
©1
99

8,
19

99
, 2

00
0,

20
01

, 2
00

2 R
ati

on
al

So
ftw

ar
e -

Al
l ri

gh
ts

re
se

rve
d

A Preview of UML 2.0A Preview of UML 2.0

22

IMPORTANT DISCLAIMER!IMPORTANT DISCLAIMER!

The technical material described here is still
under development and is subject to
modification prior to adoption by the OMG

The technical material described here is still
under development and is subject to
modification prior to adoption by the OMG

33

OverviewOverview

Background

Requirements for UML 2

UML 2 Infrastructure Features

UML 2 Superstructure Features

Summary

Background

Requirements for UML 2

UML 2 Infrastructure Features

UML 2 Superstructure Features

Summary

44

The Evolution of UMLThe Evolution of UML

2003

UML 2.0 (MDA)

1967

Foundations of OO (Nygaard, Goldberg, Meyer,
Stroustrup, Harel, Wirfs-Brock, Reenskaug,…)

Foundations of OO (Foundations of OO (NygaardNygaard, Goldberg, Meyer,, Goldberg, Meyer,
StroustrupStroustrup,, HarelHarel, , WirfsWirfs--Brock, Brock, ReenskaugReenskaug,…),…)

JacobsonJacobsonBoochBoochRumbaughRumbaugh
1996

UML 1.1 (OMG Standard)UML 1.1 (OMG Standard)UML 1.1 (OMG Standard)

UML 1.3 (extensibility)UML 1.3 (extensibility)UML 1.3 (extensibility)
UML 1.4 (action semantics)UML 1.4 (action semantics)UML 1.4 (action semantics)

UML 1.4.1UML 1.4.1UML 1.4.1 2002

UML 2.0 (MDA)UML 2.0 (MDA)

2001

1998

1997

55

What is UML?What is UML?
A language for modeling object-oriented software
applications
Why bother?

To understand and predict the key characteristics of our
design before we go through the expense and effort of
building it
…and then finding out that it does not work

Modeling is a key risk mitigation technique shared by all
forms of engineering

A language for modeling object-oriented software
applications
Why bother?

To understand and predict the key characteristics of our
design before we go through the expense and effort of
building it
…and then finding out that it does not work

Modeling is a key risk mitigation technique shared by all
forms of engineering

66

Models of SoftwareModels of Software
A description of the software which

Abstracts out irrelevant detail
Presents the software in problem-domain terms

A description of the software which
Abstracts out irrelevant detail
Presents the software in problem-domain terms

case mainState of
initial: send(“I am here”);

end
Off: case event of

on: send(oa,5);
next(On);
end

off: next(Off);
end

end
On: case event of

off: next(Off);
end

done: terminate;
end

end
end

OffOffOff

OnOnOn

on/send(oa,5);on/send(oa,5);off/off/

off/off/

done/done/

77

Evolving ModelsEvolving Models
We can add more detail to make an abstract model more
concrete:
We can add more detail to make an abstract model more
concrete:

S1S1S1

S2S2S2

e1/send(oa,5);e1/send(oa,5);

S1S1S1

S2S2S2

e1[q=5]/
{d = msg->data();
send(oa,5, d);}

e1[q=5]/
{d = msg->data();
send(oa,5, d);}

e2/
{printf(q);}

e2/
{printf(q);}

end/
{printf(“bye”);}

end/
{printf(“bye”);}

S21

S21
e32/

88

The Remarkable Thing About SoftwareThe Remarkable Thing About Software

Software has the rare property that allows
us to directly evolve models into full-fledged
implementations without changing the
engineering medium, tools, or methods!

Software has the rare property that allows
us to directly evolve models into full-fledged
implementations without changing the
engineering medium, tools, or methods!

