFOP Name Settlement for Receiving & Paying (SS)
BFOP to be inherited 2110 (Settlement for Receiving),

2120 (Settlement for Paying)
Parameter
Revision Rev.2
Description Because SettlementForReceiving and SettlementForPaying

internally have prearranged executive data, cash flow is
knowable.

receivingPeriod 0..n

payingPeriod0..n

 2120
 settlementForPaying

 2110
 settlementForReceiving

 date

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 54 -

6.2.2.19 Organization (SS)
BFOP No. 2190
BFOP Name Organization (SS)
BFOP to be inherited 2030 (Employee Assignment),

2040 (Organization Structure)
Parameter <Organization>
Revision Rev.2
Description Organization decides a management structure by connecting

to other sub-systems.

-organizationName:Name

 <Organization>

organizationEntityorganization

 2040
 OrganizationStructure

 2030
 employeeAssignment

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 55 -

6.2.2.20 Product Configuration (SS)
BFOP No. 2200
BFOP Name Product Configuration (SS)
BFOP to be inherited 1060 (DAG)
Parameter <Product>, <Product Configuration>,<Parent Product>,

<Children Product>
Revision Rev.2
Description This is one of expressions for Product Configuration, and

does not have Valid Period.
So, it is impossible to beforehand store the configurational
changes in future.

productStructure(product:Product)
 post result = a set of productConfiguration
productExplosion(product:Product)

 post result = a set of pair of product at the bottom level of
product structure and its required quantity,
obtained by recursively applying the product
structure method.

-quantity:Quantity

<productConfigurati
on>

 <product>
dagVertex

DagEdge
[dagFrom/<parentProduct>,
dagTo/<childrenProduct>]

 1060
 DAG

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 56 -

6.2.3 Optional Patterns
6.2.3.1 Unit Price by Correspondent

BFOP No. 3010
BFOP Name Unit Price by Correspondent
BFOP to be inherited 1020 (Association)
Parameter
Revision Rev.2
Description Can create Unit Prices for each Correspondent.

-unitPriceByCorrespondent:Price

 unitPriceByCorrespondent

 correspondent
A

association

 1060
 DAG

 product
B

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 57 -

6.2.3.2 Unit Price by Period
BFOP No. 3020
BFOP Name Unit Price by Period
BFOP to be inherited 1020 (Association), 1090 (Period)
Parameter
Revision Rev.2
Description Can create Unit Price with its valid period.

-unitPriceByPeriod:Price

 unitPriceByPeriod

-effectiveDate:Date

unitPriceEffectivePriA

association

 1020
 association

 productB

 1060
 DAG

Period

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 58 -

6.2.3.3 Unit Price by Correspondent and Period
BFOP No. 3030
BFOP Name Unit Price by Correspondent and Period
BFOP to be inherited 1030 (Association-3), 1090 (Period)
Parameter
Revision Rev.2
Description Can create Unit Prices for each Correspondent with their

Effective Period.

-unitPriceByCorrespondent/Period:Price

unitPriceByCorrespondentAndP
eriod unitPriceEffectivePri

A

association

 1030
 association-3

 productB 1090
 Period

Period

 correspondent

C

corresponde
nt

 product

unitPriceEffectivePri

-unitPriceByCorrespondent/Period:Price

unitPriceByCorrespondentAndP
eriod

0..n

0..n
1..1

1..1

0..n
1..1

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 59 -

6.2.3.4 Employee Role
BFOP No. 3040
BFOP Name Employee Role
BFOP to be inherited 1020 (Association)
Parameter <Assignment>, <Employee Role>
Revision Rev.2
Description Employee can be have multiple roles.

 employee

A

 1060
 association

 <Assignment>

B

<employeeRole

association

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 60 -

6.2.3.5 Employee Role Definition (SS)
BFOP No. 3050
BFOP Name Employee Role Definition (SS)
BFOP to be inherited 1020 (Association)
Parameter <Employee Role>, <Assignment>, <Employee Role Target>
Revision Rev.2
Description Role has an object what is managed. Purchase by supplier.

