
Copyright © 2002, Rational Software Corporation

UUssiinngg SSeerrvviiccee--OOrriieenntteedd
AArrcchhiitteeccttuurree aanndd CCoommppoonneenntt--
BBaasseedd DDeevveellooppmmeenntt ttoo BBuuiilldd
WWeebb SSeerrvviiccee AApppplliiccaattiioonnss

AA RRaattiioonnaall SSooffttwwaarree WWhhiittee PPaappeerr

AAllaann BBrroowwnn,,
SSiimmoonn JJoohhnnssttoonn,,
KKeevviinn KKee llllyy

Copyright © 2002, Rational Software Corporation

Contents
Contents ... 2
Introduction... 2
What Is a Service-Oriented Architecture?... 3

Interface-Based Design .. 5
Interface Behavior .. 5

Architecting Service-Oriented Systems ... 6
Layering Application Design.. 6
Example Customer Model... 7

A Component-Based Design... 8
A Service-Oriented Design.. 8

Caching in Service Oriented Design ... 9
XML Web Services Application Design ... 10

Web Service Design and Implementation Patterns.. 11
Performance and Reliability.. 11
Scalability Through Asynchronous Behavior and Queuing.. 12
Information Leasing Revisited ... 13

Resulting Web Service Design Model... 14
Conclusion .. 15

Introduction
Building an enterprise-scale software system is a complex undertaking. Despite decades of technological
advances, the demands imposed by today’s information systems frequently stretch to breaking point a
company’s ability to design, construct, and evolve its mission-critical software solutions. In particular, few
new systems are designed from the ground up. Rather, a software architect’s task is commonly that of
extending the life of an existing solution by describing new business logic that manipulates an existing
repository of data, presenting existing data and transactions through new channels such as an Internet
browser or handheld devices, integrating previously disconnected systems supporting overlapping business
activities, and so on.

To assist software developers, commercial software infrastructure products are now available from vendors
such as Microsoft and IBM. They form the centerpiece of the approaches to software development they
advocate in their .NET and WebSphere product lines, respectively. Both approaches focus on assembly of
hsystems from distributed services. However, is there anything new about building enterprise-scale
solutions from services? How do the lessons of component-based systems apply to construction of service-
based architectures (SOA)? What are the best approaches for building high quality systems for deployment
to this new generation of software infrastructure products? These important questions are the topic of this
paper.

In recent years, much of the attention in the software engineering community has focused on design
approaches, processes, and tools supporting the concept that large software systems can be assembled from
independent, reusable collections of functionality. Some of the functionality may already be available and
implemented in-house or acquired from a third party, while the remaining functionality may need to be
created. In these cases, the whole system must be conceived and designed to bring together all these
elements into a single, coherent whole. Today this is exemplified in component-based development (CBD) ,
a concept that is realized in technological approaches such as the Microsoft .NET platform and the Java 2
Enterprise Edition (J2EE) standards supported by products such as IBM’s WebSphere and Sun’s iPlanet..

An additional consideration is that operational systems will typically be distributed across many machines
to improve performance, availability, and scalability. An enterprise solution has to coordinate functionality
executing on a collection of hardware. One way to conceive of such a system is to consider it to be

Copyright © 2002, Rational Software Corporation

composed of a collection of interacting services. Each service provides access to a well-defined collection
of functionality. The system as a whole is designed and implemented as a set of interactions among these
services. Exposing functionality as services is the key to flexibility. This allows other pieces of
functionality (perhaps themselves implemented as services) to make use of other services in a natural way
regardless of their physical location. A system evolves through the addition of new services. The resulting
service-oriented architecture (SOA) defines the services of which the system is composed, describes the
interactions that occur among the services to realize certain behavior, and maps the services into one or
more implementations in specific technologies.

While the services encapsulate the business functionality, some form of inter-service infrastructure is
required to facilitate service interactions and communication. Different forms of this infrastructure are
possible because services may be implemented on a single machine, distributed across a set of computers
on a local area network, or distributed more widely across several companies’ networks. A particularly
interesting case is when the services use the Internet as the communication mechanism. The resulting Web
services share the characteristics of more general services, but they require special consideration as a result
of using a public, insecure, low-fidelity mechanism for inter-service interactions.

