- software

Brass Bubbles:
A Preview of UML 2.0 and MDA

Bran Selic
bselic@rational.com

PreSentationtOVvernview,

* Part 1: Models, software models, and MDA

= Why and how software models are changing the way we
develop software

= Review of state of the art in model-driven development

* Part 2: A preview of UML version 2.0
= UML 2.0 = the first major revision of UML

= |mportant new language features and modeling capabilities

2 IBM Software Group |- software

AVSKEPUCSIVIEWIOTSOIWarENVIotelSy#»

/ Controle
Current PH @ - — - PH)
7 /’\ — /k

~ ~

4 6\53“\3 e =~ = stop
Raise \,_ _-~-"
PH
Input valve
control

“...bubbles and arrows, as opposed to programs,
...hever crash”

-- B. Meyer
“UML: The Positive Spin”
American Programmer, 1997

3 IBM Software Group |- software

Engineering Models

4 IBM Software Group |- software

WHATENGINEETSIYO
+ Before they build the real thing...

5 IBM Software Group |- software

ENGINEEnngIViodels
* Engineering model.

yoge0OEmg -«

I

o

ia Al Ty
= =2 s “ff"‘lg Ley
N A -
S 3 Seqr R
23] 2l]
S T R g

4 =
ofFl [F

T 8.
i@ =@ @3

5 ‘6_ i

1] Digitizer System

8

£ ;
| a cmm

@

@

Modeledsystem Model

* Purpose:
To help us understand a complex problem or solution
To communicate ideas about a problem or solution

To drive implementation
6 IBM Software Group |- software

UINVIodels

* Abstract

= Emphasize important aspects while removing irrelevant ones

+ Understandable
= Expressed in a form that is readily understood by observers

* Accurate
= Faithfully represents the modeled system

* Predictive
= (Can be used to derive correct conclusions about the modeled system

* |nexpensive
= Much cheaper to construct and study than the modeled system

To be useful, engineering models must have all
of these characteristics!

7 IBM Software Group |- software

HoWViodels arerused

+ To detect errors and omissions in designs before
committing full resources to full implementation

= Through (formal) analysis and experimentation
= |nvestigate and compare alternative solutions
= Minimize engineering risk

* To communicate with stakeholders

= Clients, users, implementers, testers, documenters, etc.

+ To drive implementation

8 IBM Software Group |- software

Yos h] ma Wiaduct

Semantic Gap due to:

* ldiosyncrasies of actual
construction materials

* Construction methods
* Scaling effects

o Skill sets
 Misunderstandings

Can lead to serious errors
and discrepancies in the
realization

IBM Software Group |- software

Viogelstorsoitware

+ A description of the software which
= Abstracts out irrelevant detall
= Presents the software using higher-level abstractions

case mainState of
initial: send(“I am here”);

end
Off: case event of off/
on: send(oa,b);
next (On) ;
end
off: next (Off) ;
end on/send (oa,b5) ;
end
On: case event of
off: next (Off) ;
end
done: terminate;
end
end

end
10 IBM Software Group |- software

EVOIVIRGIVIeUels

+ Adding detail to a high-level model:

e

-

el/send (oa,

~

5);

J

11

e2/
{pr

el[g=5]/
{d = msg->data() ;

intf (q) ;} send(oa,5, d);}

end/
\ {printf (° bye) ;

IBM Software Group |- software

o

SIREMarkablENiNINGgIALOULISOIWANE

Software has the rare property that it allows
us to directly evolve models into full-fledged
Implementations without changing the
engineering medium, tools, or methods!

= This ensures perfect accuracy of software models;
since the model and the system that it models are
the same thing

The model is the implementation

12 IBM Software Group |- software

Model-Driven Development
and VIDA

13 IBM Software Group |- software

VIO EIFDRVENSLYIEIORDEVEIOPMENT

* An approach to software development in which the

14

focus and primary artifacts of development are models
(as opposed to programs)

= |mplies automatic generation of programs from models

= Using modeling languages directly as implementation tools

IBM Software Group |- software

ViogelngVerstsiEfogrammingisangu=ages

+ Cover different ranges of abstraction

Level of
Abstraction

15

A high A
A,." .statecharts,
ijr]teraction
lagrams, i
arc%itectural MOde“ng
structure, etc. \ Languages
(UML,...)
Programming
Languages
(C/C++, Java, ...) A, 5 data layout,
arithmetical
and logical
operators,
\/ low etc.

