
1

Model Driven Architecture

Krzysztof Czarnecki, University of Waterloo

czarnecki@acm.org

2003-2004 Czarnecki, Frankel, Graff, Helsen, 2

This lecture uses parts of
– OOPSLA’03 Tutorial on “Model-Driven Architecture” by 

Krzysztof Czarnecki and Petter Graff
– GPCE’03 Tutorial on Generative Programming by Krzysztof 

Czarnecki, Ulrich Eisenecker, and Simon Helsen
– OOPSLA’04 Tutorial on “Model-Driven Architecture” by 

Krzysztof Czarnecki, David Frankel, and Petter Graff



2

2003-2004 Czarnecki, Frankel, Graff, Helsen, 3

Outline

Motivation and MDA Basics

Metamodeling

Model Transformation

Case Study

Tools

Discussion and Further Readings

2003-2004 Czarnecki, Frankel, Graff, Helsen, 4

MDA From 30.000 Feet

Use of platform independent models (PIM) as specification

Transformation into platform specific models (PSM) using tools

Platform
Independent
Models

Transformer Implementation

Transformation
Knowledge



3

2003-2004 Czarnecki, Frankel, Graff, Helsen, 5

MDA From 30.000 Feet

A PIM can be retargeted to different platforms

Not the only reason why MDA might be of interest to you…

Platform
Independent
Models

Transformer J2EE
Implementation

Transformation
Knowledge

.NET
Implementation

…

2003-2004 Czarnecki, Frankel, Graff, Helsen, 6

Automation in Software Development

Requirements Requirements Requirements

Implementation

Source in a
general-purpose
language, e.g.,

Java or C++

Implementation

(may generate
code in

Java or C++)

Source in
domain-specific
language (DSL)

Implementation

(may generate
code in

Java or C++)

Source in
domain-specific
language (DSL)

High-level spec
(functional and
nonfunctional)

Manually
implement

Manually
implement

Manually
implement

Compile Compile Compile

Compile Compile

Implement 
with
Interactive,
automated
support



4

2003-2004 Czarnecki, Frankel, Graff, Helsen, 7

Basic MDA Pattern

Generic transformations
– Implement best practices, 

architectural and design 
patterns, technology patterns 
(e.g., J2EE patterns), 
optimizations, etc.

Additional information
– Adjust the transformation 

globally
– Similar to compiler options

Model markup
– Direct the transformation of 

particular model elements
– Not part of the PIM
– Different platform mappings 

may require different markup
– Similar to compiler pragmas

PIM

PSM

• Additional
information

• Model markup

Transformation
Generic

transformation

2003-2004 Czarnecki, Frankel, Graff, Helsen, 8

Basic MDA Pattern

The basic pattern can be 
applied multiple times

PIMs and PSMs are relative 
notions
– “Someone’s PIM can be 

someone else’s PSM”

Platform independence is 
relative, too
– It’s a scoping issue
– It’s a strategic decision



5

2003-2004 Czarnecki, Frankel, Graff, Helsen, 9

Role of Models

Capture design information that is usually absent 
from code and lost during development

Basis for
– System generation
– Analysis
– Simulation
– Test generation
– Documentation generation
– …

Domain-specificity of a modeling language 
strengthens its capabilities for generation, 
optimization, early error detection, etc.

2003-2004 Czarnecki, Frankel, Graff, Helsen, 10

Viewpoints and Views

System models are 
organized into multiple views
– Different abstraction levels
– Different aspects (e.g., 

workflow, domain concepts, 
deployment)

Each view conforms to some 
viewpoint that prescribes 
some appropriate modeling 
notation

Each viewpoint is relevant to 
some stakeholder



6

2003-2004 Czarnecki, Frankel, Graff, Helsen, 11

Many different views…

2003-2004 Czarnecki, Frankel, Graff, Helsen, 12

Code

Code

Impact of MDA on the Development Process

Requirements

Analysis

Design

Coding

Testing

Deployment

Mostly
text

Diagrams
and text

Diagrams
and text

Iterative
process
(in theory)