Much of the software industry’s focus so far has been on the underlying technology for implementing Web
services and their interactions. However, additional concerns arise around the question of the most
appropriate way to design Web services for ease of assembly into enterprise-scale solutions. Conversely,
there has been a surprising lack of attention on appropriate practices and tools for architecting enterprise-
scale software solutions composed of Web services. As with the design of any complex structure, high-
quality solutions are the result of early architectural decisions supported by a number of well-understood
design techniques, structural patterns, and styles. These patterns address common service issues such as
scalability, reliability, and security.

This paper provides the context for a deeper understanding of services and service-oriented architectures
for enterprise-scale software solutions. In particular, it explores services in relationship to the more
established concept of software components, and it describes how current component-based development
practices provide a tried and tested foundation for the implementation of a service-oriented architecture.
Interface-based design is highlighted as the key to both service and component design, and it is argued that
the interfaces exposed by both have certain constraints and criteria that distinguish them. The Unified
Modeling Language (UML)[1] is used as a tool to describe both logical and implementation designs, as
well as specific patterns for both comp onent and service design.

Finally, the paper focuses on Web services as a vehicle for exploring issues related to the implementation
of services in general. Specifically, the paper investigates how to interpret the general guidance for service-
oriented architecture as specific design patterns for Web services. All of the patterns described in this paper
have been implemented using the unique pattern and code template capabilities of Rational® XDE™ and
will be published through the Rational Developer Network[8].

What Is a Service-Oriented Architecture?
So what is a service-oriented architecture (SOA)? In essence, it is a way of designing a software system to
provide services to either end-user applications or other services through published and discoverable
interfaces. In many cases, services provide a better way to expose discrete business functions and therefore
an excellent way to develop applications that support business processes .

Service-oriented architecture is not a new notion; it is important at this time because of the emerging Web
services technology. For example, here is a quote from a book published in 2000 describing the value of a
service-oriented architecture:

Service-Oriented Solutions… Applications must be developed as independent sets of interacting
services offering well-defined interfaces to their potential users. Similarly, supporting technology

Copyright © 2002, Rational Software Corporation

must be available to allow application developers to browse collections of services, select those of
interest, and assemble them to create the desired functionality. [2]

For the purposes of this document, we shall consider the following definition of a service:

A service is generally implemented as a course-grained, discoverable software entity that exists as a
single instance and interacts with applications and other services through a loosely coupled (often
asynchronous), message-based communication model.

In many ways, the terminology for services is much the same as the terminology used to describe
component-based development; however, there are specific terms used to define elements within Web
services, as shown in Figure 1 below.

Figure 1 – Service terminology

• Service — A logical entity; the contract defined by one or more published interfaces.
• Service provider — The software entity that implements a service specification.
• Service requestor — The software entity that calls a service provider. Traditionally, this is termed

a “client”; however, a service requestor can be an end-user application or another service.
• Service locator — A specific kind of service provider that acts as a registry and allows for the

lookup of service provider interfaces and service locations.
• Service broker — A specific kind of service provider that can pass on service requests to one or

more additional service providers.

This description of services, and the context of their use, imposes a series of constraints. Furthermore,
efficient use of services sugges ts a few high-level best practices. Here are some key characteristics for
effective use of services:

• Coarse-grained — Operations on services are frequently implemented to encompass more
functionality and operate on larger data sets, compared with component-interface design.

• Interface-based design — Services implement separately defined interfaces. The benefit of this is
that multiple services can implement a common interface and a service can implement multiple
interfaces.

• Discoverable — Services need to be found at both design time and run time, not only by unique
identity but also by interface identity and by service kind.

• Single instance — Unlike component-based development, which instantiates components as
needed, each service is a single, always running instance that a number of clients communicate
with.

• Loosely coupled — Services are connected to other services and clients using standard,
dependency-reducing, decoupled message-based methods such as XML document exchanges.

Services

Service
Locator

Service
Requestor

Service
Broker

Service
Provider

Applications or Services

Copyright © 2002, Rational Software Corporation

• Asynchronous — In general, services use an asynchronous message passing approach; however,
this is not required. In fact, many services will use synchronous message passing at times.

Some of these criteria, such as interface-based design and discoverability, are also used in component-
based development; however, it is the sum total of these attributes that differentiate a service-based
application from an application developed using component architectures such as a J2EE or .NET.

