
IBM Software Group

®

Clic
k to

Brass Bubbles:
A Preview of UML 2.0 and MDA

Brass Bubbles:
A Preview of UML 2.0 and MDA

Bran Selic
bselic@rational.com

Bran Selic
bselic@rational.com

22 IBM Software Group |

Presentation OverviewPresentation Overview

Part 1: Models, software models, and MDA

Why and how software models are changing the way we

develop software

Review of state of the art in model-driven development

Part 2: A preview of UML version 2.0

UML 2.0 = the first major revision of UML

Important new language features and modeling capabilities

Part 1: Models, software models, and MDA

Why and how software models are changing the way we

develop software

Review of state of the art in model-driven development

Part 2: A preview of UML version 2.0

UML 2.0 = the first major revision of UML

Important new language features and modeling capabilities

33 IBM Software Group |

A Skeptic’s View of Software Models…A Skeptic’s View of Software Models…

Monitor
PH

Monitor
PH

Raise
PH

Raise
PH

Control
PH

Control
PH

PH reached XPH reached X

enableenable

disabledisable

Current PHCurrent PH

startstart

stopstop

Input valve
control

Input valve
control

“…bubbles and arrows, as opposed to programs,
…never crash”
“…bubbles and arrows, as opposed to programs,
…never crash”

-- B. Meyer
“UML: The Positive Spin”

American Programmer, 1997

-- B. Meyer
“UML: The Positive Spin”

American Programmer, 1997

44 IBM Software Group |

Engineering ModelsEngineering Models

55 IBM Software Group |

What Engineers DoWhat Engineers Do
Before they build the real thing...Before they build the real thing...

…they first build models…they first build models …and then learn from them…and then learn from them

➼➼

66 IBM Software Group |

Engineering ModelsEngineering Models
Engineering model:
A reduced representation of some system
Engineering model:
A reduced representation of some system

Purpose:
To help us understand a complex problem or solution
To communicate ideas about a problem or solution
To drive implementation

Purpose:
To help us understand a complex problem or solution
To communicate ideas about a problem or solution
To drive implementation

ModelModelModeled systemModeled system

77 IBM Software Group |

Characteristics of Useful ModelsCharacteristics of Useful Models
Abstract

Emphasize important aspects while removing irrelevant ones

Understandable
Expressed in a form that is readily understood by observers

Accurate
Faithfully represents the modeled system

Predictive
Can be used to derive correct conclusions about the modeled system

Inexpensive
Much cheaper to construct and study than the modeled system

Abstract
Emphasize important aspects while removing irrelevant ones

Understandable
Expressed in a form that is readily understood by observers

Accurate
Faithfully represents the modeled system

Predictive
Can be used to derive correct conclusions about the modeled system

Inexpensive
Much cheaper to construct and study than the modeled system

To be useful, engineering models must have all
of these characteristics!
To be useful, engineering models must have all
of these characteristics!

88 IBM Software Group |

How Models are UsedHow Models are Used

To detect errors and omissions in designs before
committing full resources to full implementation

Through (formal) analysis and experimentation

Investigate and compare alternative solutions

Minimize engineering risk

To communicate with stakeholders
Clients, users, implementers, testers, documenters, etc.

To drive implementation

To detect errors and omissions in designs before
committing full resources to full implementation

Through (formal) analysis and experimentation

Investigate and compare alternative solutions

Minimize engineering risk

To communicate with stakeholders
Clients, users, implementers, testers, documenters, etc.

To drive implementation

99 IBM Software Group |

A Problem with ModelsA Problem with Models

Semantic Gap due to:
• Idiosyncrasies of actual

construction materials
• Construction methods
• Scaling effects
• Skill sets
• Misunderstandings

Can lead to serious errors
and discrepancies in the
realization

Semantic Gap due to:
• Idiosyncrasies of actual

construction materials
• Construction methods
• Scaling effects
• Skill sets
• Misunderstandings

Can lead to serious errors
and discrepancies in the
realization

...
...

1010 IBM Software Group |

Models of SoftwareModels of Software
A description of the software which

Abstracts out irrelevant detail
Presents the software using higher-level abstractions

A description of the software which
Abstracts out irrelevant detail
Presents the software using higher-level abstractions

case mainState of
initial: send(“I am here”);

end
Off: case event of

on: send(oa,5);
next(On);
end

off: next(Off);
end

end
On: case event of

off: next(Off);
end

done: terminate;
end

end
end

OffOffOff

OnOnOn

on/send(oa,5);on/send(oa,5);off/off/

off/off/

done/done/

1111 IBM Software Group |

Evolving ModelsEvolving Models

S1S1S1

S2S2S2

e1[q=5]/
{d = msg->data();
send(oa,5, d);}

e1[q=5]/
{d = msg->data();
send(oa,5, d);}

end/
{printf(“bye”);}
end/
{printf(“bye”);}

S21

S21

e32/

Adding detail to a high-level model:Adding detail to a high-level model:

S1S1S1

S2S2S2

e1/send(oa,5);e1/send(oa,5);

e2/
{printf(q);}
e2/
{printf(q);}

1212 IBM Software Group |

The Remarkable Thing About SoftwareThe Remarkable Thing About Software

Software has the rare property that it allows
us to directly evolve models into full-fledged
implementations without changing the
engineering medium, tools, or methods!