Programmer’s
shortcut

Code

Code

Requirements

Analysis

Design

Coding

Testing

Deployment

Mostly
text

PSM

PIMMDA
process

Source: Kleppe et al 2003

Traditional lifecycle MDA lifecycle



7

2003-2004 Czarnecki, Frankel, Graff, Helsen, 13

MDA and Agile Development

MDA is appropriate for agile development

Models are not just additional documentation 
artifacts, but they are the actual source

Instant feedback through simulation / rapid code 
generation

Model-based testing

Domain-specific modeling languages may simplify 
communication with your customer

2003-2004 Czarnecki, Frankel, Graff, Helsen, 14

Separation of Concerns in MDA

PIM development

Mapping decisions
– Markup by an architect

Development of DSLs and reusable transformations

Platform development

Development of modeling tools and generator 
infrastructures



8

2003-2004 Czarnecki, Frankel, Graff, Helsen, 15

MDA-Related Standards

OMG Standards
– Modeling – UML
– Metamodeling – MOF
– Action semantics
– Model interchange – XMI
– Diagram interchange
– Human-readable textual notation – HUTN
– Model-based testing and debugging
– (CWM)
– …

Java Community Process (JCP) Standard
– Java Metadata Interface – JMI

2003-2004 Czarnecki, Frankel, Graff, Helsen, 16

Benefits of MDA

Preserving the investment in knowledge
– Independent of implementation platform
– Tacit knowledge made explicit

Speed of development
– Most of the implementation is generated 

Quality of implementation
– Experts provide transformation templates

Maintenance and documentation
– Design and analysis models are not abandoned after writing
– 100% traceability from specification to implementation



9

2003-2004 Czarnecki, Frankel, Graff, Helsen, 17

Outline

Motivation and MDA Basics

Metamodeling

Model Transformation

Case Study

Tools

Discussion and Further Readings

2003-2004 Czarnecki, Frankel, Graff, Helsen, 18

Metamodeling

Meta Object Facility (MOF)

Technology Mappings for MOF

The Role of UML in MDA

Defining Modeling Languages in MDA



10

2003-2004 Czarnecki, Frankel, Graff, Helsen, 19

Meta Object Facility (MOF)

MOF is a standard metamodeling framework for 
model and metadata driven systems, e.g.,
– Modeling and development tools
– Data warehouse systems
– Metadata repositories

• Metadata = data about data, e.g., database schemas; but also: 
UML models, data transformation rules, APIs expressed in IDL, 
MIDL, C#, Java, WSDL, etc., business process and workflow 
models, product configuration descriptors and tuning 
parameters, information that drives deployment tools and 
runtime management, …

MOF is the MDA’s basic mechanism for defining 
modeling languages

2003-2004 Czarnecki, Frankel, Graff, Helsen, 20

The Basic Premises

There will be more than one modeling language
– For different system aspects and levels of abstraction

Different languages have different modeling constructs
– For relational data modeling: table, column, key, etc.
– For workflow modeling: activity, performer, split, join, etc.
– For OO class modeling: class, attribute, operation, association, etc.

A modest degree of commonality is achievable by using one language 
to define the different languages
– For example, use same means to describe that…

• a table owns its columns
• a class owns its attributes and operations
• a state machine owns its transitions



11

2003-2004 Czarnecki, Frankel, Graff, Helsen, 21

Metamodeling in MOF

Metamodel
– Model of a modeling language
– Definition of syntax and semantics

MOF provides a set of concepts to define 
metamodels; in particular
– Class diagrams to define abstract syntax and
– OCL to define semantics of a modeling language

Example: UML Metamodel
– Semantics is defined using a mixture of OCL and informal 

text

2003-2004 Czarnecki, Frankel, Graff, Helsen, 22

Fragment of the UML 1.4 Metamodel

{ordered}

StructuralFeature
multiplicity : Multiplicity
changeability : ChangeableKind
targetScope : ScopeKind
ordering : OrderingKind

Attribute
initialValue :  Expression

Class
isActive : Boolean

Feature
ownerScope : ScopeKind
visibility : VisibilityKind

Classifier

Operation
concurrency :  Cal lConcurrencyKind
isRoot :  Boolean
isLeaf : Boolean
isAbstract : Boolean
specificat ion : String

BehavioralFeature
isQuery : Boolean

+feature

0...