IBM Software Group |- software

SOVENNGIHEN=UIIRangeroifbELall

* “Action” Ianguages (e.g., Java, C++) for fine-grain detall

A high

Modeling
Level of Languages
Abstraction (UML,...)
Programming Fine-grain
Languages —
implementation (CIC++, Java, ... (Any) Actior formulae,
level detail— — — 1 Language etc.
(application
specific) \/ low

16 IBM Software Group |- software

EXdMPIEISPES

* Appropriate languages for each abstraction level

el[g=5]/

High-level : : {d = msg->data() ;
parts described send (oa,5, d);}
using high-level

abstractions Advantage: exploits
* Existing tools
 Code libraries

end/ « Developer experience
{printf (“bye”) ;

b

17 IBM Software Group |- software

HOWAVETLEeaEIomiIVIOUE]S
. By|nspeCUOn

= mental execution ‘°i’2‘2*"/2’

= unreliable M
+ By formal analysis

= mathematical methods N

= reliable (theoretically) M

= software is very difficult to
model mathematically!

=cos (N + ©/2)

+ By experimentation (execution)
= more reliable than inspection (g2} - - - - I+é*5|

= direct experience/insight
18 IBM Software Group |- software

VIDDAMpliCALoNS

+ Ultimately, it should be possible to:
= Execute models
= Translate them automatically into implementations
= ...possibly for different implementation platforms
= Platform independent models (PIMs)

* Modeling language requirements

= The semantic underpinnings of modeling languages must be
precise and unambiguous

= |t should be possible to easily specialize a modeling language
for a particular domain

= |t should be possible to easily define new specialized
languages

19 IBM Software Group |- software

InerONGISHIVIogeliDrRVeEnATChIteCTUre

* The OMG has formulated an initiative called “Model-
Driven Architecture” (MDA)

= A framework for a set of standards in support of MDD

= |nspired by the widespread public acceptance of UML and the
availability of mature MDD technologies

+ Rational is a pioneer of model-driven development and
s one of the principal drivers of MDA

= Conceived and refined UML (Booch, Rumbaugh, Jacobson)
= Model-driven development process (RUP)

= Tools for executable models and automatic code generation
(XDE, Rose RealTime, Rose)

20 IBM Software Group |- software

InertanguagesiorivibA
+ Set of modeling languages for specific purposes

21

UML
“bootstrap”

MetaObject
Facility (MOE)

) MOF
~“ “Core”

A modeling language
for defining modeling
languages

General
Standard UML

Real-Time
profile

For general 0O
modeling

EAI profile

Common
Warehouse
Metamodel (CWM)

Software

For exchanging
information
about business
data

process profile

etc.

IBM Software Group |- software

Executable Models and
Automatic Code Generation

22 IBM Software Group |- software

VIarkingHvIodels

+ Requires precisely defined semantics for the modeling
language

= semantics = the interpretation of a software model at run time

* Which objects need to be created?
* When?
* What do they do when they are created?

* NB: "precise” does not mean “detailed”

= |t means that the model has only one possible interpretation

23 IBM Software Group |- software

ADIIYAGNEXECULESADSIIACT/INCOMPIEIENVIOUEIS

¢ Fundamental
= for experimentation early in the development cycle

[A

el/send(o0a,b) ;

Unspecified
trigger
4

-

Unspecified
trigger

24 IBM Software Group |- software

AGVANIAgESIOEXECULAIENVIOUEIS

+ Early detection of requirements defects
= “This is what (I think) you asked for, is it what you want?”