Interface-Based Design
In both component and service development, the design of the interfaces is done such that a software entity
implements and exposes a key part of its definition. Therefore, the notion and concept of “interface” is key
to successful design in both component-based and service-oriented systems. The following are some key
interface-related definitions:

• Interface — Defines a set of public method signatures, logically grouped but providing no
implementation. An interface defines a contract between the requestor and provider of a service.
Any implementation of an interface must provide all methods.

• Published interface — An interface that is uniquely identifiable and made available through a
registry for clients to dynamically discover.[3]

• Public interface — An interface that is available for clients to use but is not published, thus
requiring static knowledge on the part of the client.

• Dual interface — Frequently interfaces are developed as pairs such that one interface depends on
another; for example, a client must implement an interface to call a requestor because the client
interface provides some callback mechanism. This concept was introduced by Web services.

CRM

Systems Management

AccountManagement
{published}

ContactManagement
{published}

ManagementService

Figure 2 – Implemented services

Figure 2 shows the UML definition of a customer relationship management (CRM) service, represented as
a UML component, that implements the interfaces AccountManagement, ContactManagement, and
SystemsManagement. Only the first two of these are published interfaces, although the latter is a public
interface. Note that the SystemsManagement interface and ManagementService interface form a dual
interface. The CRM service can implement any number of such interfaces, and it is this ability of a service
(or component) to behave in multiple ways depending on the client that allows for great flexibility in the
implementation of behavior. It is even possible to provide different or additional services to specific classes
of clients. In some run-time environments such a capability is also used to support different versions of the
same interface on a single component or service.

Interface Behavior
An interface definition in languages such as Java or C#, or in languages such as IDL, only provides a set of
method signatures. The definition provides the “what” without any guidance on the “how.” For example,
consider the Security interface in Figure 3. It is clear that the clients calling an implementation of this
interface are able to call any of three public methods — or are they?

Copyright © 2002, Rational Software Corporation

«interface»
Security

+ LogonUser ([in] UID : String , [in] token : Token)
+ GetUserName () : String
+ GetUserDomain () : String

Figure 3 – Interface in UML

By simply defining the “what” we are not able to portray the fact that the client is unable to call
GetUserName() or GetUserDomain() until the user has logged on. The following state machine
demonstrates this dependency, or behavior. This kind of constraint is often included in literature on
interface-based design; however, it is not supported in any programming languages, so one cannot ensure
that the implementer of an interface is compliant with any behavioral specification.

Created

User Logged On

LogonUser

GetUserName GetUserDomain

Figure 4 – Interface behavior

However, businesses are moving more and more to service-oriented systems in the hope that they can be
more easily integrated and choreographed to realize business processes through collaborations of services.
As a result, the notion of defining the behavior of an interface and, more importantly, the behavior of sets
of related interfaces is receiving increasing industry attention. Unfortunately, there are currently few
standard approaches to this.

One approach might be to use design models such as those introduced through this paper, defined in a
standardized language such as the UML to document the interdependencies between service interfaces.
Such models can be shared, socialized, and used to drive specific standards when they emerge.

Additionally, Rational has sponsored the Reusable Asset Specification (RAS), which provides a
mechanism for packaging and sharing assets that could be applied to this problem. For example, when
using the RAS mechanism to distribute the details for a service, one could package the model describing its
behavior as well. Within such a model, a sequence diagram may then be used to show the required
interaction between the calls on the interface.

Architecting Service-Oriented Systems
In any new development in software engineering, it is very easy to assume that one can apply the same
techniques and tools that have worked in previous projects. We have already mentioned that components
and services, although similar, are not the same; they have differing design criteria and different design
patterns. This section will discuss an important practical consequence. The bottom line is that not every
good component transformed into a service makes a good service.

Layering Application Design
This tendency to solve new problems with outdated solutions is not new. Similarly, as developers began to
create component-based systems, they tried to bring to bear their experience with object-oriented
development, with similar problems. With more experience, it was understood that object-oriented
technology and languages are great ways to implement components, though one has to understand the
trade-offs made through decisions and implementation. Trade-offs concerning inheritance vs. aggregation

Copyright © 2002, Rational Software Corporation

for implementing polymorphic behavior, or redesign of class libraries to be able to use in sets of
components rather than as the base for a monolithic C++ application.