99

The OMG’s Model Driven ArchitectureThe OMG’s Model Driven Architecture
The OMG has formulated an initiative called “Model-
Driven Architecture” (MDA)

A framework for a set of standards in support of a
model-centered style of development
Inspired by the widespread public acceptance of UML

Key characteristic of MDA:
The focus and principal products of software development
are models (instead of programs)
Models all the way – the design is the implementation

Rational is a pioneer of model-driven development and
is one of the principal drivers of MDA

The OMG has formulated an initiative called “Model-
Driven Architecture” (MDA)

A framework for a set of standards in support of a
model-centered style of development
Inspired by the widespread public acceptance of UML

Key characteristic of MDA:
The focus and principal products of software development
are models (instead of programs)
Models all the way – the design is the implementation

Rational is a pioneer of model-driven development and
is one of the principal drivers of MDA

1010

MDA ImplicationsMDA Implications
Ultimately, it should be possible to:

Execute UML models
Translate them automatically into implementations
…possibly for different implementation platforms
Platform independent models (PIMs)

Modeling language requirements
The semantic underpinnings of modeling languages must be
precise and unambiguous
It should be possible to easily specialize a modeling
language for a particular domain
It should be possible to easily define new specialized
languages

Ultimately, it should be possible to:
Execute UML models
Translate them automatically into implementations
…possibly for different implementation platforms
Platform independent models (PIMs)

Modeling language requirements
The semantic underpinnings of modeling languages must be
precise and unambiguous
It should be possible to easily specialize a modeling
language for a particular domain
It should be possible to easily define new specialized
languages

1111

The Meta-Object Facility (MOF)The Meta-Object Facility (MOF)
A small subset of UML is used to define UML itself

Basic concepts: Class, Association, Generalization,
Package…

This subset is also useful for defining other more
specialized modeling languages

A small subset of UML is used to define UML itself
Basic concepts: Class, Association, Generalization,
Package…

This subset is also useful for defining other more
specialized modeling languages

nstanceOf�玦

etamodel�玬
MOF

M3

M2
etamodel�玬
CWM

Also, the basis for
model interchange

(XMI)

Also, the basis for Also, the basis for
model interchange model interchange

(XMI)(XMI)

1212

The 4-Layer Modeling Language ArchitectureThe 4-Layer Modeling Language Architecture
Class

Attribute Class

Video
+title: String

nstanceOf�玦nstanceOf�玦

: Video

title = "2001: A Space Odyssey"

nstanceOf�玦nstanceOf�玦

M3 (MOF)

M2 (UML)

M1 (User model)

Instance

nstanceOf�玦

nstanceOf�玦

classifier

nstanceOf�玦

M0 (Run-time instances) aVideo

nstanceOf�玦

napshot�玸

The UML Metamodel:
defines semantics and
syntax

The UML Metamodel:The UML Metamodel:
defines semantics and defines semantics and
syntaxsyntax

1313

Specializing UML: The Family of LanguagesSpecializing UML: The Family of Languages
Multiple languages with a common semantic base

By narrowing or removing semantic variation points
Multiple languages with a common semantic base

By narrowing or removing semantic variation points

“Standard” UML“Standard” UML“Standard” UML By using UML’s extensibility
mechanisms:
profiles, stereotypes

By using UML’s extensibility
mechanisms:
profiles, stereotypes

Real-Time UML
Profile

RealReal--Time UMLTime UML
ProfileProfile

Enterprise Computing
Profile

Enterprise ComputingEnterprise Computing
ProfileProfile CORBA ProfileCORBA ProfileCORBA Profile

Testing ProfileTesting ProfileTesting Profile Enterprise Application
Integration Profile

Enterprise ApplicationEnterprise Application
Integration ProfileIntegration Profile

1414

Specializing UML: StereotypesSpecializing UML: Stereotypes
We can add semantics to any standard UML concept

Must not violate standard UML semantics
We can add semantics to any standard UML concept

Must not violate standard UML semantics

An example of the UML
Class concept

IntegerIntegerInteger

MyClockClassMyClockClassMyClockClass

SetTime()SetTimeSetTime()()

«clock»

{resolution = 500 ns}

«clock» Stereotype of Class
with additional semantics:

an active counter whose
value changes
synchronously with the
progress of physical time

«clock» Stereotype of Class
with additional semantics:

an active counter whose
value changes
synchronously with the

An example of the UML
Class concept

progress of physical time

Tagged value associated
with the «clock» stereotype
Tagged value associated
with the «clock» stereotype

1515

Background

Requirements for UML 2

UML 2 Infrastructure Features

UML 2 Superstructure Features

Summary

Background

Requirements for UML 2

UML 2 Infrastructure Features

UML 2 Superstructure Features

Summary

1616

Sources of RequirementsSources of Requirements
MDA

Semantic precision
Consolidation of concepts
Full MOF-UML alignment

Practitioners
Conceptual clarification
New features, new features, new features…

Language theoreticians
My new features, my new features, my new features…
Why not replace it with my modeling language instead?