Software has the rare property that it allows
us to directly evolve models into full-fledged
implementations without changing the
engineering medium, tools, or methods!

⇒ This ensures perfect accuracy of software models;
since the model and the system that it models are
the same thing
The model is the implementation

⇒ This ensures perfect accuracy of software models;
since the model and the system that it models are
the same thing
The model is the implementation

1313 IBM Software Group |

Model-Driven Development
and MDA

Model-Driven Development
and MDA

1414 IBM Software Group |

Model-Driven Style of DevelopmentModel-Driven Style of Development

An approach to software development in which the
focus and primary artifacts of development are models
(as opposed to programs)

Implies automatic generation of programs from models

Using modeling languages directly as implementation tools

An approach to software development in which the
focus and primary artifacts of development are models
(as opposed to programs)

Implies automatic generation of programs from models

Using modeling languages directly as implementation tools

1515 IBM Software Group |

Modeling versus Programming LanguagesModeling versus Programming Languages
Cover different ranges of abstractionCover different ranges of abstraction

Level of Level of
AbstractionAbstraction

high

low

Programming
Languages

(C/C++, Java, …)

∆HI:statecharts,
interaction
diagrams,
architectural
structure, etc.

Modeling
Languages

(UML,…)

ModelingModeling
LanguagesLanguages

(UML,…)(UML,…)

∆LO:data layout,
arithmetical
and logical
operators,
etc.

1616 IBM Software Group |

Covering the Full Range of DetailCovering the Full Range of Detail
“Action” languages (e.g., Java, C++) for fine-grain detail“Action” languages (e.g., Java, C++) for fine-grain detail

(Any) Action
Language

Level of Level of
AbstractionAbstraction

high

low

Programming
Languages

(C/C++, Java, …)

Modeling
Languages

(UML,…)

ModelingModeling
LanguagesLanguages

(UML,…)(UML,…)

Fine-grain
logic,
arithmetic
formulae,
etc.

Fine-grain
logic,
arithmetic
formulae,
etc.

implementation
level detail
(application
specific)

1717 IBM Software Group |

Example SpecExample Spec
Appropriate languages for each abstraction levelAppropriate languages for each abstraction level

S1S1S1

S2S2S2

e1[q=5]/
{d = msg->data();
send(oa,5, d);}

e1[q=5]/
{d = msg->data();
send(oa,5, d);}

e2/
{printf(q);}
e2/
{printf(q);}

end/
{printf(“bye”);}
end/
{printf(“bye”);}

S21

S21

e32/

Advantage: exploits

• Existing tools

• Code libraries

• Developer experience

Advantage: exploits

• Existing tools

• Code libraries

• Developer experience

Fine-grain
logic in a
traditional 3G
language

Fine-grain
logic in a
traditional 3G
language

High-level
parts described
using high-level
abstractions

High-level
parts described
using high-level
abstractions

1818 IBM Software Group |

How We Learn From ModelsHow We Learn From Models

Ξ = cos (η + π/2)
+ ξ∗5

Ξ = cos (η + π/2)
+ ξ∗5

??By formal analysis
mathematical methods
reliable (theoretically)
software is very difficult to
model mathematically!

By formal analysis
mathematical methods
reliable (theoretically)
software is very difficult to
model mathematically! ??

Ξ = cos (η + π/2)
+ ξ∗5

Ξ = cos (η + π/2)
+ ξ∗5

By experimentation (execution)
more reliable than inspection
direct experience/insight

By experimentation (execution)
more reliable than inspection
direct experience/insight

Ξ = cos (η + π/2)
+ ξ∗5

Ξ = cos (η + π/2)
+ ξ∗5

??By inspection
mental execution
unreliable

1919 IBM Software Group |

MDD ImplicationsMDD Implications
Ultimately, it should be possible to:

Execute models
Translate them automatically into implementations
…possibly for different implementation platforms
Platform independent models (PIMs)

Modeling language requirements
The semantic underpinnings of modeling languages must be
precise and unambiguous
It should be possible to easily specialize a modeling language
for a particular domain
It should be possible to easily define new specialized
languages

Ultimately, it should be possible to:
Execute models
Translate them automatically into implementations
…possibly for different implementation platforms
Platform independent models (PIMs)

Modeling language requirements
The semantic underpinnings of modeling languages must be
precise and unambiguous
It should be possible to easily specialize a modeling language
for a particular domain
It should be possible to easily define new specialized
languages

2020 IBM Software Group |

The OMG’s Model Driven ArchitectureThe OMG’s Model Driven Architecture
The OMG has formulated an initiative called “Model-
Driven Architecture” (MDA)

A framework for a set of standards in support of MDD
Inspired by the widespread public acceptance of UML and the
availability of mature MDD technologies

Rational is a pioneer of model-driven development and
is one of the principal drivers of MDA

Conceived and refined UML (Booch, Rumbaugh, Jacobson)
Model-driven development process (RUP)
Tools for executable models and automatic code generation
(XDE, Rose RealTime, Rose)

