
A Technical How-to Guide for Creating Components and Web Services in
Rational Rapid Developer
June, 2003 Rev. 1.00

IBM® Rational® Rapid Developer
Components & Web Services

Glenn A. Webster
Staff Technical Writer

Executive Summary
This document describes the IBM® Rational® Rapid Developer system for
developing components and publishing and consuming Web services. The
document does not presume any prior knowledge of Rational Rapid
Developer.

A Rational Rapid Developer component is an encapsulated element of
application functionality that is exposed through a well-defined interface.
You can get data, set data, or perform actions by using the public interfaces
as defined by the component developer or author. This enables the author to
extend or alter the component’s functionality and internals while at the same
time provide the same interface contract to the component consumer (e.g.,
another application). Components also provide you with a means to publish
Web services for use in other applications.

IBM® Rational® Rapid Developer

Components & Web Services

3

About IBM Rational
IBM Rational, formerly an independent company and now one of the IBM
software brands, offers a comprehensive software development solution. The
IBM Rational platform combines software engineering best practices,
market-leading tools, and expert professional services, all of which drive
rapid and continuous improvement in software development capability for
on demand businesses.

In addition, IBM Rational offers more than 20 years experience in promoting
and delivering integrated and open software systems, both of which are key
characteristics of the on demand operating environment:

Integrated — IBM Rational has contributed considerable thought leadership
and expertise in the areas of Service-Oriented Architecture (SOA), enterprise
and software architecture, and heterogeneous platform support.

Open — IBM Rational has a long history in developing and supporting the
goals of open computing. This includes development of the Unified
Modeling Language (UML), now a standard for modeling applications,
database design, and business processes. IBM Rational has promoted and
participated in the development of a wide variety of open computing
standards. It offers support for major programming languages and operating
platforms, and it provides an extensive set of application programming
interfaces for third-party tools interoperation.

Thousands of companies around the world have realized the benefits of the
approach advocated by IBM Rational. Their processes are results-oriented,
the artifacts they produce are well-designed and reusable, and they are
working at higher levels of capability now required by the on demand era.

IBM® Rational® Rapid Developer

Components & Web Services

4

Contents

Component Modeling In Rational
Rapid Developer 4

Why Use Components? 4

Specifying the Environment 5

Creating a Component 5

Using Components.................... 6

Web Services in Rational Rapid
Developer...................................... 9

UDDI Registry 11

Configuring UDDI 12

Discovering Web Services 12

Using Web Services................ 13

Publishing Web Services 14

Conclusion 15

Component Modeling In Rational Rapid Developer

A Rational Rapid Developer component is an object that encapsulates
application functionality, and is exposed through a well-defined interface.
You can get data, set data, or perform actions by using the public interfaces
defined by the component developer. This enables the author to extend or
alter the component’s functionality and internals while at the same time
provide the same interface to the component consumer (e.g., another
application). In the J2EE platform, a modeled component is constructed as
an EJB Session Bean. This Session Bean can be called by any Java™
application.

Why Use Components?

Software re-use and modular development practices are the driving themes
for using components. Two practical examples of components in action
follow.

• Automating a business process — based on the transactions that have
occurred during the business day, execute a specific business process at
night. Using Rational Rapid Developer component modeling, you define
an ObjectSpace transaction model with all the required business objects,
attributes, and business methods for the process. You then mark the
methods that serve as the callable interfaces, and then construct the
component. In the J2EE platform, this constructed and deployed Session
Bean can then be looked up using JNDI and invoked from any
independent Java client application that is invoked by scheduling
services such as cron.

• A business department needs to access current information from another
department’s running application. The access is API-based and not from
a Web page. For example, a time tracking Web application that is used
by department employees to track billable versus non-billable time. The
accounting department, which sends invoices to the company’s clients,
also needs this billable information. In Rational Rapid Developer, the
developers of the time tracking application could create a component
and expose its interfaces so that an external application could invoke the
component. Once the application is constructed and deployed, the
accounting department application could then call the time tracking
component to retrieve the information needed to process invoices.

IBM® Rational® Rapid Developer

Components & Web Services

5

Rational Rapid Developer is a
development tool that allows
developers to create applications
and not worry about constantly
changing technology

Specifying the Environment

Currently, component construction is only supported for the J2EE platform.
Follow these steps to set up the environment.

1. In the Application Architect’s Application Navigator, select the top level
icon.

2. Select the icon for the active Partition Model.
3. Select the Technology Settings icon.
4. Select the Application Server tab.
5. Set the Application Server Technology to EJB With Servlets or EJB

with Servlets With JSP.
6. Specify your EJB Server and its properties.
7. Specify your application server’s deployment settings.