+ Early detection of design defects (risk reduction)
= Ability to explore risky elements in depth early

* Psychological benefits of something working early
= avoids mid-project morale dip
= faster buildup of direct experience with the system

+ Significantly more reliable project status tracking
= no dilemma: system either realizes its use cases or not

+ Potential for automatic code generation

25 IBM Software Group |- software

1)

WhatiStAutomaucCoueGenerato

+ Automated generation of semantically equivalent
programs from models

model program (e.g., C++)

translator

main () {
BitVector typeFlags (maxBits);
char buf [1024];
cout << msg;
while (cin >> buf) ({
for (int i1 = 0;i<maxBits;i++)

if (strcmp(typeTbl[i] ,buf)==0)

{typeFlags += i;
break;}
if .. .#?@Q@'.&!

26 IBM Software Group |- software

VignualsviedificationiorGenerated

¢ Usually includes “untouchable™ parts
= capture the semantics of the modeling language constructs

[* Do NOT modify the
L12 $:
switch (__12_chain_\a#_123) {
itchg__13_chain_state_100) {
if (quard_7451 ()) {

* Modification may mean that the model cannot be
recreated any more

27 IBM Software Group | Rational. software

ReasonsHorvanualsiviogiicaton

+ Lack of confidence in the code generator
+ |nefficient generated code

¢ Change turnaround time

= it may take too long to make a small change (code needs to
be regenerated)

+ Understanding errors:

= implementation language compilers, linkers, and debuggers
are unaware of the high-level modeling concepts

= problem reports in terms of the generated code instead of the
original high-level “source”

28 IBM Software Group |- software

SOMENMINGSHOEOORNON:

* The code generator has to emit very efficient code
= high performance and low memory utilization

+ |t should be possible to insert fragments of hand-crafted
code into the model (not the generated code)

* The code generator must be optimally incremental:

= should regenerate only those parts that are affected by the
change

* Need construction and debug tools that understand the
model

= e.¢., debuggers that understand state machines rather than
C++ source

29 IBM Software Group |- software

* Cumulative statistics from large-scale system projects
using model refined approaches

30

//”
80 - 85% L}

generated
code

of total

void methodA () {

}

return (a + b);

transitionTl () {
S ctr = a-

send (a, b);

~

15 - 20% of
(e] =]
generated

code

Most of the system complexity is in the model!

IBM Software Group |- software

EragmatcsilneINUMBErS

+ Efficiency

= performance and memory utilization
*within 10-15% of equivalent manually coded system

* Scalability

= compilation time (system and incremental change)
*within 5-20% of manual process

= gystem size

* systems in the order of 4MLOC have been constructed with full automatic code
generation

* team up to 500 developers

31 IBM Software Group |- software

Eragmaticsalnteyraton

* Ability to utilize external code libraries and specifications

= allows integration with legacy code

* Flexibility to accommodate different compilers and tools
(build, analysis, debug)

= preserves investment in tools

* Sophisticated change impact analysis

= to minimize the code generation turnaround cycle

* small local change = rapid turnaround

* Model level error reporting

32 IBM Software Group |- software

The Unified Modeling
Language - version 2.0:
Fundamentals

33 IBM Software Group |- software

UNIESInerEoundation oriviDA

]
UML 1.5 2003

Foundationsiof: OO (Nygaard; Goldberg; Meyer;
Stroustrup; Harel;, WiriS-Brock; Reenskaugs...)

34 IBM Software Group |- software

IVIEORAANIEDISCLEATIVIER!

The technical material described here is still
under development and is subject to
modification prior to adoption by the OMG

35 IBM Software Group |- software

FOfimal REESREeqUIrEment

1) Infrastructure — UML internals

= More precise conceptual base for better MDA support

(2) Superstructure — User-level features
= New capabilities for large-scale software systems
_ " Consolidation of existing features Y

3) OCL - Constraint language
= Full conceptual alignment with UML

4) Diagram interchange standard
= For exchanging graphic information (model diagrams)

~

36 IBM Software Group |- software

ApproachEVoIutenany.