Dilemma: how to avoid the insidious “language bloat” syndrome

MDA
Semantic precision
Consolidation of concepts
Full MOF-UML alignment

Practitioners
Conceptual clarification
New features, new features, new features…

Language theoreticians
My new features, my new features, my new features…
Why not replace it with my modeling language instead?

Dilemma: how to avoid the insidious “language bloat” syndrome

1717

Approach: Slow but SteadyApproach: Slow but Steady
Evolution rather than revolution

Little or no impact on current user base
Consolidation, improved precision, and a small number
of carefully chosen new features
Feature selection criteria

Required for supporting large industrial-scale applications
Non-intrusive on UML 1.x users (and tool builders)

Evolution rather than revolution
Little or no impact on current user base

Consolidation, improved precision, and a small number
of carefully chosen new features
Feature selection criteria

Required for supporting large industrial-scale applications
Non-intrusive on UML 1.x users (and tool builders)

1818

Formal RFP RequirementsFormal RFP Requirements
Four separate but related sets of requirements

1) Infrastructure – UML internals
Make the conceptual foundations of UML more precise for
better MDA support

2) Superstructure – User-level features
New features
Consolidation of existing features

3) OCL – Constraint language
4) Diagram interchange standard

Four separate but related sets of requirements

1) Infrastructure – UML internals
Make the conceptual foundations of UML more precise for
better MDA support

2) Superstructure – User-level features
New features
Consolidation of existing features

3) OCL – Constraint language
4) Diagram interchange standard

1919

Infrastructure RequirementsInfrastructure Requirements
Precise MOF alignment

Fully shared “common core” metamodel
Refine the semantic foundations of UML (the UML
metamodel)

Improve precision
Harmonize conceptual foundations and eliminate semantic
overlaps
Provide clearer and more complete definition of instance
semantics (static and dynamic)

Improve extension mechanisms
Profiles, stereotypes
Support “family of languages” concept

Precise MOF alignment
Fully shared “common core” metamodel

Refine the semantic foundations of UML (the UML
metamodel)

Improve precision
Harmonize conceptual foundations and eliminate semantic
overlaps
Provide clearer and more complete definition of instance
semantics (static and dynamic)

Improve extension mechanisms
Profiles, stereotypes
Support “family of languages” concept

2020

OCL RequirementsOCL Requirements

Define an OCL metamodel and align it (formally) with
the UML metamodel

Add new modeling features available to general UML
users

E.g., ability to express business rules using OCL

Define an OCL metamodel and align it (formally) with
the UML metamodel

Add new modeling features available to general UML
users

E.g., ability to express business rules using OCL

2121

Diagram Interchange Requirements Diagram Interchange Requirements
Ability to exchange graphical information between tools

Currently only non-graphical information is preserved during
model interchange
Diagrams and contents (size, position, etc.)

Ability to exchange graphical information between tools
Currently only non-graphical information is preserved during
model interchange
Diagrams and contents (size, position, etc.)

2222

Superstructure Requirements (1 of 2)Superstructure Requirements (1 of 2)
More direct support for architectural modeling

Based on existing architectural description languages
(UML-RT, ACME, etc.)
Reusable interaction specifications (UML-RT protocols)

Behavior harmonization
Generalized notion of behavior and causality
Support choice of formalisms for specifying behavior

Hierarchical interactions modeling
Better support for component-based development
More sophisticated activity graph modeling

To better support business process modeling

More direct support for architectural modeling
Based on existing architectural description languages
(UML-RT, ACME, etc.)
Reusable interaction specifications (UML-RT protocols)

Behavior harmonization
Generalized notion of behavior and causality
Support choice of formalisms for specifying behavior

Hierarchical interactions modeling
Better support for component-based development
More sophisticated activity graph modeling

To better support business process modeling

2323

Superstructure Requirements (2 of 2)Superstructure Requirements (2 of 2)
New statechart capabilities