The OMG has formulated an initiative called “Model-
Driven Architecture” (MDA)

A framework for a set of standards in support of MDD
Inspired by the widespread public acceptance of UML and the
availability of mature MDD technologies

Rational is a pioneer of model-driven development and
is one of the principal drivers of MDA

Conceived and refined UML (Booch, Rumbaugh, Jacobson)
Model-driven development process (RUP)
Tools for executable models and automatic code generation
(XDE, Rose RealTime, Rose)

2121 IBM Software Group |

The Languages of MDAThe Languages of MDA
Set of modeling languages for specific purposesSet of modeling languages for specific purposes

MetaObject
Facility (MOF)
MetaObjectMetaObject

Facility (MOF)Facility (MOF)

A modeling language
for defining modeling
languages

A modeling language
for defining modeling
languages

MOF
“core”
MOFMOF

“core”“core”

General
Standard UML

GeneralGeneral
Standard UMLStandard UML

Common
Warehouse

Metamodel (CWM)

Common Common
Warehouse Warehouse

Metamodel (CWM)Metamodel (CWM)

etc.etc.etc.

For general OO
modeling
For general OO
modeling

For exchanging
information
about business
data

For exchanging
information
about business
data

Real-Time
profile

RealReal--TimeTime
profileprofile

EAI profileEAI profileEAI profile

Software
process profile

SoftwareSoftware
process profileprocess profile

etc.etc.etc.

UML
“bootstrap”
UML
“bootstrap”

2222 IBM Software Group |

Executable Models and
Automatic Code Generation

Executable Models and
Automatic Code Generation

2323 IBM Software Group |

Making Models ExecutableMaking Models Executable

Requires precisely defined semantics for the modeling
language

semantics = the interpretation of a software model at run time
• Which objects need to be created?
• When?
• What do they do when they are created?

NB: “precise” does not mean “detailed”
it means that the model has only one possible interpretation

Requires precisely defined semantics for the modeling
language

semantics = the interpretation of a software model at run time
• Which objects need to be created?
• When?
• What do they do when they are created?

NB: “precise” does not mean “detailed”
it means that the model has only one possible interpretation

2424 IBM Software Group |

Ability to Execute Abstract/Incomplete ModelsAbility to Execute Abstract/Incomplete Models

Fundamental
for experimentation early in the development cycle

Fundamental
for experimentation early in the development cycle

S1S1S1

S2S2S2

e1/send(oa,5);e1/send(oa,5);

Unspecified
trigger
Unspecified
trigger

Unspecified
trigger
Unspecified
trigger

2525 IBM Software Group |

Advantages of Executable ModelsAdvantages of Executable Models

Early detection of requirements defects
“This is what (I think) you asked for, is it what you want?”

Early detection of design defects (risk reduction)
Ability to explore risky elements in depth early

Psychological benefits of something working early
avoids mid-project morale dip
faster buildup of direct experience with the system

Significantly more reliable project status tracking
no dilemma: system either realizes its use cases or not

Potential for automatic code generation

Early detection of requirements defects
“This is what (I think) you asked for, is it what you want?”

Early detection of design defects (risk reduction)
Ability to explore risky elements in depth early

Psychological benefits of something working early
avoids mid-project morale dip
faster buildup of direct experience with the system

Significantly more reliable project status tracking
no dilemma: system either realizes its use cases or not

Potential for automatic code generation

2626 IBM Software Group |

What is Automatic Code Generation?What is Automatic Code Generation?
Automated generation of semantically equivalent
programs from models
Automated generation of semantically equivalent
programs from models

translator main () {

BitVector typeFlags (maxBits);

char buf [1024];

cout << msg;

while (cin >> buf) {

for (int i = 0;i<maxBits;i++)

if (strcmp(typeTbl[i],buf)==0)

{typeFlags += i;

break;}

if ...#?@!*&!

program (e.g., C++)model

2727 IBM Software Group |

Manual Modification of Generated CodeManual Modification of Generated Code
Usually includes “untouchable” parts

capture the semantics of the modeling language constructs
Usually includes “untouchable” parts

capture the semantics of the modeling language constructs

/* Do NOT modify the following lines or very bad things will happen */
L12_$:

switch (__12_chain_state_123) {
case 1: switch (__13_chain_state_100) {

case 0: if (guard_7451 ()) {
/* end of restricted code area */

printf (/n);
/* Do NOT modify the following lines or very bad things will happen */

break;
}

case 1: if (guard_8366()) {
/* end of restricted code area */

...

/* Do NOT modify the following lines or very bad things will happen */
L12_$:

switch (__12_chain_state_123) {
case 1: switch (__13_chain_state_100) {

case 0: if (guard_7451 ()) {
/* end of restricted code area */

printf (/n);
/* Do NOT modify the following lines or very bad things will happen */

break;
}

case 1: if (guard_8366()) {
/* end of restricted code area */

...