* |Improved precision of the infrastructure
+ Small number of new features

* New feature selection criteria
= Required for supporting large industrial-scale applications
= Non-intrusive on UML 1.x users (and tool builders)

+ Backward compatibility with 1.x

37 IBM Software Group |- software

Eanguagerstiucture

* A core language + optional “sub-languages’
= Enables flexible subsetting for specific needs
= Users can “grow into” more advanced capabilities

Multiple levels of

compliance

State Structured ™ | Activities
Machines [Classesiand
_____ Components

Petailed
—————— ACtions

5asICIUIVIE

1dSSESBASICIEN VIO NIEMNAISIUCIUNE N USEICASES:)

UML Infrastructure

38 IBM Software Group |- software

nirastiiciures Consoliaation o Concepts
)

+ Breakdown into fundamental conceptual primitives

PackagableElement RedefinableElement
M

= Eliminates semantic overlap

= Better foundation for a precise definition of concepts
and semantics

39 IBM Software Group |- software

nirastiictures Benaviorranmonization

+ Common semantic base for all behaviors
= Choice of behavioral formalism driven by application needs

0.1 (1

Behavior

EEmE [

40 IBM Software Group |- software

Structure Modeling:
UML as an Architectural
Description Language

4

Xternaifview,

+ Distributed active (concurrent) objects with
= Full two-way encapsulation
= Multiple interaction points: ports

42 IBM Software Group |- software

* Boundary objects that
= help separate different (possibly concurrent) interactions
= fully isolate an object’s internals from its environment

ERVvironment ==

43 IBM Software Group |- software

POt oemantics

* A port can support one (or more) interface types
= Provided interfaces (what the object can do)
= Required interfaces (what the object needs to do its job)

Ineoming signaleAlls

«interfacey

MasterlF «provides»

stateChange (s : state) : voidl . [:

«interfacey CUSES)
SlavelF JITTT I

start (') : void
stop ('): void

c:ClassX

Outgoing signals/calls

queryState () : state

44 IBM Software Group |- software

SOLOCOISHREUSARIENNIENACHIONISEGUENCES

+ Communication sequences that
= always follow a pre-defined dynamic order
= occur in different contexts with different specific participants

call
S 2ok
number
call
ack
transfer
talk
I

* |mportant architectural tool

+ Defines valid interaction patterns between architectural
elements

45 IBM Software Group |- software

VIOGENNYNEIOLOCOISIWITtIRTIVILEZI0

+ Modeled by a set of interconnected interfaces whose features
are invoked according to a formal behavioral specification

= Based on the UML collaboration concept
= May be refined using inheritance

Operator Assisted Cail

nterface

galler

Interaction specs

jal !

it
’
connecting

f

GNLCINaGeY);

connecied !

DpPEeratox

46 IBM Software Group |- software

ASSOCIAlNG EIO1OCOISIWILINEONILS

+ Ports play individual protocol roles

= Ports assume the protocol roles implied by their provided and
required interfaces

Operator Assisted Call

«uses»

ol IBM Software Group |- software

ASSEMLING COMmMURCcANG ORIECES

+ Ports can be joined by connectors to create peer
collaborations composed of structured classes

remote

sender : Fax .

. receiver : Fax

Connectors model communication channels
A connector is constrained by a protocol
Static typing rules apply (compatible protocols)

48 IBM Software Group |- software

+ Structured classes may have an internal structure of

(structured class) parts and connectors

Delpgatipm connesetof

sendCtrl receiveCtrl

remote’

sender:Fax | receiver:Fax
111016

r:04C:0ll

49 IBM Software Group |- software

EliREMEntIrougniRnentance

* For product families with a common architecture

Isender:Fax i‘i'receiver:Fax
I I

AbsFaxCall

|
& " "
7 7 u u
Isender:Fax i‘i'receiver:Fax Isender:Fax i‘iIreceiver:Fax
I I I I

T1FaxCall T2FaxCall

50 IBM Software Group |- software

Modeling Complex
Interactions

31 IBM Software Group |- software

OVERIew oNew Eeatur:

+ |nteractions focus on the communications between collaborating
Instances communicating via messages

= Both synchronous (operation invocation) and asynchronous (signal
sending) models supported