Sales by area. Support by Product..

<employeeRole

A

 1020
 association

 <assignment>

B

<employeeRoleTarge
t>

association

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 61 -

6.3 Overall Package Structure

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 62 -

3050
Employee Role
Definition (SS)

3040
Employee Role

3030
Price by

Correspondent/Period

2200
Product Configuration

(SS)

2190
Organization (SS)

2040
Organization Structure

2030
Employee Assignment

2160
Product Information

2150
Direct Transport(SS)

2140
Transport (SS)

2130
Sales Order & Purchase

Order (SS)

2170
Daily Inventory

2060
Sales Order-Sales

Order Line-Product

2070
Purchase Order-Purchase

Order Line-Product

2020
Product-Stock-Place

2090
Paying or Receiving

2110
Settlement for

Receiving

2010
Correspondent-

Transaction

2120
Settlement for Paying

2100
Settlement

2080
Closing

2180
Settlement for

Receiving & Paying

1050
Directed Graph

1090
Period

1060
DAG (Directed Acyclic

Graph)

1040
Dynamic Hierarchical

Structure 1030
Association-3

1020
Association

1010
Master & Detail

1070
Header & Detail

1080
Stock & Flow

A: Sales/Purchase (SS)

2050
Transaction-Transaction

Line-Product

A001 B001

B: Sales/Purchase/Stock
(SS)

C: Sales/Purchase-Set
Product (SS)

D:
Sales/Purchase/Stock-

Set Product (SS)

3020
Price by Period

3010
Price by Correspondent

1110
Transaction Record

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 63 -

6.4 Sample Object Model for BFOP

1090Date ConfigurationEffectivePeriod Duration

Organization
Structure

Organization Entity

Employee Assignment Employee

Concurrent TaskCompetent Task

Employee Assignment
Status

Boss

1..1

1..1

1..1 1..1

1..1

1..1
1..11..1

0..n

0..n

1..1

1..1

Organization
Structure TO

Organization
Structure FROM

Expiry date

Effective date

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 64 -

References
[Bapat 94] Bapat, S. Object-Oriented Networks, Models for Architecture,

Operations, and Management, PTR Prentice Hall, 1994.
[Blaha 98] Michael Blaha, William Premerlani. Object-Oriented Modeling and

Design for Database Applications. Prentice Hall, Upper Saddle
River, N.J., 1998.

[Booch 91] Grady Booch. Object-Oriented Analysis and Design with
Applications, 1st ed. Benjamin/Cummings, Redwood City, Calif.,
1991.

[Booch 94] Grady Booch. Object-Oriented Analysis and Design with
Applications, 2nd ed. Benjamin/Cummings, Redwood City, Calif.,
1994.