Modification may mean that the model cannot be
recreated any more
Modification may mean that the model cannot be
recreated any more

2828 IBM Software Group |

Reasons for Manual ModificationReasons for Manual Modification
Lack of confidence in the code generator
Inefficient generated code
Change turnaround time

it may take too long to make a small change (code needs to
be regenerated)

Understanding errors:
implementation language compilers, linkers, and debuggers
are unaware of the high-level modeling concepts
problem reports in terms of the generated code instead of the
original high-level “source”

Lack of confidence in the code generator
Inefficient generated code
Change turnaround time

it may take too long to make a small change (code needs to
be regenerated)

Understanding errors:
implementation language compilers, linkers, and debuggers
are unaware of the high-level modeling concepts
problem reports in terms of the generated code instead of the
original high-level “source”

2929 IBM Software Group |

Some Things to Look ForSome Things to Look For
The code generator has to emit very efficient code

high performance and low memory utilization
It should be possible to insert fragments of hand-crafted
code into the model (not the generated code)
The code generator must be optimally incremental:

should regenerate only those parts that are affected by the
change

Need construction and debug tools that understand the
model

e.g., debuggers that understand state machines rather than
C++ source

The code generator has to emit very efficient code
high performance and low memory utilization

It should be possible to insert fragments of hand-crafted
code into the model (not the generated code)
The code generator must be optimally incremental:

should regenerate only those parts that are affected by the
change

Need construction and debug tools that understand the
model

e.g., debuggers that understand state machines rather than
C++ source

3030 IBM Software Group |

Is it Really Worthwhile?Is it Really Worthwhile?

Cumulative statistics from large-scale system projects
using model refined approaches
Cumulative statistics from large-scale system projects
using model refined approaches

transitionT1 () {

ctr = a--;

send (a, b);

}

void methodA () {

return (a + b);

}

80 - 85%
of total
generated
code

15 - 20% of
total
generated
code

15 - 20% of
total
generated
code

Most of the system complexity is in the model!Most of the system complexity is in the model!Most of the system complexity is in the model!

3131 IBM Software Group |

Pragmatics: The NumbersPragmatics: The Numbers
Efficiency

performance and memory utilization
• within 10-15% of equivalent manually coded system

Scalability
compilation time (system and incremental change)
• within 5-20% of manual process

system size
• systems in the order of 4MLOC have been constructed with full automatic code

generation
• team up to 500 developers

Efficiency
performance and memory utilization
• within 10-15% of equivalent manually coded system

Scalability
compilation time (system and incremental change)
• within 5-20% of manual process

system size
• systems in the order of 4MLOC have been constructed with full automatic code

generation
• team up to 500 developers

3232 IBM Software Group |

Pragmatics: IntegrationPragmatics: Integration

Ability to utilize external code libraries and specifications
allows integration with legacy code

Flexibility to accommodate different compilers and tools
(build, analysis, debug)

preserves investment in tools

Sophisticated change impact analysis
to minimize the code generation turnaround cycle
• small local change ⇒ rapid turnaround

Model level error reporting

Ability to utilize external code libraries and specifications
allows integration with legacy code

Flexibility to accommodate different compilers and tools
(build, analysis, debug)

preserves investment in tools

Sophisticated change impact analysis
to minimize the code generation turnaround cycle
• small local change ⇒ rapid turnaround

Model level error reporting

3333 IBM Software Group |

The Unified Modeling
Language – version 2.0:

Fundamentals

The Unified Modeling
Language – version 2.0:

Fundamentals

3434 IBM Software Group |

UML: The Foundation of MDAUML: The Foundation of MDA

2003

UML 2.0 (MDA)

1967

Foundations of OO (Nygaard, Goldberg, Meyer,
Stroustrup, Harel, Wirfs-Brock, Reenskaug,…)

Foundations of OO (Foundations of OO (NygaardNygaard, Goldberg, Meyer,, Goldberg, Meyer,
StroustrupStroustrup,, HarelHarel, , WirfsWirfs--Brock, Brock, ReenskaugReenskaug,…),…)

JacobsonJacobsonBoochBoochRumbaughRumbaugh

1996

UML 1.1 (OMG Standard)UML 1.1 (OMG Standard)UML 1.1 (OMG Standard)

UML 1.3 (extensibility)UML 1.3 (extensibility)UML 1.3 (extensibility)

UML 1.4 (action semantics)UML 1.4 (action semantics)UML 1.4 (action semantics)
UML 1.5UML 1.5UML 1.5 2003

UML 2.0 (MDA)UML 2.0 (MDA)

2001

1998

1997

3535 IBM Software Group |

IMPORTANT DISCLAIMER!IMPORTANT DISCLAIMER!