Modular states
Clarification of semantics for key relationship types

generalization, refinement, realization, deployment
Remove unused and ill-defined modeling concepts
Precise mapping of notation to metamodel
Backward compatibility

Support 1.x style of usage
New features only if required

New statechart capabilities
Modular states

Clarification of semantics for key relationship types
generalization, refinement, realization, deployment

Remove unused and ill-defined modeling concepts
Precise mapping of notation to metamodel
Backward compatibility

Support 1.x style of usage
New features only if required

2424

Background

Requirements for UML 2

UML 2 Infrastructure Features

UML 2 Superstructure Features

Summary

Background

Requirements for UML 2

UML 2 Infrastructure Features

UML 2 Superstructure Features

Summary

2525

UML-MOF AlignmentUML-MOF Alignment

UMLUMLUML

UML InfrastructureUML InfrastructureUML Infrastructure

UML FoundationUML FoundationUML Foundation

MOF SuperstructureMOF SuperstructureMOF Superstructure

«import»

UML SuperstructureUML SuperstructureUML Superstructure

«import»

MOFMOFMOF

Shared conceptual base
MOF: language for defining modeling languages
UML: general purpose modeling language

Shared conceptual base
MOF: language for defining modeling languages
UML: general purpose modeling language

2626

Infrastructure: Consolidation of ConceptsInfrastructure: Consolidation of Concepts
Breakdown into fundamental conceptual primitivesBreakdown into fundamental conceptual primitives

NamespaceNamespaceNamespace PackagableElementPackagableElementPackagableElement RedefinableElementRedefinableElementRedefinableElement

ClassifierClassifierClassifier FeatureFeatureFeature

Eliminates semantic overlap
Better foundation for a precise definition of concepts
and semantics

Eliminates semantic overlap
Better foundation for a precise definition of concepts
and semantics

2727

Infrastructure: Behavior HarmonizationInfrastructure: Behavior Harmonization
Consolidation of different behavioral formalismsConsolidation of different behavioral formalisms

[ownedMember]

[ownedBehavior]

Classifier
(from Kernel)

Namespace
(from Kernel)

Classifier
Behavior

0..1 *

+context

0..1

+ownedBehavior

*

0..10..1

+classifierBehavior

0..1

BehavioralFeature

*0..1

+method

*

+specification

0..1

Activity ActionSequenceInteraction StateMachineProcedure UseCase

2828

Background

Requirements for UML 2

UML 2 Infrastructure Features

UML 2 Superstructure Features

Summary

Background

Requirements for UML 2

UML 2 Infrastructure Features

UML 2 Superstructure Features

Summary

2929

Components of UML 2.0Components of UML 2.0
A core language + a set of optional specialized “sub-
languages”
A core language + a set of optional specialized “sub-
languages”

UML FoundationUML Foundation

OCLOCL

ActionAction
SemanticsSemantics StatechartsStatecharts ActivitiesActivities InteractionsInteractions ImplemenImplemen--

tationtation

“Core” UML“Core” UML
(Class modeling, Use case modeling, Collaborations…)(Class modeling, Use case modeling, Collaborations…)MOFMOF

ProfilesProfiles

3030

Important New FeaturesImportant New Features
Interactions

Overlays on collaboration structures
Need to support complex interactions (conditional
sequences, loops, etc.)
Hierarchical composition

Activities
New conceptual foundation for greater flexibility
Improved support for business process modeling

Instance-oriented structure modeling
Structures of collaborating parts (roles)
Classes with internal structure

Interactions
Overlays on collaboration structures
Need to support complex interactions (conditional
sequences, loops, etc.)
Hierarchical composition

Activities
New conceptual foundation for greater flexibility
Improved support for business process modeling

Instance-oriented structure modeling
Structures of collaborating parts (roles)
Classes with internal structure

3131

Interactions: FramesInteractions: Frames
Reusable interaction diagram fragments

Based on proven ITU-T standard Z.120
Reusable interaction diagram fragments

Based on proven ITU-T standard Z.120

sequence
diagram frame

sequence sequence
diagram framediagram frame part

sd User_accepted

User AC System

Code

OK

Card out Unlock

partpart
Event occurrence

gategategate

Event occurrenceEvent occurrence

3232

Interactions: Frame CompositionInteractions: Frame Composition

Interaction
Reference

sd UserAccess

part AC System

EstablishAccess("IllegalPIN")
ref

CardOut

opt
Mesg("Please Enter")