In a similar way, we see components as the best way to implement services, though one has to understand
that an exemplary component-based application does not necessarily make an exemplary service-oriented
application. We see a great opportunity to leverage your company’s component developers and existing
components, once the role played by services in application architecture is understood. The key to making
this transition is to realize that a service-oriented approach implies an additional application architecture
layer. Figure 5 below demonstrates how technology layers can be applied to application architecture to
provide more coarse-grained implementations as one gets closer to the consumers of the application. The
term coined to refer to this part of the system is “the application edge,” reflecting the fact that a service is a
great way to expose an external view of a system, with internal reuse and composition using traditional
component design.

Figure 5 – Application implementation layers

In general, the move from object-oriented to component-based thinking took between 6 and 18 months as
developers learned about this new technology and the requirements it placed on them. Hopefully, the move
to service-oriented systems can happen more quickly. To this end, developers will have to understand the
challenges, trade-offs, and design decisions that allow for the development and reuse of components in
support of service-oriented applications.

Example Customer Model
To illustrate how components and services interact in realizing an application, consider an example that
manages some customer relationship information, as defined in the UML class diagram in Figure 6 below.

Appointment

+ Notes : string
+ Subject : string
+ Location : string

Contact

+ Mobile : string
+ Phone : string
+ Name : string

Account

+ Fax : string
+ Phone : string
+ AccountState : string
+ Address : string
+ Name : string

+ Appointments + Contacts

Figure 6 – Logical customer model

In the sections that follow, we will describe how developers would transcribe such a logical model into an
implementation model for component-based applications and then for service-based applications (bearing
in mind that this model does not describe the behavior of the system in any way). It will become clear that

Service Layer

Component Layer

Object/Class Layer

Copyright © 2002, Rational Software Corporation

many of these translation steps can be automatically generated. Rational Software has tools for the
modeling of the architecture of applications, the harvesting and application of such patterns, and the
management of these model/code artifacts through the complete development lifecycle.

A Component-Based Design
How would our example logical model be translated into a component design (such as for COM or J2EE)?
A component-based design for the model is presented below, in Figure 7.

«implementation»
Account

«artifact»
Account

«reside»

«interface»
IAccount

+ getName ()
+ setName ()
+ getAddress ()
+ setAddress ()
+ getPhone ()
+ setPhone ()
+ getFax ()
+ setFax ()
+ getContacts ()
+ setContacts ()

Figure 7 – Generic component diagram

There is one key design feature of the interface above. The key is that for existing component platforms
there is a common pattern; for each attribute in the analysis class we have to provide two operations — one
operation that sets the value and one that returns the value. For local components the overhead of a method
call is negligible and for remote objects the Remote Procedure Call (RPC) mechanisms are optimized to
minimize overhead. In many cases in an application the client only needs a subset of the properties and so
can access them as needed.

A Service-Oriented Design
The design model above demonstrates the correct way to think about component implementations where
each component instance represents a single object; for example, for each individual contact in our CRM
database becomes, logically, a separate component. So component identity is tied to the identity of the
contact.

However, for a service there is a single instance that manages a set of resources, so they are for the most
part stateless. This means that we need to view a service as a manager object that can create and manage
instances of a type, or set of types. This yields a design pattern that makes use of value objects (a common
pattern in distributed systems where state persists for transfer between components) that represent the
instance state, objects that are in fact simply serialized state. One interesting result of this is that, if we can
define the rules for taking a component definition, such as the model in Figure 7, and transforming it into a
service, we can implement this serialization as a pattern. The creation and reuse of such patterns is possible
using Rational XDE.

This passing of state from provider to requestor implies that rather than a large number of small operations
to retrieve the component state, a single large operation is used. Now this has certain implications for
network usage for remote services (and most services are remote), as well as the behavior of requestors
when dealing with large value objects. This also has another implication; the requestor is being provided
with a copy of the state of some entity, but is this copy stale? We know when we retrieve a stock quote or
weather forecast that there is the possibility that these are out of date, but we are conditioned to accept this.
We are also conditioned by the type of data; stock quote data becomes stale faster than weather data. In
such an architecture as described here, the requestors must be conditioned to accept copies of state. For
details, see the “Impact of Coarse-Grained Interactions” section later in this paper.