The technical material described here is still
under development and is subject to
modification prior to adoption by the OMG

The technical material described here is still
under development and is subject to
modification prior to adoption by the OMG

3636 IBM Software Group |

Formal RFP RequirementsFormal RFP Requirements

1) Infrastructure – UML internals
More precise conceptual base for better MDA support

2) Superstructure – User-level features
New capabilities for large-scale software systems
Consolidation of existing features

3) OCL – Constraint language
Full conceptual alignment with UML

4) Diagram interchange standard
For exchanging graphic information (model diagrams)

1) Infrastructure – UML internals
More precise conceptual base for better MDA support

2) Superstructure – User-level features
New capabilities for large-scale software systems
Consolidation of existing features

3) OCL – Constraint language
Full conceptual alignment with UML

4) Diagram interchange standard
For exchanging graphic information (model diagrams)

3737 IBM Software Group |

Approach: EvolutionaryApproach: Evolutionary

Improved precision of the infrastructure

Small number of new features

New feature selection criteria
Required for supporting large industrial-scale applications

Non-intrusive on UML 1.x users (and tool builders)

Backward compatibility with 1.x

Improved precision of the infrastructure

Small number of new features

New feature selection criteria
Required for supporting large industrial-scale applications

Non-intrusive on UML 1.x users (and tool builders)

Backward compatibility with 1.x

3838 IBM Software Group |

Language StructureLanguage Structure
A core language + optional “sub-languages”

Enables flexible subsetting for specific needs
Users can “grow into” more advanced capabilities

A core language + optional “sub-languages”
Enables flexible subsetting for specific needs
Users can “grow into” more advanced capabilities

Multiple levels of
compliance

OCLOCL

Basic UMLBasic UML
(Classes, Basic behavior, Internal structure, Use cases…)(Classes, Basic behavior, Internal structure, Use cases…)

MOFMOF

StateState
MachinesMachines

StructuredStructured
Classes andClasses and
ComponentsComponents

ActivitiesActivities InteractionsInteractions DetailedDetailed
ActionsActions

FlowsFlows

Multiple levels of Multiple levels of
compliancecompliance

ProfilesProfiles

UML InfrastructureUML Infrastructure

3939 IBM Software Group |

Infrastructure: Consolidation of ConceptsInfrastructure: Consolidation of Concepts
Breakdown into fundamental conceptual primitivesBreakdown into fundamental conceptual primitives

NamespaceNamespaceNamespace PackagableElementPackagableElementPackagableElement RedefinableElementRedefinableElementRedefinableElement

ClassifierClassifierClassifier FeatureFeatureFeature

Eliminates semantic overlap
Better foundation for a precise definition of concepts
and semantics

Eliminates semantic overlap
Better foundation for a precise definition of concepts
and semantics

4040 IBM Software Group |

Infrastructure: Behavior HarmonizationInfrastructure: Behavior Harmonization
Common semantic base for all behaviors

Choice of behavioral formalism driven by application needs
Common semantic base for all behaviors

Choice of behavioral formalism driven by application needs

ClassifierClassifier

.ClassClassClass UseCaseUseCaseUseCase ComponentComponentComponent

BehaviorBehavior
0..10..1 0..*0..*

ActionActionAction ActivityActivityActivity StatemachineStatemachineStatemachineInteractionInteractionInteraction

4141 IBM Software Group |

Structure Modeling:
UML as an Architectural
Description Language

Structure Modeling:
UML as an Architectural
Description Language

4242 IBM Software Group |

Structured Classes: External ViewStructured Classes: External View
Distributed active (concurrent) objects with

Full two-way encapsulation
Multiple interaction points: ports

Distributed active (concurrent) objects with
Full two-way encapsulation
Multiple interaction points: ports

PortsPortsPorts

4343 IBM Software Group |

PortsPorts
Boundary objects that

help separate different (possibly concurrent) interactions
fully isolate an object’s internals from its environment

Boundary objects that
help separate different (possibly concurrent) interactions
fully isolate an object’s internals from its environment

EnvironmentEnvironment

c : c : ClsXClsX

S1S1

S2S2

4444 IBM Software Group |

Port SemanticsPort Semantics
A port can support one (or more) interface types

Provided interfaces (what the object can do)
Required interfaces (what the object needs to do its job)

A port can support one (or more) interface types
Provided interfaces (what the object can do)
Required interfaces (what the object needs to do its job)

«interface»
MasterIF

«interface»«interface»
MasterIFMasterIF

stateChange (s : state) : void
…
stateChangestateChange (s : state) : void(s : state) : void
… …

«provides»«provides»

«interface»
SlaveIF

«interface»«interface»
SlaveIFSlaveIF

start () : void
stop () : void
queryState () : state
…

start () : voidstart () : void
stop () : voidstop () : void
queryState queryState () : state() : state
… …

«uses»«uses» p1p1

c:ClassXc:c:ClassXClassX

Outgoing signals/calls Outgoing signals/calls Outgoing signals/calls

Incoming signals/calls Incoming signals/calls Incoming signals/calls

4545 IBM Software Group |

Protocols: Reusable Interaction SequencesProtocols: Reusable Interaction Sequences
Communication sequences that

always follow a pre-defined dynamic order
occur in different contexts with different specific participants

Communication sequences that
always follow a pre-defined dynamic order
occur in different contexts with different specific participants

call

ack

number

call

ack

talk

transfer

CallerCallerCaller OperatorOperatorOperator CalleeCalleeCallee

Important architectural tool
Defines valid interaction patterns between architectural
elements

Important architectural tool
Defines valid interaction patterns between architectural
elements