OpenDoorref

InteractionInteraction
ReferenceReference

Interaction
Expression
InteractionInteraction
ExpressionExpression

3333

Interactions: Complex ExpressionsInteractions: Complex Expressions

create

sd example

ob3:C3 ob2:C2 ob4:C4
create

alt [x>0]

alt [x<=0]

call foo(x)

doit(z)
foo(x)

call bar(x)

doit(w)
bar(x)

call opti

opti

ob1:C1

call doit(z)

call doit(w)

call more

more

Expression FrameExpression FrameExpression Frame

Operand separatorOperand separatorOperand separator

GuardGuardGuard

OperatorOperatorOperatorOperatorOperatorOperator

3434

Interaction Overview DiagramInteraction Overview Diagram
sd OverviewDiagram lifelines User, ACSystem

EstablishAccess("IllegalPIN")ref

sd
User AC System

CardOut

OpenDoorref

sd

[PINok]

User AC System
Mesg("Please

Enter)"

3535

Activities: New Semantic FoundationActivities: New Semantic Foundation
Petri Net foundation (vs. statecharts) enables

Un-structured graphs (graphs with “go-to’s”)
True concurrency

Petri Net foundation (vs. statecharts) enables
Un-structured graphs (graphs with “go-to’s”)
True concurrency

Receive
Order [order

rejected]

[order
accepted]

Accept
Payment

Make
Payment

Send
Invoice

Close
Order

Skip
Order

Bill
Order

Requested
Order

Invoice

ProcessOrder
RequestedOrder:Order

<<precondition>> Order complete
<<postcondition>> Order entered

3636

Activities: Queuing CapabilitiesActivities: Queuing Capabilities

Tokens can
stack up in “in/out” boxes.
backup in network.
prevent upstream behaviors from taking new inputs.

For modeling systems with significant resource
constraints, such as physical systems.

Tokens can
stack up in “in/out” boxes.
backup in network.
prevent upstream behaviors from taking new inputs.

For modeling systems with significant resource
constraints, such as physical systems.

Activity 1 Activity 2 Activity 3

3737

Streaming ParametersStreaming Parameters

Tokens can be
taken as input while behavior is executing.
given as output while behavior is executing.

For systems of independent, interacting agents.

Tokens can be
taken as input while behavior is executing.
given as output while behavior is executing.

For systems of independent, interacting agents.

Machine 1 Machine 2 Machine 3

3838

Structured Classes in UML 2.0Structured Classes in UML 2.0

Structure:
a specification of a set of parts and the communication,
composition, and layering relationships between them
Structured classes:

Classes that contain a collaboration structure of
interconnected parts and ports (specialized “interface” parts)
Parts can be instances of structured or unstructured classes
Based on modeling concepts found in popular architectural
description languages (UML-RT, Acme…)

Structure:
a specification of a set of parts and the communication,
composition, and layering relationships between them
Structured classes:

Classes that contain a collaboration structure of
interconnected parts and ports (specialized “interface” parts)
Parts can be instances of structured or unstructured classes
Based on modeling concepts found in popular architectural
description languages (UML-RT, Acme…)

3939

Modeling Collaboration StructuresModeling Collaboration Structures
Based on the Collaboration concept

A structure of interconnected parts playing specialized roles
Based on the Collaboration concept

A structure of interconnected parts playing specialized roles

operator:
Operator
operator:operator:
OperatorOperator

caller:Subscribercaller:Subscribercaller:Subscriber callee:Subscribercalleecallee:Subscriber:Subscriber

Part (role)Part (role)Part (role)Connector Connector Connector

Corresponding class diagramCorresponding class diagram

1..*1..*
1..*1..*

1..*1..*

SubscriberSubscriberSubscriber OperatorOperatorOperator0..10..1

4040

Structured Classes: External StructureStructured Classes: External Structure
Objects that may have multiple interaction points: ports

For accessing the functional capabilities of the object
Different ports may offer different capabilities

Objects that may have multiple interaction points: ports
For accessing the functional capabilities of the object
Different ports may offer different capabilities

PortsPortsPorts

4141

Structured Classes: Internal BehaviorStructured Classes: Internal Behavior
Events may occur on any one of the ports

Events are handled by the implementation (e.g., state
machine)

Events may occur on any one of the ports
Events are handled by the implementation (e.g., state
machine)

S1

S2 S3

S1

transitionS1toS2:
{int x;
x = 0;
p2.send(s1);
p3.send(s2);
…
};

transitionS1toS2:
{int x;
x = 0;
p2.send(s1);
p3.send(s2);
…
};

4242

PortsPorts
Serve to fully isolate a structured object’s
implementation from its environment (in both directions!)
Serve to fully isolate a structured object’s
implementation from its environment (in both directions!)