[Booch 96a] Grady Booch. Object Solutions: Managing the Object-Oriented

Buyer

Invoice Type

Sales Order

Sales Order Line

Product

Purchase
Order Detail

Supplier

Ship to

Inventory Balance

Purchase
Order

Shipment

Returned
Shipments

Warehouse

Goods Received

Shipment
Detail

Shipping
Instruction

Payee
Date

Payment
Schedule Type

Invoice

Invoicee

Invoice Payment
Term Type

Payment
Schedule

Payment Schedule
Term Type

Buyer Payment
Condition

Invoice
Payment Term

Supplier Payment
Condition

Payment

Payment
Method

Payment Schedule
Term

Payment Term

Payee's
Account

Goods Returns

Daily Period

Buyer Payment
Term Type

Buyer Payment
Term

Term

Buyer
Payment

Payment Term
Type

1..1

0..n

0..n

0..n

0..n

0..n

0..1

0..1

0..n

0..n

0..n

0..n

0..1

0..n

0..n

1..1 1..1
1..1

1..1

1..1

1..1

1..1

1..1

0..1

1..1 1..11..1

1..1

1..1

1..1

1..1
1..1

1..1

1..1
1..1

1..1

1..1

1..1
1..1

1..1

1..1

1..1

1..1

1..1

0..n

0..n

0..n

0..n
0..n

0..n0..n

0..n

0..n

0..n

0..n

0..n 0..n

0..n 0..n

0..n

0..n 0..n

1..1

1..1 1..1

1..1

1..1

1..11..1

1..1

1..1

1..1

1..1 1..1

1..1 1..1

1..1 1..1 0..n

0..n

0..n
0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n
0..n

0..n

1..1

1..1

0..n

1..1

1..1

1..1

1..1

1..1

1..1

0..n

Shipping Date Goods Received Date

Scheduled Payment Date

Goods Returned DatePayment
Date

Shipment Returned Date

Credit Date

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 65 -

Project. Addison-Wesley, Menlo Park, Calif., 1996.
[Booch 96b] Grady Booch. Best of Booch: Designing Strategies for Object

Technology. SIGS Books, New York, N.Y., 1996.
[Booch 99] Grady Booch, James Rumbaugh, Ivar Jacobson. The Unified

Modeling Language User Guide. Addison-Wesley, Reading, Mass.,
1999.

[Buschmann 96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, Michael Stal. Pattern-Oriented Software Architecture;
A system of Patterns. Wiley, Chichester, U.K., 1996.

[Coad 91] Peter Coad, Edward Yourdon. Object-Oriented Analysis, 2nd ed.
Yourdon Press, Englewood Cliffs, N.J., 1991.

[Coleman 94] Derek Coleman, Patrick Arnold, Stephanie Bodoff, Chris Dollin,
Helena Gilchrist, Fiona Hayes, Paul Jeremaes. Object-Oriented
Development: The Fusion Method. Prentice Hall, Englewood Cliffs,
N.J., 1994.

[Cox 86] Brad J. Cox. Object-Oriented Programming: An Evolutionary
Approach. Addison-Wesley, Reading, Mass., 1986.

[DeRemer 76] Frank DeRemer and Hans H. Kron. Programming-in-the-Large
versus Programming-in-the-Small. IEEE Trans. on Software
Engineering, SE-2(2):80-86, June 1976.

[D’Souza 99] Desmond F. D’Souza, Alan Cameron Wills. Objects, Components,
and frameworks with UML: The Catalysis Approach. Reading,
Mass., Addison-Wesley, 1999.

[Fowler 97] Martin Fowler. M. Analysis Patterns: Reusable Object Models.
Reading, Mass., Addison-Wesley, 1997.

[Fowler&Scott
97]

Martin Fowler, Kendall Scott. UML Distilled. Reading, Mass.,
Addison-Wesley, 1997.

[Gamma 95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, Mass., 1995.

[Goldberg 83] Adele Goldberg, David Robson. Smalltalk-80: The Language and Its
Implementation. Addison-Wesley, Reading, Mass., 1983.

[Gosling 96] James Gosling, Bill Joy, and Guy Steele. The Java™ Language
Specification version 1.0. Addison Wesley, 1996.

[Harel 98] David Harel, Michal Politi. Modeling Reactive Systems with
Statecharts: The STATEMATE Approach. McGraw-Hill, New York
N.Y., 1998.

[Jacobson 92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, Gunnar
Overgaard, Object-Oriented Software Engineering: A Use Case
Driven Approach. Addison-Wesley, Wokingham, England, 1992.

[Jacobson 95] Ivar Jacobson, Maria Ericsson, Agneta Jacobson. The Object
Advantage: Business Process Reengineering with Object Technology.
Addison-Wesley, Wokingham, England, 1995.

[Jacobson 97] Ivar Jacobson, Maria Griss, Patrik Jonsson. Software Reuse:
Architecture, Process and Organization for Business Success.
Addison-Wesley, Harlow, England, 1997.

[Jacobson 99] Ivar Jacobson, Grady Booch, James Rumbaugh, The Unified
Software Development Process. Addison-Wesley, Reading, Mass.,
1999.