4646 IBM Software Group |

Modeling Protocols with UML 2.0Modeling Protocols with UML 2.0

May be refined using inheritanceMay be refined using inheritance

Operator Assisted CallOperator Assisted CallOperator Assisted Call

«interface»
Caller

««interfaceinterface»»
CallerCaller

«interface»
Operator

««interfaceinterface»»
OperatorOperator

«interface»
Callee

««interfaceinterface»»
CalleeCallee

Modeled by a set of interconnected interfaces whose features
are invoked according to a formal behavioral specification

Based on the UML collaboration concept

Modeled by a set of interconnected interfaces whose features
are invoked according to a formal behavioral specification

Based on the UML collaboration concept

initialinitialinitial

connectedconnectedconnected

connectingconnectingconnecting

state machine specstate machine spec

callercallercaller operatoroperatoroperator calleecalleecallee

Interaction specsInteraction specs

4747 IBM Software Group |

Associating Protocols with PortsAssociating Protocols with Ports
Ports play individual protocol roles

Ports assume the protocol roles implied by their provided and
required interfaces

Ports play individual protocol roles
Ports assume the protocol roles implied by their provided and
required interfaces

«provides»«provides»
«uses»«uses»

«uses»«uses»

«interface»
Callee

««interfaceinterface»»
CalleeCallee

Operator Assisted CallOperator Assisted CallOperator Assisted Call

«interface»
Caller

««interfaceinterface»»
CallerCaller

«interface»
Operator

««interfaceinterface»»
OperatorOperator

callercallercaller operatoroperatoroperator calleecalleecallee

ClassXClassX

4848 IBM Software Group |

Assembling Communicating ObjectsAssembling Communicating Objects
Ports can be joined by connectors to create peer
collaborations composed of structured classes
Ports can be joined by connectors to create peer
collaborations composed of structured classes

sender : Faxsender : Faxsender : Fax
remoteremoteremote

receiver : Faxreceiver : Faxreceiver : Fax
remoteremoteremote

Connectors model communication channels
A connector is constrained by a protocol
Static typing rules apply (compatible protocols)

Connectors model communication channelsConnectors model communication channels
A connector is constrained by a protocolA connector is constrained by a protocol
Static typing rules apply (compatible protocols)Static typing rules apply (compatible protocols)

4949 IBM Software Group |

Structured Classes: Internal StructureStructured Classes: Internal Structure
Structured classes may have an internal structure of
(structured class) parts and connectors
Structured classes may have an internal structure of
(structured class) parts and connectors

FaxCallFaxCall

receiveCtrlreceiveCtrlsendCtrlsendCtrl

sender:Faxsender:Fax
remoteremote

receiver:Faxreceiver:Fax
remoteremote

cc cc

Delegation connectorDelegation connectorDelegation connector

PartPartPart

5050 IBM Software Group |

Structure Refinement Through InheritanceStructure Refinement Through Inheritance
For product families with a common architectureFor product families with a common architecture

T2FaxCallT2FaxCall

/sender:Fax/sender:Fax/sender:Fax /receiver:Fax/receiver:Fax/receiver:Fax

T1FaxCallT1FaxCall

/sender:Fax/sender:Fax/sender:Fax /receiver:Fax/receiver:Fax/receiver:Fax

AbsFaxCallAbsFaxCall

/sender:Fax/sender:Fax/sender:Fax /receiver:Fax/receiver:Fax/receiver:Fax

5151 IBM Software Group |

Modeling Complex
Interactions

Modeling Complex
Interactions

5252 IBM Software Group |

Overview of New FeaturesOverview of New Features

Interactions focus on the communications between collaborating
instances communicating via messages

Both synchronous (operation invocation) and asynchronous (signal
sending) models supported

Multiple concrete notational forms:
sequence diagram

communication diagram

interaction overview diagram

timing diagram

interaction table

Interactions focus on the communications between collaborating
instances communicating via messages

Both synchronous (operation invocation) and asynchronous (signal
sending) models supported

Multiple concrete notational forms:
sequence diagram

communication diagram

interaction overview diagram

timing diagram

interaction table

5353 IBM Software Group |

Example: Interaction ContextExample: Interaction Context
All interactions occur in structures of collaborating parts

the structural context for the interaction
All interactions occur in structures of collaborating parts

the structural context for the interaction

GoHomeServiceContext
ServiceUser

ServiceBase

ServiceTerminal

sd GoHome sd Authorization

:ServiceUser

:ServiceBase

:ServiceTerminal

Interaction Context:
Structured Class or

Collaboration

Interaction Context:
Structured Class or

Collaboration

InteractionsInteractions

Internal StructureInternal Structure

PartPart

5454 IBM Software Group |

Interaction Occurrences

sd GoHomeSetup

:ServiceUser :ServiceBase
ref SB_GoHomeSetup :ServiceTerminal

opt

ref FindLocation

SetHome

SetInvocationTime

SetTransportPreferences

ref Authorization sd Authorization

:ServiceUser :ServiceBase
ref SB_Authorization :ServiceTerminal

Code

OK

OnWeb

OK

Interaction Occurrences
Interaction Frame

Lifeline is one
object or a part
Lifeline is one
object or a part

Interaction OccurrenceInteraction Occurrence

Combined (in-line)
Fragment

Combined (in-line)
FragmentAsynchronous

message (signal)
Asynchronous

message (signal)