Creating a Component

Follow these steps to create a component.

1. In the Application Architect’s Application Navigator, select the class
with which the component is to be associated. We recommend that you
associate the component with the business object that has primary
participation in the transaction.

2. Select the Components tab.
3. Select the New button and name the new component (e.g.,

NumberComp).
4. Select the ObjectSpace button to create the transaction model for the

new Component.
5. In the ObjectSpace, bring in all classes, attributes, and methods that

your transaction requires and will utilize.
6. Right-click on the root class in the ObjectSpace and select “Add Local

Method”. A Local Method is a method associated to the ObjectSpace
and can access anything modeled in the ObjectSpace. It is the required
way for exposing component interfaces.

7. In the Local Method dialog, specify the Name, Definition, and write the
method’s code.

8. Select the OK button to close the dialog box.
9. Select the local method in the tree, then select the Interface checkbox in

the Component section of the screen.
10. Select the OK button to close the ObjectSpace dialog box.
11. Press the Construct button to construct the component. You can now use

this component in your application or any external application.

IBM® Rational® Rapid Developer

Components & Web Services

6

Using Components

To use a component you need to specify the physical location of the
component’s .jar file, which you will reference and add to the class path.
This is done by:

• To make the component available to all partition models, add the
component’s .jar file to the Add to Class Path section of the Global
Includes tab of the Application Package.

• To make the component available in a specific partition model only,
select the partition model’s name in the Application Navigator, then add
component’s .jar file to the Add to Class Path section of the Model
Includes tab of the Technology Settings.

For example:

e:\myapp\EJBCOMP\build\weblogic5\NumberComp\NumberComp.jar

Alternatively, you can specify the package in which the component resides
to make the classes easier to reference in your code. You do this by adding
the package name to the Import Java Packages section of the Global Includes
tab. For Rational Rapid Developer constructed components the package
name follows the naming convention below.

“com.myapp.cmp.componentname.*”

where;

com = domain name type (Rational Rapid Developer defaults to this value)

myapp = the name of the Rational Rapid Developer application

cmp = stands for component (Rational Rapid Developer defaults to this
value)

componentname = the name of the component in Rational Rapid Developer.

IBM® Rational® Rapid Developer

Components & Web Services

7

Example: Using a Component in the Same Application

The following is a simple example that shows how to use a custom method
to access a component.
<%
java.util.Properties props=System.getProperties();
javax.naming.Context nCtx=new
javax.naming.InitialContext(props);
com.componentapp.cmp.NumberComp.NumberCompHome home=
 (com.componentapp.cmp.NumberComp.NumberCompHome)
 nCtx.lookup("ComponentApp.NumberCompHome");
com.componentapp.cmp.NumberComp.NumberComp
objComp=home.create();
String strCompReturn=objComp.returnStr();
response.Write(strCompReturn);
%>

where;

• com.componentapp.cmp.NumberComp = the package name.

• com.componentapp.cmp.NumberComp.NumberCompHome = the home
interface.

• com.componentapp.cmp.NumberComp.NumberComp = the remote
interface.

• returnStr() = the interface to the component (local method defined while
creating the component).

NOTE: The code example above uses explicit class referencing for the
component.

Example: Using a Component From an External Application

The following is a java program named testCmp.java, used to demonstrate a
component being accessed from a java standalone program.
import javax.ejb.*;
import java.rmi.RemoteException;
import java.rmi.Remote;

public class testCmp
{
 public static void main(String args[])
 {
 try
 {
 testCmp objtestCmp=new testCmp();
 objtestCmp.callMethod();
 }
 catch(Exception e)

IBM® Rational® Rapid Developer

Components & Web Services

8

{
 System.out.println("Cannot call component");
}
}

public void callMethod() throws Exception
{
 java.util.Properties props=System.getProperties();

 //Properties of remote m/c, i.e., one having the
component running
 // in this case, it is the local machine
 String url="t3://localhost:7001";

 //Note this is a WebLogic specific example.
 //Weblogic username and password, set in the
Weblogic properties file
 String user="system";
 String password="system";
 try
 {
 System.out.println("In the function callMethod()");

props.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");

 props.put(javax.naming.Context.PROVIDER_URL,url);

 props.put(javax.naming.Context.SECURITY_PRINCIPAL,
user);

props.put(javax.naming.Context.SECURITY_CREDENTIALS,passw
ord);
 javax.naming.Context nCtx1 = new
javax.naming.InitialContext(props);

 try
 {
 System.out.println("Looking up home
interface
 for NumberCmpHome bean..");

 com.componentapp.cmp.NumberComp.NumberCompHome
home=

(com.componentapp.cmp.NumberComp.NumberCompHome)
 nCtx1.lookup("ComponentApp.NumberCompHome");

 com.componentapp.cmp.NumberComp.NumberComp
objComp=home.create();
 System.out.println("\n Calling the method
in the component...");
 String strCompReturn=objComp.returnStr();
 System.out.println(strCompReturn);

IBM® Rational® Rapid Developer

Components & Web Services

9

}
 catch(Exception e)

{

 System.out.println("Cannot find home
interface");
 }
 }
 catch(Exception e)
 {
 System.out.println(e.getMessage()+"\n");
 System.out.println("Cannot create
context"+e.toString());
 }

 }
}

Note: The code example above uses explicit class referencing for the
component.