[Kilov 96] Kilov, Haim and Ross, James. Information Modeling: An Object-
Oriented Approach, Prentice-Hall, 1994. ISBN 0-13-083033-X.

[Martin 92] James Martin, James Odell. Object-Oriented Analysis and Design.

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 66 -

Prentice hall, Englewood Cliffs, N.J., 1992.
[Meyer 88] Bertrand Meyer. Object-Oriented Software Construction. Prentice

Hall, New York, N.Y., 1988.
[Reenskaug 96] Reenskaug et. al. Working with Objects, the OORAM Software

Engineering Method. Manning 1996. ISBN1-884777-10.4
[Rumbaugh 91] James Rumbaugh, Michael Blaha, William Pemerlani, Frederick

Eddy, William Lorensen. Object-Oriented Modeling and Design.
Prentice Hall, Englewood Cliffs, N.J., 1991.

[Rumbaugh 96] James Rumbaugh. OMT Insights: Perspectives on Modeling from the
Journal of Object-Oriented Technology. SIGS Books, New York,
N.Y., 1996.

[Rumbaugh 99] James Rumbaugh, Ivar Jacobson, Grady Booch. The Unified
Modeling Language Reference Manual. Addison-Wesley, Reading,
Mass., 1999.

[Selic 94] Bran Selic, Garth Gullekson, Paul T. Ward. Real-Time Object-
Oriented Modeling. Wiley, New York, N.Y., 1994.

[Shlaer 88] Sally Shlaer, Stephen J. Mellor. Object-Oriented Systems Analysis:
Modeling the world in Data. Yourdon Press, Englewood Cliffs, N.j.,
1988.

[Shlaer 92] Sally Shlaer, Stephen J. Mellor. Object Lifecycles: Modeling the
world in States. Yourdon Press, Englewood Cliffs N.J., 1992.

[Ward 85] Paul Ward, Stephen J. Mellor. Structured Development for Real-
Time Systems: Introduction and Tools. Yourdon Press, Englewood
Cliffs, N.J., 1985.

[Warmer 99] Jos B. Warmer, Anneke G. Kleppe. The Object Constraint
Language: Percise Modeling with UML. Addison-Wesley, Reading,
Mass., 1999.

[Wirfs-Brock 90] Rebecca Wirfs-Brock, Brian Wilkerson, Lauren Wiener. Designing
Object-Oriented Software. Prentice Hall, Englewood Cliffs, N.J.,
1990.

[Yourdon 79] Edward Yourdon, Larry L. Constantine. Structured Design:
Fundamentaals of a Discipline of Computer Program and Systems
Design. Yourdon Press, Englewood Cliffs, N.J., 1979.

[GRM] ISO General Relationship Model. ISO 10165-7 IEC
[ISO Latin-1] ISO 8859.1
[ISO/IEC FDIS
11179-1]

Information technology-Specification and Standardization of data
elements Part 1: Framework for the specification and
standardization of data elements. ISO/IEC FDIS 11179-1

[ISO/IEC FDIS
11179-2]

Information technology-Specification and Standardization of data
elements Part 2: Classification of data elements. ISO/IEC FDIS
11179-2

[ISO/IEC 11179-
3]

Information technology- Specification and Standardization of data
elements Part3: Basic Attributes of Data Elements ISO/IEC IS
11179-3, 1994.

[ISO/IEC 11179-
4]

Information technology- Specification and Standardization of data
elements Part4: Rules and guidelines for the formulation of data
definitions. ISO/IEC IS 11179-4, 1995.

[ISO/IEC 11179-
5]

Information technology- Specification and Standardization of data
elements Part5: Naming and identification principles for data
elements. ISO/IEC IS 11179-5, 1995.

[ISO/IEC 11179- Information technology- Specification and Standardization of data

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 67 -

6] elements Part6: Registration principles for data elements. ISO/IEC
IS 11179-6, 1997.