5555 IBM Software Group |

Combined Fragments and DataCombined Fragments and Data

:ServiceUser :ServiceBase :ServiceTerminal

sd GoHomeInvocation(Time invoc)

:Clock

InvocationTime FindLocation

TransportSchedule

loop
alt

ScheduleIntervalElapsed
FindLocation

TransportSchedule

GetTransportSchedule

TransportSchedule

FetchSchedule

[Now>interv+last]

[pos-lastpos>dist]

[Now>invoc]

Operand
Separator
Operand
Separator

Guarding Data
Constraint

Guarding Data
Constraint

looploop

ChoiceChoice

5656 IBM Software Group |

Interaction Overview DiagramInteraction Overview Diagram
An interaction with the syntax of activity diagramsAn interaction with the syntax of activity diagrams

sd GoHomeSetup

ref Authorization

ref FindLocation

sd

:ServiceUser :ServiceBase

SetHome

sd

:ServiceUser :ServiceBase

SetInvocationTime

SetTransportPreferences

Interaction OccurrenceInteraction Occurrence

Expanded sequence
diagram

Expanded sequence
diagram

5757 IBM Software Group |

Dynamic Process Modeling
Capabilities (Activities)

Dynamic Process Modeling
Capabilities (Activities)

5858 IBM Software Group |

ActivitiesActivities
Significantly enriched in UML 2.0 (relative to UML 1.x
activities)

More flexible semantics for greater modeling power (e.g., rich
concurrency model)
Many new features

Major influences for UML 2.0 activity semantics
Business Process Execution Language for Web Services
(BPEL4WS) – a de facto standard supported by key industry
players (Microsoft, IBM, etc.)
Systems engineering community (INCOSE members)

A significant increase in the use of activity diagrams is
anticipated

Significantly enriched in UML 2.0 (relative to UML 1.x
activities)

More flexible semantics for greater modeling power (e.g., rich
concurrency model)
Many new features

Major influences for UML 2.0 activity semantics
Business Process Execution Language for Web Services
(BPEL4WS) – a de facto standard supported by key industry
players (Microsoft, IBM, etc.)
Systems engineering community (INCOSE members)

A significant increase in the use of activity diagrams is
anticipated

5959 IBM Software Group |

Activities: New Semantic FoundationActivities: New Semantic Foundation

Receive
Order [order

rejected]

[order
accepted]

Accept
Payment

Make
Payment

Send
Invoice

Close
Order

Skip
Order

Bill
Order

Requested
Order

Invoice

ProcessOrder
RequestedOrder:Order

<<precondition>> Order complete
<<postcondition>> Order entered

Petri Net foundation (vs. statecharts) enables
Un-structured graphs (graphs with “go-to’s”)
Richer models of concurrency

Petri Net foundation (vs. statecharts) enables
Un-structured graphs (graphs with “go-to’s”)
Richer models of concurrency

Input pinInput pin

Pre- and post-
conditions
Pre- and post-
conditions

6060 IBM Software Group |

Hierarchical PartitionsHierarchical Partitions
<<

at
tri

bu
te

>>
pe

rfo
rm

in
gD

ep
t:D

ep
ta

rtm
en

t

Receive Fill
Order

Ship
OrderOrder

Send
Invoice

Accept
Payment

Invoice

Close
Order

Make Payment

[order
accepted]

<<
ex

te
rn

al
>>

Cu
st

om
er

Ac
ct

g
De

pa
rtm

en
t

O
rd

er
 D

ep
ar

tm
en

t

6161 IBM Software Group |

Extended Concurrency ModelExtended Concurrency Model
Fully independent concurrent streams (“tokens”)Fully independent concurrent streams (“tokens”)

A

B

X

C

Z

Y

Trace: A, {(B,C) || (X,Y)} , Z
“Tokens” represent
individual execution
threads (executions of
activities)

NB: Not part of the
notation

“Tokens” represent
individual execution
threads (executions of
activities)

NB: Not part of the
notation

Concurrency joinConcurrency joinConcurrency forkConcurrency fork

6262 IBM Software Group |

Activities: Token Queuing CapabilitiesActivities: Token Queuing Capabilities
Tokens can

queue up in “in/out” pins.
backup in network.
prevent upstream behaviors from taking new inputs.

Tokens can
queue up in “in/out” pins.
backup in network.
prevent upstream behaviors from taking new inputs.

Activity 3Activity 2

…or, they can flow through continuously
taken as input while behavior is executing.
given as output while behavior is executing.

…or, they can flow through continuously
taken as input while behavior is executing.
given as output while behavior is executing.

