r

fre e do m T0 € R E A T E
J

A Preview of UML 2.0

Rational

the software development company

IVIEORIANIFDISCIEATIVIER!

The technical material described here is still
under development and is subject to
modification prior to adoption by the OMG

-
) B ¢+ ¢ceedom T™G CREA ATE
|

OVEIVIew:

[- Background]

= Requirements for UML 2
= UML 2 Infrastructure Features
= UML 2 Superstructure Features

= Summary

. I
3 B ¢+ ¢ceedom T™G CREA ATE
|

IneEvojutoniorun L

i

UML 1.4.1

UMM @ction SEmantics)

UML 1.3 (extensibility)

UML 1.1 (OMG Standard)

Rumbaugh I Jacobson

EoUndationsioROONNYgaard GoldbergRvieyers
Stroustrupyhiarel WirfS=BrockssReenskaugs.::)

EEEEE

WITALISTUIVILEY:

A language for modeling object-oriented software

applications

Why bother?

= To understand and predict the key characteristics of our
design before we go through the expense and effort of
building it
= ...and then finding out that it does not work
= Modeling is a key risk mitigation technique shared by all
forms of engineering

-
) .freedomTﬂGHEATE
o

VoG EISTorSoiware

A description of the software which
= Abstracts out irrelevant detail

= Presents the software in problem-domain terms

case nmi nState of
initial: send(“l am here”);

end
Of: case event of
on: send(oa, 5);
next (On);
end
of f: next(Of);
end
end
On: case event of
off: next(Of);
end
done: term nate;
end
end

end

of f/

on/ send(oa, 5);

-

fre e d o m T0O C R E AT E
o

EVOIVIRGNVIOUEIS
We can add more detail to make an abstract model more

concrete:

e

/e h

~

el[g=5]/
{d = nsg->data();
send(oa, 5, d);}

e2/
{printf(q);}

el/ send(oa, 5);

end/

4‘//) \\\\; {printf(“bij::)}

B
7 B s c e dom T™0GCREA ATE
|

Software has the rare property that allows
us to directly evolve models into full-fledged
Implementations without changing the
engineering medium, tools, or methods!

u g
fre e d o m T0O C R E AT E
o

= The OMG has formulated an initiative called “Model-
Driven Architecture” (MDA)

= A framework for a set of standards in support of a
model-centered style of development

= Inspired by the widespread public acceptance of UML

= Key characteristic of MDA:

= The focus and principal products of software development
are models (instead of programs)

= Models all the way — the design is the implementation

= Rational is a pioneer of model-driven development and
s one of the principal drivers of MDA

. I
9 .freedcmTDCHEATE
o

VIDASMPICAUONS

= Ultimately, it should be possible to:

= Execute UML models
= Translate them automatically into implementations

...possibly for different implementation platforms

= Platform independent models (PIMs)

= Modeling language requirements
= The semantic underpinnings of modeling languages must be

10

precise and unambiguous

t should be possible to easily specialize a modeling
anguage for a particular domain

t should be possible to easily define new specialized
anguages

u g
[|
fre e d o m T0O C R E AT E
o

Inesvieta=Op|ecHEacilityAIViOR)

= A small subset of UML is used to define UML itself

= Basic concepts: Class, Association, Generalization,
Package...

= This subset is also useful for defining other more
specialized modeling languages

AlS Oy thedasisiorn
ModeINnterchange

L)
I} etamodel!]
MOF

. PhnstanceOf

N
\
\
N\
I

7} etamodell’
CWM

11 .freedGmTDCHEATE
|

Ihed=ayerviodeling tanguagerArChitecture

Class

AN X
/
/ \\
/
\
/
\
/
/

FinstanceOf(PinstanceOfr| . HinstanceOfL

Instance

Attribute classifier
A 7

M2 (UML)
FinstanceOf

Em:f,té/nceOf] HnstangeOf]

T
1
!

HnstanceOf

1
!
1
I

I
I
I
!

Video
Hlnapshot!/ : Video

M1 (User mOdel) //-|/.t|t|e Strlng < ,,,,,,,,,,,,,,,,,,,,,,,,,
title = "2001: A Space Odyssey"

\\ FinstanceOf(!

aVideo

MO (Run-time instances)

The UML Metamodel:
defines semantics and

syntax

SPECIANZNGIUN LESIENEamyeiEangUages:

= Multiple languages with a common semantic base
= By narrowing or removing semantic variation points

“Standard” UML By using UML’s extensibility
mechanisms:

+ profiles, stereotypes

Real-Time UML Enterprise Computing CORBA Profile
Profile Profile
Testing Profile Enterprlsg Appllcgtlon
Integration Profile