Web Services in Rational Rapid Developer

Web services are a new form of Web application. They are self-contained,
self-describing applications that can be published, discovered, and consumed
on the Internet. A Web service can perform any function, ranging from a
simple inquiry request to a complex business process. Once a Web service is
published, other applications or even other Web services can discover and
consume the Web service. Rational Rapid Developer enables the developer
to leverage this enterprise capability by creating, publishing, discovering,
and consuming Web services. This leading-edge capability insulates the
developer from the underlying technology and vendor issues. This capability
will evolve as Web services standards emerge and mature.

Rational Rapid Developer can construct applications to be Web service
providers or Web service consumers. Rational Rapid Developer can also
discover and publish Web services to a UDDI registry. The following
diagram illustrates these capabilities and mechanisms utilized.

IBM® Rational® Rapid Developer

Components & Web Services

10

To use a Web service, you need to follow some very simple steps.

1. Create a new Web service name that you will reference in your
application.

2. Discover a Web service from a UDDI registry of choice or from any
WSDL location.

3. From your business logic, call this newly discovered Web service just as
you would call any business object method.

4. Construct and test. Rational Rapid Developer isolates the developer
from UDDI API calls, WSDL parsing, binding, SOAP
invocation/response details, and vendor specific nuances.

Notes:

• Web services are available using J2EE application servers only.

• Web services access (calling a Web service through either UDDI
discovery of business names, or loading a Web service WSDL) is
available using all of the Rational Rapid Developer supported J2EE
application servers.

Rational Rapid Developer supports Web services publishing only under IBM
WebSphere Application Server, BEA WebLogic and Oracle9iAS (version
9).

IBM® Rational® Rapid Developer

Components & Web Services

11

To create a Web service that is utilized by other applications, you first model
a component, then select the public interfaces that you want to expose as
Web service methods. Rational Rapid Developer constructs the appropriate
session EJBs, classes, SOAP descriptors, and WSDL, and deploys for you
automatically. Rational Rapid Developer optionally registers the Web
service to a UDDI registry.

UDDI Registry

The Universal Description, Discovery, and Integration (UDDI) is an XML-
based registry for businesses worldwide to list their Web services on the
Internet. UDDI streamlines online transactions by enabling companies to
find each other on the Web and make their systems interoperable for e-
commerce.

You can discover Web services and register Web services with the IBM
UDDI registry and the Microsoft UDDI registry. You also can publish to any
UDDI standard public or private registry. To publish to these UDDI

IBM® Rational® Rapid Developer

Components & Web Services

12

registries, you need to establish an account (user id and password) with the
registry service provider.

Configuring UDDI
1. In the Application Navigator, click on the plus (+) sign next to Partition

models:
2. Select the plus (+) sign next to the name of the partition model for

which you want to specify technology settings:
3. Click on Technology Settings. Rational Rapid Developer displays the

Technology Settings page.
4. Select the UDDI tab.
5. Select a UDDI address from the UDDI Address list in the Discovering

area of the page to utilize existing Web services in your application.
Rational Rapid Developer includes a list of predefined Web service
publishers. To use a UDDI address that is not in the list, type the UDDI
address in the UDDI Address field.

6. If you want to publish a Web service from your application, you need to
specify the Publishing properties.
a. Type in the UDDI Secure Address field the secure address of the

UDDI business registry to which you want to publish the Web
service.

b. Type in the User Name field the user name for a user registered
with the business registry specified in the UDDI Secure Address
field.

c. Type in the Password field the password for the user specified in
the User Name field.

d. Type in the Server Name field the URL of the server that will
publish the Web service. This is the URL of the server that is to be
accessed at runtime by Web service requesting applications, and to
which the WSDL file will be published.

Discovering Web Services

You can discover Web services in several ways:

● From a UDDI registry

● By loading a Web services WSDL file from a URL

● By browsing to a WSDL file on a network. Web Services Description
Language (WSDL) files are XML-based files that are used to describe
the services a business offers, and provide detailed binding information.