6363 IBM Software Group |

New Statechart Modeling
Capabilities

New Statechart Modeling
Capabilities

6464 IBM Software Group |

State Machine ImprovementsState Machine Improvements
New modeling constructs:

Modularized submachines
State machine specialization/redefinition
State machine termination
“Protocol” state machines
• transitions pre/post conditions
• protocol conformance

Notational enhancements
action blocks
state lists

New modeling constructs:
Modularized submachines
State machine specialization/redefinition
State machine termination
“Protocol” state machines
• transitions pre/post conditions
• protocol conformance

Notational enhancements
action blocks
state lists

6565 IBM Software Group |

Modular Submachines: DefinitionModular Submachines: Definition
Submachine

definition

ReadAmountSM

selectAmount

EnterAmount

ok

abort

abortedaborted

amount

otherAmount

abort

againagain

EXIT pointEXIT point

Submachine
definition

ENTRY pointENTRY point

6666 IBM Software Group |

Modular Submachines: UsageModular Submachines: Usage

VerifyCard

OutOfService

acceptCard

ReleaseCardVerifyTransaction

outOfService

releaseCard

ATM

ReadAmount :
ReadAmountSM

abortedaborted

rejectTransaction

againagain usage of
exit point
usage of
exit point

usage of
entry point
usage of

entry point

invoked
submachine

invoked
submachine

6767 IBM Software Group |

SpecializationSpecialization
Redefinition as part of standard class specializationRedefinition as part of standard class specialization

ATM

acceptCard()
outOfService()
amount()

Behaviour
Statemachine

FlexibleATM

otherAmount()
rejectTransaction()

Behaviour
Statemachine

<<Redefine>>

6868 IBM Software Group |

Example: State Machine RedefinitionExample: State Machine Redefinition
State machine of ATM to be redefinedState machine of ATM to be redefined

VerifyCard

ReadAmount

selectAmount

acceptCard

ReleaseCardVerifyTransaction

selectAmount

amount

outOfService

releaseCard

OutOfService

ATM

{final}

{final}

{final}

{final}

6969 IBM Software Group |

State Machine RedefinitionState Machine Redefinition

VerifyCard

acceptCard

ReleaseCardVerifyTransaction

outOfService

releaseCard

OutOfService

ATM

{final}

{final}

{final}

{final}

ReadAmount

selectAmount

amount enterAmount
okreject

{extended}

otherAmount

{extended}
FlexibleATM

7070 IBM Software Group |

SummarySummary
Model-driven methods have matured and are being used
successfully today

Greater use of automation – but no real change in method
Significant increases in productivity and reliability

The “next generation” UML is characterized by:
Small number of new features + consolidation of existing ones
Scaleable to large software systems (architectural modeling
capabilities)
Modular structure for easier adoption (core + optional specialized sub-
languages)
Increased semantic precision and conceptual clarity
Suitable foundation for MDA (executable models, full code generation)

Expected adoption: June 2003 (first level of adoption)

Model-driven methods have matured and are being used
successfully today

Greater use of automation – but no real change in method
Significant increases in productivity and reliability

The “next generation” UML is characterized by:
Small number of new features + consolidation of existing ones
Scaleable to large software systems (architectural modeling
capabilities)
Modular structure for easier adoption (core + optional specialized sub-
languages)
Increased semantic precision and conceptual clarity
Suitable foundation for MDA (executable models, full code generation)

Expected adoption: June 2003 (first level of adoption)

7171 IBM Software Group |

QUESTIONS?
(bselic@rational.com)

QUESTIONS?
(bselic@rational.com)

A copy of these slides can be obtained at:
http://www.rationalsoftware.com.cn

A copy of these slides can be obtained at:
http://www.rationalsoftware.com.cn

	Brass Bubbles: A Preview of UML 2.0 and MDA
	Presentation Overview
	A Skeptic¡¯s View of Software Models¡
	What Engineers Do
	Engineering Models
	Characteristics of Useful Models
	How Models are Used
	A Problem with Models
	Models of Software
	Evolving Models
	The Remarkable Thing About Software
	Model-Driven Style of Development
	Modeling versus Programming Languages
	Covering the Full Range of Detail
	Example Spec
	How We Learn From Models
	MDD Implications
	The OMG¡¯s Model Driven Architecture
	The Languages of MDA
	Making Models Executable
	Ability to Execute Abstract/Incomplete Models
	Advantages of Executable Models
	What is Automatic Code Generation?
	Manual Modification of Generated Code
	Reasons for Manual Modification
	Some Things to Look For
	Is it Really Worthwhile?
	Pragmatics: The Numbers
	Pragmatics: Integration
	UML: The Foundation of MDA
	IMPORTANT DISCLAIMER!
	Formal RFP Requirements
	Approach: Evolutionary
	Language Structure
	Infrastructure: Consolidation of Concepts
	Infrastructure: Behavior Harmonization
	Structured Classes: External View
	Ports
	Port Semantics
	Protocols: Reusable Interaction Sequences
	Modeling Protocols with UML 2.0
	Associating Protocols with Ports
	Assembling Communicating Objects
	Structured Classes: Internal Structure
	Structure Refinement Through Inheritance
	Overview of New Features
	Example: Interaction Context
	Interaction Occurrences
	Combined Fragments and Data
	Interaction Overview Diagram
	Activities
	Activities: New Semantic Foundation
	Hierarchical Partitions
	Extended Concurrency Model
	Activities: Token Queuing Capabilities
	State Machine Improvements
	Modular Submachines: Definition
	Modular Submachines: Usage
	Specialization
	Example: State Machine Redefinition
	State Machine Redefinition
	Summary