. I
13 .freedcmTDGHEATE
o

.\

SPECIANIZINGFUIVILES

SLETEOLYPES

= We can add semantics to any standard UML concept
= Must not violate standard UML semantics

An example of the UML
Class concept

Integer «clock» Stereotype of Class
AN with additional semantics:
an active counter whose
value changes
synchronously with the
progress of physical time

«clock» ‘ Tagged value associated
{xgoﬁult%ﬁtgz)zii} with the «clock» stereotype
N

SetTime()

14 .freedcm.TDCHEATE

|

= Background

[- Requirements for UML 2]

= UML 2 Infrastructure Features
= UML 2 Superstructure Features

= Summary

[|
-
15 B ¢+ ¢ceedom T™G CREA ATE
|

eS0T REqUIrements

= MDA

= Semantic precision
= Consolidation of concepts
= Full MOF-UML alignment
= Practitioners
= Conceptual clarification
= New features, new features, new features...
= Language theoreticians
= My new features, my new features, my new features...
= Why not replace it with my modeling language instead?

= Dilemma: how to avoid the insidious “language bloat” syndrome

u g
16 .freedomTﬂGHEATE
o

APProachESIoWULSIEAUY,

= Evolution rather than revolution
= Little or no impact on current user base

= Consolidation, improved precision, and a small number
of carefully chosen new features

= Feature selection criteria
= Required for supporting large industrial-scale applications
= Non-intrusive on UML 1.x users (and tool builders)

u r
17 B s c e dom T™0GCREA ATE
|

FONmalsEEIReqUIrements

Four separate but related sets of requirements

1) Infrastructure — UML internals

= Make the conceptual foundations of UML more precise for

better MDA support

2) Superstructure — User-level features

= New features
= Consolidation of existing features

3) OCL - Constraint language
4) Diagram interchange standard

18 " o,

-
e e d om T0O C R E A T E
o

NTASHC Equirements

= Precise MOF alignment
= Fully shared “common core” metamodel
= Refine the semantic foundations of UML (the UML
metamodel)
= |mprove precision

= Harmonize conceptual foundations and eliminate semantic
overlaps

= Provide clearer and more complete definition of instance
semantics (static and dynamic)

= |Improve extension mechanisms
= Profiles, stereotypes
= Support “family of languages” concept

u g
19 .freedomTDGHEATE
o

OIS REGUINEMENLS

= Define an OCL metamodel and align it (formally) with
the UML metamodel

= Add new modeling features available to general UML
users

= E.g., ability to express business rules using OCL

u r
20 B s c e dom T™0GCREA ATE
|

DIagraminterc Equirements

= Ability to exchange graphical information between tools

= Currently only non-graphical information is preserved during
model interchange

= Diagrams and contents (size, position, etc.)

[|
:
21 B s c e dom T™0GCREA ATE
|

SrSIUGCIUTENRequIrementsyd o)

= More direct support for architectural modeling

= Based on existing architectural description languages
(UML-RT, ACME, etc.)

= Reusable interaction specifications (UML-RT protocols)

= Behavior harmonization
= (Generalized notion of behavior and causality
= Support choice of formalisms for specifying behavior

= Hierarchical interactions modeling
= Better support for component-based development

= More sophisticated activity graph modeling
= To better support business process modeling

. I
22 .freedcmTDGHEATE
o

SISIUGCTUTENREeqUIrEmentsyZio1iz)

= New statechart capabilities
= Modular states

= Clarification of semantics for key relationship types
= generalization, refinement, realization, deployment

= Remove unused and ill-defined modeling concepts
= Precise mapping of notation to metamodel

= Backward compatibility
= Support 1.x style of usage
= New features only if required

u g
23 .freedomTDGHEATE
o

= Background

= Requirements for UML 2

[- UML 2 Infrastructure Features]

= UML 2 Superstructure Features

= Summary

[|
-
24 B ¢+ ¢ceedom T™G CREA ATE
|

UIVIE=V O ESANIgRment

= Shared conceptual base
= MOF: language for defining modeling languages
= UML.: general purpose modeling language

/
UML Superstructure \

\ «import» \
y7

: MOF Superstructure
7’
7’
7’

«import» MOE

25 B s c e dom T™0GCREA ATE
|

Nirastuctures Consolication onRrEConcepts

= Breakdown into fundamental conceptual primitives

Namespace PackagableElement RedefinableElement

= Eliminates semantic overlap

= Better foundation for a precise definition of concepts
and semantics

[|
26 .freedGmTDCHEATE
o

InfrastricturesBenaviorHarmonization
= Consolidation of different behavioral formalisms

Classifier Namespace
(from Kernel) (from Kernel)

Zf Behavior

o +ownedBehavior
Classifier
+context [ownedMembet]

>

0.1

+classifierBehavior
[ownedBehavior]