Copyright © 2002, Rational Software Corporation

Given these requirements, how would we expect a service to look? The model fragment in Figure 8 shows
how such a pattern can be described at a design level, demonstrating the interfaces published by the
component and the value objects that the interface manipulates.

«ValueObject»
Account

+ Name : String
+ Address : String
+ AccountState : String
+ Phone : String
+ Fax : String

«ValueObject»
Appointment

+ ApptDate : DateTime
+ Location : String
+ Subject : String
+ Notes : String

«Service»
MyCustomersSvc

«interface»
Accounts

+ CreateAccount ()
+ DeleteAccount ()
+ GetAccount ()
+ UpdateAccount ()
+ GetContactsForAccount ()

«ValueObject»
Contact

+ Name : String
+ Phone : String
+ Mobile : String

«interface»
Contacts

+ CreateContact ()
+ UpdateContact ()
+ GetContact ()
+ DeleteContact ()
+ GetAppointmentsForContact ()

«interface»
Appointments

+ CreateAppointment ()
+ GetAppointment ()
+ UpdateAppointment ()
+ DeleteAppointment ()

Figure 8 – Generic service-oriented design

Now that we see how services can be designed, let us look at some attributes of this particular design. To
begin with, it is clear that there is a lot more information passed in the value objects than a simple “get” or
“set” from the provider, MyCustomerSvc, to a requestor for a given interaction, and that this can affect
network bandwidth. However, given the nature of Web services, it is clear that the protocols used in the
implementation of services differ greatly from those used in component implementations. A platform such
as this puts an additional burden on the architect or information engineer to carefully choose the value
objects and their composition to maximize the content of each value object while not bringing the network
to its knees.

Caching in Service-Oriented Design
Let us reconsider the notion we introduced in the previous section of passing “stale” copies of information
from a provider to a requestor. For example, if I am developing a stock portfolio management application, I
do not want to ask a Web service for the current price of a security over and over for each security; passing
3-5 characters of data for the security and 5-7 characters for the price back. This may result in an
unacceptable load on the network and service provider. What the requestor should do is to request the
contents of the entire portfolio, either by passing the list of symbols or by passing the portfolio identifier to
the service and retrieving all information for each security. Now, if the user had simply asked for an update
to a single symbol this seems like overkill; however, the requestor can now cache the results and, if the user
then asks for an update to another symbol, the request can be satisfied from the cache. The work on the
requestor is now to identify the “lease” duration of the data. So for a portfolio, if I know the stock quote
service has a 20-minute delay, I might like to work on a 25% margin and cache the results for 5 minutes.

This pattern is seen over and over again in information systems. Whenever a user retrieves an order from an
order management system, that user is effectively given a copy of the order because another user may be
updating it at the same time (unless the system locks out additional access to the order). Now, it would be
nice if a Web service provider could actually, as part of its interaction with the requestor, identify the cache
or lease duration. Such issues are well understood in messaging systems like Microsoft Message Queue
Server (MSMQ) and IBM MQSeries, where message timeouts and expiry times are routinely managed.

Copyright © 2002, Rational Software Corporation

We will revisit this problem later in this document and provide some specific guidance on the development
of both requestors and providers to cope with this issue.

XML Web Services Application Design
XML Web services are now a part of our vocabulary and there is broad vendor support as well as a
growing number of platforms and tools to deploy and develop Web services. The elements of the Web
service stack have been well described elsewhere, so we won’t go into an exhaustive review in this
document. The following definition comes from the World Wide Web Consortium (W3C) Web Services
Architecture Working Group:

A web service is a software application identified by a URI, whose interfaces and binding
are capable of being defined, described and discovered by XML artifacts and supports
direct interactions with other software applications using XML based messages via
Internet-based protocols.[4]

Let us briefly consider how some of the technologies in Web service use today are applied to the picture we
drew in Figure 1 when we described service-oriented architecture terminology.

Figure 9 – XML Web service standards

For a start, there is a misconception that all Web services use XML messages, with Simple Object Access
Protocol (SOAP) over HTTP — the de facto protocol of the Web. This is not quite true. A Web service
message can use XML, but it might transport binary data; it generally uses SOAP headers, but it is not
required to use SOAP encoding for message bodies; it may use HTTP as a transport, but it could well use
SMTP or other means. For the description of, and discovery of, Web services there are two well-defined
standards: WSDL (Web Services Definition Language) and UDDI (Universal Discovery, Description and
Integration).