+owner

0..1

0...

0..1

GeneralizableElement
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean

Namespace

ModelElement
name : Name

0..*



12

2003-2004 Czarnecki, Frankel, Graff, Helsen, 23

4-Level Metamodeling Framework

Information

Models

Metamodels

Meta-Metamodels

M0

M1

M2

M3

UML Class
Metamodel

MOF
Metamodel

UML Class
Model

ER
Metamodel

ER
Model

Tables:

ID Name Age
#1
…

Joe
…

55
…

:Customer
Name = Joe
Age = 55

Objects:

…

…

…

2003-2004 Czarnecki, Frankel, Graff, Helsen, 24

Overview of The MOF 1.4 Metamodel



13

2003-2004 Czarnecki, Frankel, Graff, Helsen, 25

Terminology Confusion…

“Meta” can be confusing…

“The MOF Metamodel” = MOF metamodel of MOF
– Technically, this would be a “meta-metamodel”, but such a 

terminology complication is usually avoided
– Sometimes also called “the MOF Model”

MOF metamodels (e.g., the UML Metamodel)
– Sometimes also called “MOF models”

If you work in the 4-level framework, confusion is best 
avoided by stating the level, e.g.,
– M3-Level model
– M2-Level model
– M1-Level model

2003-2004 Czarnecki, Frankel, Graff, Helsen, 26

Always 4 Levels?

In general, we can have any number of levels and we 
could start counting them anywhere

Most systems use between 2 and 4, e.g.,
– Some reflective systems use 2 levels (Classes/Objects)
– XML uses 3 levels (XML Schema for Schemas -> XML 

Schema -> XML)

MOF is most often used to model modeling 
languages, which implies 4 levels
– But it doesn’t have to be used for with 4 levels (e.g., MOF / 

MOF model of XML / XML)



14

2003-2004 Czarnecki, Frankel, Graff, Helsen, 27

Relationship Between MOF and UML

MOF is distinct from UML, but for most practical 
purposes it can be viewed as a subset of the UML 
class model notation

UML class modeling constructs missing in MOF 
include
– Association classes
– Qualifiers
– Dependencies
– N-ary associations (will become available in MOF 2.0)

2003-2004 Czarnecki, Frankel, Graff, Helsen, 28

Alignment Between MOF and UML

UML 1.4 and MOF 1.4 (current standards) are 
misaligned
– E.g., composition has a different meaning in both notations
– UML 1.4 is specified using a UML subset which is not MOF

UML 2.0 and MOF 2.0 are aligned
– MOF 2.0 imports the Core package from UML 2.0 

Infrastructure
– UML 2.0 is defined using MOF 2.0



15

2003-2004 Czarnecki, Frankel, Graff, Helsen, 29

MOF is Not Just for OO Languages

MOF uses object-oriented modeling to define 
modeling constructs

But the modeling constructs it defines need not be 
object-oriented

2003-2004 Czarnecki, Frankel, Graff, Helsen, 30

Using MOF Subclassing to Define a Metamodel

ModelElement
name : String

ColumnTable +table

1

+column

1..*1..*1



16

2003-2004 Czarnecki, Frankel, Graff, Helsen, 31

Using MOF to Define Subclassing in a Metamodel

context Table inv:
superclass.column->forAll 

(superClassColumn | self.column->includes (superClassColumn) )

Table

ModelElement
name : String

ColumnTable
1..*1

+column

1..*

+table

1

0..*

0..*

+superClass

+subClass

2003-2004 Czarnecki, Frankel, Graff, Helsen, 32

MOF – Discussion

Benefits
– Standard way to define modeling languages
– “MOF is not just for OO”