EnvironmentEnvironment

c : c : ClsXClsX

S1S1

S2S2

“There are very few problems in computer science that
cannot be solved by adding an extra level of indirection”
“There are very few problems in computer science that
cannot be solved by adding an extra level of indirection”

4343

Port SemanticsPort Semantics
A port can support multiple interface specifications

Provided interfaces (what the object can do)
Required interfaces (what the object needs to do its job)

A port can support multiple interface specifications
Provided interfaces (what the object can do)
Required interfaces (what the object needs to do its job)

«interface»
ControllerIF
«interface»«interface»
ControllerIFControllerIF

stateChange (s : state) : void
…
stateChangestateChange (s : state) : void(s : state) : void
… …

«provides»«provides»

«interface»
ControlleeIF
«interface»«interface»
ControlleeIFControlleeIF

start () : void
stop () : void
queryState () : state
…

start () : voidstart () : void
stop () : voidstop () : void
queryState queryState () : state() : state
… …

«uses»«uses» p1p1

c:ClassXc:c:ClassXClassX

Outgoing signals/calls Outgoing signals/calls Outgoing signals/calls

Incoming signals/calls Incoming signals/calls Incoming signals/calls

4444

Dynamics of Interface Usage (Protocols)Dynamics of Interface Usage (Protocols)
Interface specifications define what objects can do

For greater architectural control, it is also necessary to define
(constrain) the order in which things are done
e.g., operator-assisted call

Interface specifications define what objects can do
For greater architectural control, it is also necessary to define
(constrain) the order in which things are done
e.g., operator-assisted call

callcallcall

ackackack

timetimetime

numbernumbernumber

callcallcall

ackackack

talktalktalk
transfertransfertransfer

CallerCallerCaller OperatorOperatorOperator CalleeCalleeCallee

4545

Specifying Protocols with UML 2.0Specifying Protocols with UML 2.0
A collaboration involving a set of interfaces and set of
related behavior specifications (e.g., interactions)
A collaboration involving a set of interfaces and set of
related behavior specifications (e.g., interactions)

Operator Assisted CallOperator Assisted CallOperator Assisted Call

«interface»
Caller

««interfaceinterface»»
CallerCaller

«interface»
Operator

««interfaceinterface»»
OperatorOperator

«interface»
Callee

««interfaceinterface»»
CalleeCallee

initialinitialinitial

connectedconnectedconnected

connectingconnectingconnecting

state machine specstate machine spec

callercallercaller operatoroperatoroperator calleecalleecallee

Interaction specsInteraction specs

4646

Ports and ProtocolsPorts and Protocols
Ports can be assigned specific roles in protocols

By supporting interfaces involved in protocol specifications
The type of a port is determined by the corresponding
protocol collaboration

Ports can be assigned specific roles in protocols
By supporting interfaces involved in protocol specifications
The type of a port is determined by the corresponding
protocol collaboration

«provides»«provides»
«uses»«uses»

«uses»«uses»

«interface»
Callee

««interfaceinterface»»
CalleeCallee

Operator Assisted CallOperator Assisted CallOperator Assisted Call

«interface»
Caller

««interfaceinterface»»
CallerCaller

«interface»
Operator

««interfaceinterface»»
OperatorOperator

callercallercaller operatoroperatoroperator calleecalleecallee

ClassXClassX

4747

Connecting PortsConnecting Ports
Ports can be joined by connectors to create peer
collaborations composed of structured classes
Ports can be joined by connectors to create peer
collaborations composed of structured classes

sender : Faxsender : Faxsender : Fax
remoteremoteremote

receiver : Faxreceiver : Faxreceiver : Fax
remoteremoteremote

Connectors model communication channels
A connector is constrained by a protocol
Static typing rules apply (compatible protocols)