0..1

BehavioralFeature +specification +method

0..1

Procedure Interaction UseCase Activity ActionSequence StateMachine

fr e e d o m

= Background

= Requirements for UML 2

= UML 2 Infrastructure Features

[- UML 2 Superstructure Features]

= Summary

[|
-
28 B ¢+ ¢ceedom T™G CREA ATE
|

SOMPORENLSIORUIVIENZE0

= A core language + a set of optional specialized “sub-
languages’

Action
Semantics

(Classimodeling; useicasenmodeling; Gollaborations

UML Foundation

[|
-
29 B ¢+ ¢ceedom T™G CREA ATE

-

MPOLLANINEWAE

= |nteractions
= Qverlays on collaboration structures

= Need to support complex interactions (conditional
sequences, loops, etc.)

= Hierarchical composition

= Activities
= New conceptual foundation for greater flexibility
= Improved support for business process modeling

= |nstance-oriented structure modeling
= Structures of collaborating parts (roles)
= Classes with internal structure

u g
30 .freedomTﬂGHEATE
o

Nieraclionss Erdmes

= Reusable interaction diagram fragments
= Based on proven ITU-T standard Z.120

SEQUERCE

diagiamiaime

Dy

-
31 .freedcmTDCHEATE
o

NLEraCLoNSHEAMENCOMPOSILIoN

neracuen

)~ -r'r &Y i~
Rejenence

sd UserAccess

AC System

[|
32 .freedGmTDCHEATE

|

NLETACHIONSHGOMPIEXSEXPIESSIONS

Cill=zl v
Suard Xpression Erame

sd example

call opti

alt [x>0]

OPENELo)
\

alt [x<=0]

call more

1_4___] more] \

OpPENanErSEpalatol

fre e do m T C R E AT E
|

InteractionfOVeviewbiagram

sd OverviewDiagram lifelines User, ACSystem

m EstablishAccess("lllegalPIN")

AC System

CardOut

[PINok]

AC System

Mesg("Please
Enter)"

B OpenDoor

34

fre e dom

' C R E A T E

ActivitiessNewrsemanticiEounadation

= Petri Net foundation (vs. statecharts) enables
Un-structured graphs (graphs with “go-to’s”)
True concurrency

<<precondition>> Order complete
<<postcondition>> Order entered

ProcessOrder
RequestedOrder:Order

35 .freedcm

' C R E A T E

GdPaARIIIIES

®
[Activity 1) i Activity 2 } >(Activity 3]

= Tokens can
= stack up in “in/out” boxes.
= backup in network.
= prevent upstream behaviors from taking new inputs.

= For modeling systems with significant resource
constraints, such as physical systems.

u g
36 .freedomTﬂGHEATE
o

Streaminy=ardmeters

.- ' 2

o
> @ PN
[Machine 1) >(Machine 2 } >(Machine 3]

= Tokens can be
= taken as input while behavior is executing.
= given as output while behavior is executing.

= For systems of independent, interacting agents.

. I
37 B s c e dom T™0GCREA ATE
|

otructured Classes in UNL 2.0

= Structure:
a specification of a set of parts and the communication,
composition, and layering relationships between them

= Structured classes:

= Classes that contain a collaboration structure of
interconnected parts and ports (specialized “interface” parts)

= Parts can be instances of structured or unstructured classes

= Based on modeling concepts found in popular architectural
description languages (UML-RT, Acme...)

u g
38 .freedomTDGHEATE
o

VIO ENNYNCOIaheNatiONISIUGIUNES

= Based on the Collaboration concept
= A structure of interconnected parts playing specialized roles

operator:
| Operator \
caller:Subscriber callee:Subscriber

+ Corresponding class diagram

‘ 1.7

[|
-
39 B ¢+ ¢ceedom T™G CREA ATE
|

= Objects that may have multiple interaction points: ports
= For accessing the functional capabilities of the object
= Different ports may offer different capabilities

-
40 B ¢+ ¢ceedom T™G CREA ATE
|

Ainternalisenavior;

= Events may occur on any one of the ports

= Events are handled by the implementation (e.g., state
machine)

transitionS1toS2:
{int x;
x = 0;
p2.send(s1);
p3.send(s2);

.};

-
41 .freedcmTDCHEATE
|

= Serve to fully isolate a structured object’s
implementation from its environment (in both directions!)