IBM® Rational® Rapid Developer

Components & Web Services

13

To discover the WSDL Location of a UDDI-registered Web Service:

1. In the Application Navigator, select the Application Package.
2. Select the Web Services tab.
3. Select the New button to add a new Web service.
4. Name the Web service.
5. Select the Discover button. Rational Rapid Developer displays the

Discover Web Service dialog box.
6. Type the name of the business that publishes the Web service in the

Business Name field.
7. Select the Discover button. Rational Rapid Developer displays the Web

services discovered for the business that you specified.
8. In the Services list, select a method name, then select the OK button.

Using Web Services

To use the discovered Web services in a method:

1. In the Application Navigator, select the class that contains the method in
which you want to use a Web service.

2. Select the Methods tab.
3. Select the method name in the Name list.
4. Select the Logic Architect button.
5. Expand the Web Services tree on the right side of the Logic Architect

screen and drill down to the methods that you want to use.
6. Double-click on the method. Rational Rapid Developer places the Web

Service call into the body of your custom method. Rational Rapid
Developer places a bracketed “[Web Services Method]” tag directly
before the Web services call. This is required so that Rational Rapid
Developer can generate the appropriate SOAP API calls at construction
time.

IBM® Rational® Rapid Developer

Components & Web Services

14

Change the input and return parameters to suit your business need.

Publishing Web Services
1. In the Application Architect’s Application Navigator, select the class in

which you want to define the component that will provide the Web
service.

2. Create a component.
3. In the Select Construction pattern portion of the page, select a

construction pattern that supports Web services.
4. Select the ObjectSpace button on the Component tab.
5. Add an ObjectSpace local method, and specify the code for the Web

service.
6. Select the Interface and Web Service check boxes:
7. Select the OK button to close the ObjectSpace dialog box.
8. In the Application Architect’s Application Navigator, click on the + sign

to the left of the active partition model.
9. Select Technology Settings.
10. Select the UDDI tab.
11. In the Web Services portion of the page, select the component in the

Name list.
12. In the UDDI Secure Address field, select the UDDI address to which

you would like to publish the Web service.
13. Select the Register to UDDI button. Rational Rapid Developer registers

the Web service, and automatically fills in the values for the UDDI
Service Key, UDDI tModel key, and Binding key fields.

IBM® Rational® Rapid Developer

Components & Web Services

15

Conclusion

Rational Rapid Developer provides a visual development environment for
modeling services that can be constructed as components. Components have
user-defined interfaces and are automatically constructed and deployed.
Components can be invoked by any J2EE application, and are ideal for reuse
across the enterprise.

The Rational Rapid Developer integrated visual modeling and automated
construction system enables organizations to rapidly create, publish, discover
and integrate Web services. Modeled components can be exposed as Web
services, which can be automatically constructed and registered to a UDDI
registry of choice. This capability also allows you to easily discover and
utilize any published Web services in your Rational Rapid Developer
application.

IBM software integrated solutions

IBM Rational supports a wealth of other offerings from IBM software. IBM
software solutions can give you the power to achieve your priority business
and IT goals.

• DB2® software helps you leverage information with solutions for data
enablement, data management, and data distribution.

• Lotus® software helps your staff be productive with solutions for
authoring, managing, communicating, and sharing knowledge.

• Tivoli® software helps you manage the technology that runs your e-
business infrastructure.

• WebSphere® software helps you extend your existing business-critical
processes to the Web.

• Rational® software helps you improve your software development
capability with tools, services, and best practices.

Rational software from IBM

Rational software from IBM helps organizations create business value by
improving their software development capability. The Rational software
development platform integrates software engineering best practices, tools,
and services. With it, organizations thrive in an on demand world by being
more responsive, resilient, and focused. Rational's standards-based, cross-
platform solution helps software development teams create and extend
business applications, embedded systems and software products. Ninety-
eight of the Fortune 100 rely on Rational tools to build better software,
faster. Additional information is available at www.rational.com and
www.therationaledge.com, the monthly e-zine for the Rational community.

(c) Copyright Rational Software Corporation,
2003. All rights reserved.

Rational Software Corporation is a wholly owned
subsidiary of IBM Corp. © Copyright Rational
Software Corporation, 2003. All rights reserved.

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Printed in the United States of America
01-03 All Rights Reserved. Made in the U.S.A.

IBM, the IBM logo, DB2, Lotus, Tivoli,
WebSphere, WebLogic are trademarks of
International Business Machines Corporation
in the United States, other countries, or both.

Rational is a trademark of Rational Software
Corporation in the United States, other countries
or both.

Java and all Java-based trademarks and logos
are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other
countries, or both.

Other company, product or service names may
be trademarks or service marks of others.

The IBM home page on the Internet can be
found at ibm.com

Part No. TP032