This flexibility in formats and transport protocols is one of the current issues with Web services —
interoperability. How, given the choices in SOAP formats, envelopes, transport protocols, and so on, can
two implementations transfer information? Stepping into this is the Web Services Interoperability (WS-I)
group, which is attempting to provide the industry with guidance on the usage of the current and emerging
standards. Vendors are also helping here by providing flexible Web services development environments
such as IBM WebSphere Studio Application Developer Integration Edition, which creates Web services
with multiple formats and transport protocols so that the fastest or correct set can be used as required.

WS-Referral

UDDI

WSDL

Service
Locator

Service
Requestor

Service
Provider

Service
Broker

SOAP
HTTP
MIME
SMTP
SSL
XSD

XDSIG

Copyright © 2002, Rational Software Corporation

Web Service Design and Implementation Patterns
Web services really do not change the analysis and design process around the functional requirements for
an application — an insurance claim processing application still has to process insurance claims! What we
are introducing are a set of constraints and potential issues in the area of nonfunctional requirements. The
following sections describe some of these possible pitfalls.

Performance and Reliability
The question is often asked whether the capabilities required for Web service performance, reliability, and
scalability can be provided by an architecture based on HTTP and SOAP, which are inherently slow and
unreliable. First, “slow and unreliable” must be defined, then it must be realized that even reliable
transports at the end of the day rely on unreliable means. When architecting and designing enterprise-scale
solutions, we must always bear in mind the functional and nonfunctional requirements and ensure that the
correct trade-offs and decisions are made to support the business goals.

For example, when using SOAP over HTTP it is always possible to build application-level protocols and
interactions that provide additional capabilities for message acknowledgements and security. However, if
one were to consider that certain services communicate within the same security or application context, we
might consider using different means than HTTP anyway. Consider the example in Figure 10.

Customer Management

Customers Order Management

Figure 10 – Service dependencies

Basically, all external clients interact with the Customer Management service; however, it interacts with
two internal services. The decision here is, Why would we require the flexibility of HTTP and SOAP for
these internal service communications? Let us assume that performance was our key requirement for the
interaction between Customer Management and Customers. If so, we might decide to use a component
RPC communication (such as Microsoft .NET Remoting or Java’s RMI) that provides binary encoding
formats and higher performance characteristics. On the other hand, the key requirement to place an order
from Customer Management to Order Management is for guaranteed delivery, so we might use some
queuing technology (such as IBM MQSeries or MSMQ) to deliver the message where performance is
traded for a higher level of reliability.

It is very important to realize that even though Web services present a simple model and a set of simple,
flexible protocols, you are not restricted to these choices. Just as WSDL already has bindings for both
SOAP and HTTP GET/PUT, it is important to provide requestors with additional choices. For example, a
single service may expose a message using a message queue binding and a SOAP binding, so that the
requestor can then choose which is the more appropriate binding to use. In this case, the provider may also
provide incentives, such as a guaranteed service level if the message queue is used but no service
guarantees for an HTTP conversation.

Another design decision that one should make early on is whether message exchanges will be idempotent,
commutative, or both. To be idempotent implies that if the same message arrives more than once, and is
acted on, in each case there are no ill effects. To be commutative means that two related messages can
arrive in any order with no ill effects. If the design of a service can be such that message exchanges are
identified as at least idempotent, then less reliable transports are a more attractive (and cheaper) option.

In the same way that security (not discussed in this paper) is actually a set of choices, ranging from simple
and cheap to complex and expensive, the design goals of performance, reliability, and scalability come

Copyright © 2002, Rational Software Corporation

down to a set of decisions: How much do you need? How much can you afford? Services provide as many
solutions, and yet as many choices, as existing development approaches.