• I.e., can be used to define non-OO modeling languages
– Provides model serialization and APIs for model manipulation for

free

Caveats
– No means to declare concrete syntax and editing behavior
– Misalignment with UML

• Fixed in version 2.0, but caution needed with current 1.4 versions
– Scoped not just for creating modeling languages, but also for 

metadata management
• E.g., Eclipse provides a simple, proprietary metamodeling framework –

Eclipse Modeling Framework (EMF); the centerpiece of EMF is Ecore, 
which corresponds to MOF



17

2003-2004 Czarnecki, Frankel, Graff, Helsen, 33

Metamodeling

Meta Object Facility (MOF)

Technology Mappings for MOF

The Role of UML in MDA

Defining Modeling Languages in MDA

2003-2004 Czarnecki, Frankel, Graff, Helsen, 34

Standard Technology Mappings for MOF

Access

Export
Client

Java mapping - JMI
CORBA mapping (see the MOF spec)
WSDL mapping (in progress)
…

XML mapping – XMI
Human Usable Textual Notation – HUTN
…

Import

Internal Model
Representation

MOF Metamodel

APIs for model manipulation
(incl. implementation)

Serialization of a model

External
format



18

2003-2004 Czarnecki, Frankel, Graff, Helsen, 35

Example

PersonPersonPerson
Name : String
Age: Integer

Name : String
Age: Integer

public interface Person … {
public String getName() …;
public int getAge() …;

}

Interface Person {
public String name;
public int Age;

}

<xsd:complexType name="Person">
<xsd:choice minOccurs=“0” maxOccurs=“unbounded”>

<xsd:element name=“Name” type=“xsd:string”/>
<xsd:element name=“Age” type=“xsd:int”/>
…

</xsd:choice>
…

</xsd:complexType>

<Person>
<Name> John </Name>
<Age> 30 </Age>

</Person>

JMI

MOF/IDL

XMI

XMI Schema

XMI Document

2003-2004 Czarnecki, Frankel, Graff, Helsen, 36

XML Metadata Interchange (XMI)

A standard way of mapping objects to XML
– XML is not object-oriented

Uses MOF as the underlying object model

Defines two sets of rules
– One set for serializing objects to XMI documents
– Another set for generating XML Schemas from models

• Older versions of XMI defined set of rules for generating DTDs

May be used for serializing objects at meta-levels, e.g., data, 
metadata, metametadata, etc.

Note: XMI is not just for UML
– Consequence: a UML tool will usually only accept UML XMI (i.e., 

XMI conforming to the UML metamodel)



19

2003-2004 Czarnecki, Frankel, Graff, Helsen, 37

Serialization at Different Meta-Levels

M0

M1

M2

M3

UML Class
Metamodel

The MOF
Metamodel

UML Class
Model

:Customer
Name = Joe
Age = 55

XMI Document

XMI Schema

XMI Document

XMI Schema

XMI Document

XMI Schema

XMI Document

Exchanging metamodels

Exchanging models

Note: Generating XMI Schema at M1 level and XMI Document at M0
works for class models, but not for other kinds of models, say statecharts!

Exchanging data

(for class models)

2003-2004 Czarnecki, Frankel, Graff, Helsen, 38

Writing Objects Using XMI

An object maps to an XML element

Object identity implemented using XML attribute
– “id” (unique within one document) or
– “uuid” (globally unique);
– May also define “label” (not necessarily unique)

Data attributes map to XML attributes or nested XML 
elements (latter required if multiple or nil)

Object attributes map to nested XML elements
– Object attribute name becomes XML element name
– Specify type using XML attribute “type” (for instances of 

subtypes)

Object composition maps like object attributes



20

2003-2004 Czarnecki, Frankel, Graff, Helsen, 39

Writing Objects Using XMI

References (instances of an association end) map to 
XML attributes or elements
– Single XML attribute of type IDREF with the name of the 

association end and a list of “id”s (for references within the 
same document) 

– One XML element per reference (if using URIs to refer to 
other documents or within the same document)

Additional (e.g., tool-specific) information in an 
element with the XMI tag “Extension”