+ Multiple concrete notational forms:
= sequence diagram
= communication diagram
= interaction overview diagram
= timing diagram
= interaction table

52 IBM Software Group |- software

EXamplesinteraction Context

+ All interactions occur in structures of collaborating parts
= the structural context for the interaction

Interaction Context:
Structured Class or
Collaboration

GoHomeServiceContext

Interactions

Internal Structure

53 IBM Software Group |- software

NeractionOCCUNfences

Interaction Frame e 1 .
Lifeline is one

object or a part

sd GoHomeSetup) /

:ServiceUser -ServiceBase :ServiceTerminal
’ ref SB_GoHomeSetup ’

Authorization

:SenviceBase
ref SB_Authorization
[

:ServiceUser

ation

- 4-—1-

FindLo Code

SetHome 10,

On\\eb

SetlnvocationTime X

SetTransportPreference

I
I
I
I
I
I
S
I
I
I
I
I
[
I
I
I

I
|
=
I
I
!
I
I
I
I
I
I
I
I
|

/ON V|

N

Asynchronous
message (signal)

Comiyined (imrline)

IBM Software Group |

SomMINed Eragmentsiancibate

Operand
Separator

sd GoHomelnvocation(Time invoc))

:ServiceUser

:Clock

:ServiceBase

:ServiceTerminal

T
[Now>invoc]
InvocationTime

FindLocation

TransportSchedule

alt
[Now=>interv+last]

SchedulelntervalElapsed

FindLocation

TransportSchedule

Guarding Data
Constraint

IBM Software Group |

NEractionOVeVIEW Diagram

* An interaction with the syntax of activity diagrams

Interaction Occurrence

Expanded sequence
diagram

IBM Software Group |- software

Dynamic Process Modeling
Capabilities (Activities)

57 IBM Software Group |- software

+ Significantly enriched in UML 2.0 (relative to UML 1.x
activities)

= More flexible semantics for greater modeling power (e.g., rich
concurrency model)

= Many new features

* Major influences for UML 2.0 activity semantics

= Business Process Execution Language for Web Services

(BPEL4WS) - a de facto standard supported by key industry
players (Microsoft, IBM, etc.)

= Systems engineering community (INCOSE members)

+ A significant increase in the use of activity diagrams is
anticipated

58 IBM Software Group |- software

ACLIVIUIESENEWSEmMantc Eoundation

+ Petri Net foundation (vs. statecharts) enables
= Un-structured graphs (graphs with “go-to’s”)

Pre- and post-

= Richer models of concurrency conditions

Input pin
<<precondition>> Order complete
<<postcondition>> Order entered

ProcessOrder
RequestedOrder:Order

IBM Software Group | Rational. software

Receive

Order
[order

accepted]

Order Department

Send Accept
Invoice Payment

b
[==
(<%}
e

=
(1]

b
Q.
D

(an]

=
Q.
D

(]
(=2}

=
e
S
(=]

=
(<F)
o
AN
AN
D

b
=

o)

"

=)

fe-mr

(3"}
\'A
A\

Acctg Department

Invoice

Make Paymen

Customer

<<external>>

IBM Software Group | Rational. software

Trace: A, {(B,C) || (X,Y)},Z

“Tokens” represent
individual execution
threads (executions of
activities)

NB: Not part of the
notation

61 IBM Software Group |- software

UG Capaniiities

+ Tokens can

62

queue up in “infout” pins.
backup in network.
prevent upstream behaviors from taking new inputs.

...or, they can flow through continuously

taken as input while behavior is executing.
given as output while behavior is executing.