Scalability Through Asynchronous Behavior and Queuing
As mentioned in the introduction to service-oriented architecture, it is beneficial to make your Web
services asynchronous in nature. Because of the additional transport overhead associated with Web services
and the expectation that services will, by their nature, be remote, it is important to reduce the time a
requestor spends waiting for responses. By making a service call asynchronous, with a separate return
message, we allow the requestor to continue execution while the provider has a chance to respond. This is
not to say that synchronous service behavior is wrong, just that experience has demonstrated that
asynchronous service behavior is desirable, especially where communication costs are high or network
latency is unpredictable.

Consider the example in Figure 11.

 : IResponder : IRequestor

1 : RequestForFoo ()

2 : AsynchRequestForFoo ()

3 : RequestedFoo (data)

Synchronous request
with direct response

Asynchronous request
with later response as
separate message

Figure 11 – Synchronous vs. asynchronous

The behavior described in Figure 11 is a big step toward implementing highly scalable Web services. By
making a service call asynchronous, it allows the provider to use multiple worker threads to handle multiple
client requests. There is a lot more to be done to support an asynchronous mode of operation than just
returning to the client quickly. First, you need to specify dual interfaces; the requestor will need to pass in a
return address to a service that implements an interface that can accept the returned message. This implies a
need to manage state in the conversation between the parties. To learn about various methods for doing
this, look at the design of Web sessions that are not based on Web services.

However, this is only scalable to a certain degree. For services that exp ect a very high load, we would need
to decouple the part that listens to the requestor and the part that services the request itself. This is already a
well-known pattern, in which a message queue is used to decouple a service façade from the service
imple mentation. The diagram in Figure 12 shows how the provider is implemented using a queue to
decouple the request from the implementation.

Copyright © 2002, Rational Software Corporation

 : Implementation Class : Requestor / Queue : Provider : Requestor

1 : \ApplyFoo\
2 : \EnQueueMessage\

3 : \DeQueueMessage\
4 : ApplyFoo (f)

Figure 12 – Queued implementation

Such a pattern can be easily implemented in both .NET and J2EE using services provided by those
platforms: MSMQ for .NET and Java Message Queue Service (JMS) or message-driven beans for J2EE.
This provides the developer with a simpler scalability model; rather than handling a set of threads with
synchronization for the requests, the implementation can simply add additional queue listeners to pick
messages from the queue, even across multiple machines.

Information Leasing Revisited
When we think about leasing information, we view this more in terms of the lending of a book from a
library than the leasing of property such as a house or car. Implicitly, whenever a requestor makes a request
of a service it is asking for a copy of some information; it is always provided with only a snapshot of state
at a given time. Now this can be a problem unless it is explicitly understood and accounted for. One
strategy is to have the provider give the expiration time together with the information. Alternatively, the
requestor may get a “ticket” with the lease (like a library book) that would allow it to potentially extend the
lease by asking if the information is still valid, and then have the server reset the lease without having to
retrieve the data again.

Now, this seems like such a fundamental issue that one might expect that HTTP, SOAP, or one of the
transport protocols would handle this for us. We could reuse the HTTP caching semantics that allow
browsers and firewalls to cache pages, but it really isn’t under the provider’s control, and the requestor may
not be using HTTP as a transport. One option is to build such support into your document exchange, such
that the messages between requestor and provider encode the leasing information for the client, as shown in
Figure 13.

Copyright © 2002, Rational Software Corporation

«WebDocument»
Account

+ Name : String
+ Address : String
+ AccountState : String
+ Phone : String
+ Fax : String

«WebDocument»
Leased Document

+ IssuedBy : String
+ Issued : DateTime
+ Expires : DateTime
+ Ticket : String

«WebDocument»
GetAccountDataResponse

«WebDocument»
Account

+ Name : String
+ Address : String
+ AccountState : String
+ Phone : String
+ Fax : String

«WebDocument»
Lease Information

+ IssuedBy : String
+ Issued : DateTime
+ Expires : DateTime
+ Ticket : String

*1

«WebDocument»
LeasedAccount

Figure 13 – Two implementations of information leasing

Figure 13 demonstrates two alternative implementations of the information-leasing pattern. The first
demonstrates the use of inheritance to specialize the Account XML document into a special form that is not
only an Account but also a Leased Document and, therefore, includes the additional information. The
second alternative has the leasing information returned alongside the account as a separate part of the
response message. Both of these approaches are equally valid, they do result in differently structured data
and the choice is very much one of style, inheritance versus aggregation.