= Rt
Environment / - ; \

“There are very few problems in computer science that
cannot be solved by adding an extra level of indirection”

n
-
42 B ¢+ ¢ceedom T™G CREA ATE
|

POILSEmantics

= A port can support multiple interface specifications
= Provided interfaces (what the object can do)
= Required interfaces (what the object needs to do its job)

Incomingsigndis/cdils:

«interfacey

ControllerlF «provides»

stateChange (s': state) : void R[Sk :

«interface USesSy
ControlleelF > JETTINNE.

start (') : void
stop (') : void

c:ClassX

queryState () : state

outgoeingisignais/calls

-
43 -freedomruanATE

-

DYuklles oillgideizle szl ol (Higigeols)

= |nterface specifications define what objects can do

= For greater architectural control, it is also necessary to define
(constrain) the order in which things are done

= e.g., operator-assisted call

Caller

Callee

call
ack
number
call
ack
transfer
talk

44

time

A 4
u g
[|
fre e d o m T0O C R E AT E
o

ECIIYINGNENOLOCOISWILHIUIVILENZZ0

- A collaboration involving a set of interfaces and set of
related behavior specifications (e.g., interactions)

Operator Assisted Call

dnterace

Galler

Interaction specs

\

Rital
’
CONNECIING '
c

Kdinterace;

OPErator ’

[|
-
45 B f{r eedom T™G CREATE

-

POISTaNUIEIO10CoIS

= Ports can be assigned specific roles in protocols
= By supporting interfaces involved in protocol specifications

= The type of a port is determined by the corresponding
protocol collaboration

Operator Assisted Call

ace» - ClassX
\ < ________________________

«uses»

-
46 B ; r e e dom TOCREA ATE
o

SONNECUNGNIEONS

Ports can be joined by connectors to create peer
collaborations composed of structured classes

remote

sender : Fax . . receiver : Fax

remote

Connectors model communication channels
A connector is constrained by a protocol
Static typing rules apply (compatible protocols)

[|
-
47 B ¢+ ¢ceedom T™G CREA ATE
|

alsStiuciure
Structured classes may have an internal structure of

(structured class) parts and connectors

LElegation connecior,

sendCtrl receiveCtrl

FEmote’ J
sender:Fax | receiver:Fax
E1oLe"

A Xdl|

n
-
48 B ¢+ ¢ceedom T™G CREA ATE
|

BENAVIOIREONS

= Ports that are connected directly to a behavior
= Require a special notation

controlPort

B

r.4¢:l|

r MoLe!
sender:Fax | receiver:Fax
emoie

* Internal behavior ports can be used to model layering

n
-
49 B ¢+ ¢ceedom T™G CREA ATE
|

= Structured classes allow the inheritance of complex

structures

Isender:Fax i‘i’receiver:Fax
I I

AbsFaxCall

: ——
- ne \ \

N N M]
Isender:Fax *A*Weceiver:Fax Isender:Fax *A*Weceiver:Fax

T1FaxCall T2FaxCall

u g
50 u
fre e d o m T0O C R E AT E
o

SUMmargy.

= The “next generation” UML represents a significant evolutionary
step:
= Balance of consolidation and feature extensions
= Modularized (core + optional specialized sub-languages)
= Increased semantic precision and conceptual clarity
= Supports full diagram interchange
= Full alignment with MOF
= Suitable MDA foundation (executable models, full code generation)

= New modeling features:

= Large-scale system support (architecture-level structure, complex
behavior and interaction modeling)

= Extended business process modeling

= Expected availability: 2003

u g
51 .freedomTﬂGHEATE
o

	A Preview of UML 2.0
	IMPORTANT DISCLAIMER!
	Overview
	The Evolution of UML
	What is UML?
	Models of Software
	Evolving Models
	The Remarkable Thing About Software
	The OMG¡¯s Model Driven Architecture
	MDA Implications
	The Meta-Object Facility (MOF)
	The 4-Layer Modeling Language Architecture
	Specializing UML: The Family of Languages
	Specializing UML: Stereotypes
	Sources of Requirements
	Approach: Slow but Steady
	Formal RFP Requirements
	Infrastructure Requirements
	OCL Requirements
	Diagram Interchange Requirements
	Superstructure Requirements (1 of 2)
	Superstructure Requirements (2 of 2)
	UML-MOF Alignment
	Infrastructure: Consolidation of Concepts
	Infrastructure: Behavior Harmonization
	Components of UML 2.0
	Important New Features
	Interactions: Frames
	Interactions: Frame Composition
	Interactions: Complex Expressions
	Interaction Overview Diagram
	Activities: New Semantic Foundation
	Activities: Queuing Capabilities
	Streaming Parameters
	Structured Classes in UML 2.0
	Modeling Collaboration Structures
	Structured Classes: External Structure
	Structured Classes: Internal Behavior
	Ports
	Port Semantics
	Dynamics of Interface Usage (Protocols)
	Specifying Protocols with UML 2.0
	Ports and Protocols
	Connecting Ports
	Structured Classes: Internal Structure
	Behavior Ports
	Inheritance of Structure
	Summary