IBM Software Group |- software

New Statechart Modeling
Capabilities

63

HINENMpProvements

+ New modeling constructs:
= Modularized submachines
= State machine specialization/redefinition
= State machine termination

= “Protocol” state machines

* transitions pre/post conditions
* protocol conformance

+ Notational enhancements
= action blocks
= state lists

64 IBM Software Group |- software

Vioguiarsupmachiness Derniton

Submachine
definition

ReadAmountSM -

abort

otherAmount
\ selectAmount j
amount
” | abort

'EnterAmount

S

\ - ‘,,// O k ’

again

aborted

65 IBM Software Group |- software

ViodularsSunmachinessiusage

invoked
submachine

~
@ VerifyCard }
\|/ acceptCard

outOfService

ReadAmount :

, ‘ aborted
\OUtOfSerV'Ce f ReadAmountSM

again_ usage of
exit point

reject[Transaction
releaseCard

[VerifyTransaction] - ReleaseCard |

usage of
entry point

IBM Software Group |

SPECIAliZation

* Redefinition as part of standard class specialization

ATM Behaviour
-------------------------- Statemachine

acceptCard()

outOfService()
amount()

t

FlexibleATM Behaviour

otherAmount()
rejectTransaction()

67 IBM Software Group |- software

ExamplesstatenviachinesReaenniion

+ State machine of ATM to be redefined

fVerifyCardW
. {final}
\I/acceptCard

.\ ReadAmount \

%amount
releaseCard

VerifyTransaction ReleaseCarcD
{final} {final}

G)utOfSerw eJ(utOfSerwc;e CselectAmount]

{final}

4

IBM Software Group |

StatelViachinerseaernniuon

{extended}
FlexibleATM

{extended} \\

\ otherAmount

/

[enterAmount \

rejecy' ésok |
Y

IBM Software Group |

SUMmary,

* Model-driven methods have matured and are being used
successfully today

= (Greater use of automation - but no real change in method
= Significant increases in productivity and reliability

* The "next generation” UML is characterized by:
= Small number of new features + consolidation of existing ones

= Scaleable to large software systems (architectural modeling
capabilities)

= Modular structure for easier adoption (core + optional specialized sub-
languages)

= |ncreased semantic precision and conceptual clarity
= Suitable foundation for MDA (executable models, full code generation)

+ Expected adoption: June 2003 (first level of adoption)

70 IBM Software Group |- software

———————
QUESTIONS?

(bselic@rational.com)

A copy of these slides can be obtained at:

http://www.rationalsoftware.com.cn

7 IBM Software Group |- software

	Brass Bubbles: A Preview of UML 2.0 and MDA
	Presentation Overview
	A Skeptic¡¯s View of Software Models¡­
	What Engineers Do
	Engineering Models
	Characteristics of Useful Models
	How Models are Used
	A Problem with Models
	Models of Software
	Evolving Models
	The Remarkable Thing About Software
	Model-Driven Style of Development
	Modeling versus Programming Languages
	Covering the Full Range of Detail
	Example Spec
	How We Learn From Models
	MDD Implications
	The OMG¡¯s Model Driven Architecture
	The Languages of MDA
	Making Models Executable
	Ability to Execute Abstract/Incomplete Models
	Advantages of Executable Models
	What is Automatic Code Generation?
	Manual Modification of Generated Code
	Reasons for Manual Modification
	Some Things to Look For
	Is it Really Worthwhile?
	Pragmatics: The Numbers
	Pragmatics: Integration
	UML: The Foundation of MDA
	IMPORTANT DISCLAIMER!
	Formal RFP Requirements
	Approach: Evolutionary
	Language Structure
	Infrastructure: Consolidation of Concepts
	Infrastructure: Behavior Harmonization
	Structured Classes: External View
	Ports
	Port Semantics
	Protocols: Reusable Interaction Sequences
	Modeling Protocols with UML 2.0
	Associating Protocols with Ports
	Assembling Communicating Objects
	Structured Classes: Internal Structure
	Structure Refinement Through Inheritance
	Overview of New Features
	Example: Interaction Context
	Interaction Occurrences
	Combined Fragments and Data
	Interaction Overview Diagram
	Activities
	Activities: New Semantic Foundation
	Hierarchical Partitions
	Extended Concurrency Model
	Activities: Token Queuing Capabilities
	State Machine Improvements
	Modular Submachines: Definition
	Modular Submachines: Usage
	Specialization
	Example: State Machine Redefinition
	State Machine Redefinition
	Summary