Resulting Web Service Design Model
Figure 14 demonstrates how the generic service design in Figure 7 can be modeled using a UML profile
specific to Web service design and development. The profile is very simple and introduces only two new
stereotypes (extensions to the existing UML language), for «WebService» and «WebDocument». By
reusing the interface semantics already present in the UML, we can easily visualize the published aspects of
a service, as defined in WSDL.

«WebDocument»
GetAccountDataRequest

+ AccountName : String

«WebDocument»
GetAccountDataResponse

«WebDocument»
Account

+ Name : String
+ Address : String
+ AccountState : String
+ Phone : String
+ Fax : String

«WebDocument»
GetAppointmentsRequest

+ ForDate : DateTime

«WebDocument»
GetAppointmentsResponse

«WebDocument»
Appointment

+ ApptDate : DateTime
+ Location : String
+ Subject : String
+ Notes : String

«WebDocument»
NewAppointmentCall

+ ForContact : String

«WebService»
MyCalendarSvc

localhost

«interface»
MyCalendar

+ NewAppointment ()
+ GetAppointments ()
+ GetAccountData ()

*

*

*

«reside»

Figure 14 – XML Web service design

Copyright © 2002, Rational Software Corporation

The table below demonstrates how the profile elements in Figure 14 are related to the artifacts in the
WSDL for the MyCalendar service.

WSDL Artifact UML Element Comment
service «WebService» The service is represented as a UML component that

realizes one or more interfaces and resides at a particular
location. The «reside» relationship will capture the actual
URL location information.

portType Interface Each portType is represented as a UML interface realized
by one or services. The realization relationship will capture
the binding information.

message «WebDocument» Each message is represented as a UML class. A mapping
from XML Schema to and from UML is required to model
the message and part structure.

part Attribute or
Association End

Each part of the message can be represented either as a
UML attribute on the «WebDocument» or as an
association to another «WebDocument».

address location Node The node represents the server on which the service
resides. The node may identify a set of resident services
and a service may reside on more than one node.

It is important to note that this method for designing Web services promotes the reuse of both the
documents that define the data exchange and the interfaces supported by the services. This is a key
capability when designing enterprise-scale solutions. Preferably, all services that interact with the Account
document do so based on the same document definition. We also see that operational, unpublished
interfaces, such as SystemsManagement seen in Figure 2, can be defined by experts in this area and then
made available such that they are implemented in common across the solution.

Conclusion
While some are expecting that Web services will be a revolution in the software industry, there are others
who will tell you that Web services are nothing but hype. As is usual with new technology, the truth is
somewhere in between. As we have seen, there are some fundamental differences in the architecture of
service-oriented applications; however, existing component-based development techniques are still valid in
the implementation of such services.

It is possible to derive both component and service implementations from a single domain model, as shown
by the Account, Contact, Appointment model in Figure 6. Other key conclusions are:

• Services models can be derived from existing component-based models.
• Common patterns and designs can be applied to assist in the transformation to service-oriented

models.
These common patterns and designs can be generalized, automated, and then instantiated with a model-to-
model and model-to-code transformation tool such as Rational XDE (and demonstrated in the figure
below).

Copyright © 2002, Rational Software Corporation

Patterns

Patterns
Domain Model

Figure 15 – Service implementation approach

Taking this path has many benefits: it reduces developer overhead, increases the predictability of the
implementation, and improves quality by reusing proven patterns. Adding a best practice such as “Use
service-oriented architectures” to your expertise and codifying some of these best practices in automation
tool sets such as Rational XDE will allow you to make good choices and trade-off decisions for
implementing services, more quickly and more reliably.

References
[1] For more information, see http://www.rational.com/uml/.
[2] Large-Scale, Component-Based Development by Alan W. Brown, Prentice Hall, 2000
[3] Public versus Published Interfaces by Martin Fowler, IEEE Software, March/April 2002 (Vol. 19, No.
2)
[4] W3C Web Services Architecture Requirements; http://www.w3.org/TR/2002/WD-wsa-reqs-20020429
[5] Web Services Security, Version 1,0; http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/ws-security.asp
[6] Web Services Referral Protocol, Draft; http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/ws-referral.asp
[7] XML Web Services Basics; http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/ws-referral.asp
[8] Rational Developer Network http://www.rational.net/