Connectors model communication channelsConnectors model communication channels
A connector is constrained by a protocolA connector is constrained by a protocol
Static typing rules apply (compatible protocols)Static typing rules apply (compatible protocols)

4848

Structured Classes: Internal StructureStructured Classes: Internal Structure
Structured classes may have an internal structure of
(structured class) parts and connectors
Structured classes may have an internal structure of
(structured class) parts and connectors

FaxCallFaxCall

receiveCtrlreceiveCtrlsendCtrlsendCtrl

sender:Faxsender:Fax
remoteremote

receiver:Faxreceiver:Fax
remoteremote

cc cc

Delegation connectorDelegation connectorDelegation connector

4949

Behavior PortsBehavior Ports
Ports that are connected directly to a behavior

Require a special notation
Ports that are connected directly to a behavior

Require a special notation

FaxCallFaxCall

sender:Faxsender:Fax
remoteremote

receiver:Faxreceiver:Fax
remoteremote

cc cc

controlPortcontrolPort

S1S1

S2S2

Internal behavior ports can be used to model layeringInternal behavior ports can be used to model layering

5050

Inheritance of StructureInheritance of Structure

T2FaxCallT2FaxCall

/sender:Fax/sender:Fax/sender:Fax /receiver:Fax/receiver:Fax/receiver:Fax

T1FaxCallT1FaxCall

/sender:Fax/sender:Fax/sender:Fax /receiver:Fax/receiver:Fax/receiver:Fax

AbsFaxCallAbsFaxCall

/sender:Fax/sender:Fax/sender:Fax /receiver:Fax/receiver:Fax/receiver:Fax

Structured classes allow the inheritance of complex
structures
Structured classes allow the inheritance of complex
structures

5151

SummarySummary
The “next generation” UML represents a significant evolutionary
step:

Balance of consolidation and feature extensions
Modularized (core + optional specialized sub-languages)
Increased semantic precision and conceptual clarity
Supports full diagram interchange
Full alignment with MOF
Suitable MDA foundation (executable models, full code generation)

New modeling features:
Large-scale system support (architecture-level structure, complex
behavior and interaction modeling)
Extended business process modeling

Expected availability: 2003

The “next generation” UML represents a significant evolutionary
step:

Balance of consolidation and feature extensions
Modularized (core + optional specialized sub-languages)
Increased semantic precision and conceptual clarity
Supports full diagram interchange
Full alignment with MOF
Suitable MDA foundation (executable models, full code generation)

New modeling features:
Large-scale system support (architecture-level structure, complex
behavior and interaction modeling)
Extended business process modeling

Expected availability: 2003

	A Preview of UML 2.0
	IMPORTANT DISCLAIMER!
	Overview
	The Evolution of UML
	What is UML?
	Models of Software
	Evolving Models
	The Remarkable Thing About Software
	The OMG¡¯s Model Driven Architecture
	MDA Implications
	The Meta-Object Facility (MOF)
	The 4-Layer Modeling Language Architecture
	Specializing UML: The Family of Languages
	Specializing UML: Stereotypes
	Sources of Requirements
	Approach: Slow but Steady
	Formal RFP Requirements
	Infrastructure Requirements
	OCL Requirements
	Diagram Interchange Requirements
	Superstructure Requirements (1 of 2)
	Superstructure Requirements (2 of 2)
	UML-MOF Alignment
	Infrastructure: Consolidation of Concepts
	Infrastructure: Behavior Harmonization
	Components of UML 2.0
	Important New Features
	Interactions: Frames
	Interactions: Frame Composition
	Interactions: Complex Expressions
	Interaction Overview Diagram
	Activities: New Semantic Foundation
	Activities: Queuing Capabilities
	Streaming Parameters
	Structured Classes in UML 2.0
	Modeling Collaboration Structures
	Structured Classes: External Structure
	Structured Classes: Internal Behavior
	Ports
	Port Semantics
	Dynamics of Interface Usage (Protocols)
	Specifying Protocols with UML 2.0
	Ports and Protocols
	Connecting Ports
	Structured Classes: Internal Structure
	Behavior Ports
	Inheritance of Structure
	Summary