[ISO/IEC FDTR
15452]

Information technology – Specification of data value domains.
ISO/IEC FDTR 15452

[MOF] OMG Meta-Object facility specification. OMG Document ad/97-08-14
[ODMG 93] Cattell, R.G.G., editor. The Object Database Standard: ODMG-93.

Morgan Kaufmann Publishers, 1994.
[OMG Business
Object Facility
RFP]

Common Facilities RFP-4, “Common Business Objects and Business
Object Facility”, OMG TC Document cf/96-01-04.

[OMG MOF
RFP]

Common Facilities RFP-5, “Meta-Object Facility RFP”, OMG TC
Document cf/96-05-02.

[OMG OA&D
RFP]

Analysis and Design RFP-1, “Object Analysis & Design”, Rev. 1,
June 1996. OMG TC Document ad/96-05-01.

[OMG OM] “Object Models”, Draft 0.3, January 1995. OMG TC Document 94-
01-13.

[OMG OMA] Object Management Architecture Guide, Revision 3.0.
[OMG CORBA] The Common Object Request Broker: Architecture and Specification,

Revision 2.0, July 1995.
[OMG 95-01-02] Common Facilities Architecture, January 1995. OMG TC Document

95-1-2
[OMG 95-01-47] Object Services Architecture, Revision 1.1, January 1995. OMG TC

Document 95-1-47
[OMG 95-12-05] Systems Management, Revision 2.0, December 6, 1995. OMG TC

Documents 95-12-02 through 95-12-06.
[OMG 92-08-05] Object Services Roadmap, October, 1992. OMG TC Document 92-8-5
[OMG 95-03-31] IDL Type Extensions RFP, March 1995. OMG TC Document 95-1-

35.
[OMG 95-03-31] CORBAservices: Common Object Services Specification, March

31,1995. OMG TC Document 95-03-31
[OMG 95-04-01] BOMSIG white paper, OMG TC Document 95-4-1
[OMG cf/96-05-
01]

IBM Corporation. Common Facilities RFP2 Submission:
Internationalization, Time Operations and Related Facilities. May
6, 1995. OMG TC Document cf/96-05-01.

[OMG 99-03-10] Business Object Initiative RFP1 (OA&DTF RFP-6), “UML Profile
for Enterprise Distributed Object Computing Request for Proposal,”

[OMG 99-03-11] Business Object Initiative RFP 2 (OA&DTF RFP-7), “A UML Profile
for CORBA Request for Proposal,” OMG Document: ad/99-03-11

[OMG 99-08-01] UML Profile for CORBA Joint Initial Submission. Data Access
Corporation, Genesis Development Corporation, Telelogic AB, UBS
AG. Version 1.0, July 30, 1999. OMG Document ad/99-08-01.

[OMG 99-10-09] OMG Object Analysis & Design Task Force (OA&DTF RFP-6)
Submission, UML Profile for Enterprise Distributed Object
Computing, Business Object Component Architecture (BOCA) Initial
Proposal, Data Access Technologies, Inc. and Electronic Data
Systems(EDS), October 21, 1999, OMG Document ad/99-10-09

[RM-ODP] Reference Model of Open Distributed Processing (RM-ODP),
ISO/IEC 10746.
Business Objects, Oliver Sims, McGraw-Hill, 0-07-707957-4
Object Advantage, Ivar Jacobson, Addison-Wesley, 0-201-42289-1
The Object-Oriented Enterprise, Rob Mattison, McGraw Hill
Business Engineering with object technology, David Taylor, Wiley,

CBOP Initial Submission UML Profile for EDOC 99/11/17 - 68 -

1995
[SEMATECH
CIM]

Computer Integrated Manufacturing (CIM) Application Framework
Specification 1.2, March 31,1995. SEMATECH. Technology
Transfer 93061697E-ENG

[UML 98] Unified Modeling Language Specification. Object management
Group, Framingham, Mass., 1998. Internet:www.omg.org.