MOF class names may need conversion into legal 
XML names

XMI has a built-in diff mechanism

2003-2004 Czarnecki, Frankel, Graff, Helsen, 40

Generating Schemas From Models

XMI 2.0 is XML Schema based; XMI 1.0 was DTD based
Rules for schema generation are more complex than those for 
object serialization
Model concepts to be mapped to XML Schema concepts include
– Packages
– Classes
– Datatypes
– Attributes
– Association ends
– Inheritance

Model tags can be used to customize generation (also for docs)
– E.g., nsURI and nsPrefix are tags used to specify an XML 

namespace for a package (the generated schema will require 
conforming docs to use this namespace)

The mapping looses information (e.g., types of object attributes
are lost)



21

2003-2004 Czarnecki, Frankel, Graff, Helsen, 41

Standard XMI Documents

OMG website provides
– XML schema for MOF metamodels
– XMI document containing the MOF metamodel (uses the MOF schema)
– XMI document containing the UML metamodel (uses the MOF schema)
– XML schema for UML models

An XMI document containing your own MOF metamodel would conform 
to the OMG MOF schema

Metamodels can be serialized as MOF XMI or UML XMI using a MOF 
profile

– E.g., uml2mof tool that comes with MDR (the NetBeans MOF repository)

Beware: different version combinations of MOF/UML/XMI
– E.g., MDR supports XMI 1.1/1.2 and MOF 1.3/1.4
– EMF uses XMI 2.0 (XMI 2.0 production rules result in more compact 

representation than XMI 1.1)

2003-2004 Czarnecki, Frankel, Graff, Helsen, 42

XMI – Discussion

Benefits
– Standard way to exchange models and metadata
– Data format for tool interoperability

Caveats
– Not for human consumption

• Human-Usable Textual Notation (HUTN)
– Standard for mapping MOF models to human readable text
– Parameterized mapping

– Model evolution problem
• Even the slightest change to a metamodel renders existing XMI 

docs invalid



22

2003-2004 Czarnecki, Frankel, Graff, Helsen, 43

Java Metadata Interface – JMI

JMI is a Java Community Process standard providing
– reflective Java API to explore any MOF model dynamically
– a set of rules to generate Java API customized for a given 

MOF metamodel
• Generated interfaces inherit from the reflective interfaces

The semantics of both Reflective and Generated 
APIs are specified such that vendors can create not 
just the interfaces but also their implementation

Tradeoffs
– Reflective API is more flexible, but slower and the client 

code becomes quickly hard to read
– Generated APIs are faster, simpler to use, and result in 

cleaner code, but are less flexible

2003-2004 Czarnecki, Frankel, Graff, Helsen, 44

Reflective and Generated APIs

Source: JMI Spec



23

2003-2004 Czarnecki, Frankel, Graff, Helsen, 45

MOF Repositories

Uniform treatment of M3, M2, 
and M1 models
Multiple interfaces

– IDL Reflective
– IDL Generated
– JMI Reflective
– JMI Generated
– …

Import/export to/from JMI
Internal storage

– Memory, File, RDBMS, 
OODBMS

– Ability to plug-in a DB
– …

Open source MOF repositories
– MDR, NSMDF

M3

M2

M2

M1

M1

XMI

XMI

XMI

XMI

XMI

…

…

Based on Frankel2003

2003-2004 Czarnecki, Frankel, Graff, Helsen, 46

Human Usable Textual Notation

Class ApartmentBuilding extends Building

{

attribute address String;

…

}

Class Apartment

{

…

}

Association Building_Apartment

{

Association End aptBuilding type ApartmentBuilding [aggregation_composite] 1..1

Association End apt         type Apartment         [isOrdered,isNavigable] 1..*

}

…



24

2003-2004 Czarnecki, Frankel, Graff, Helsen, 47

Metamodeling

Meta Object Facility (MOF)

Technology Mappings for MOF

The Role of UML in MDA

Defining Modeling Languages in MDA

2003-2004 Czarnecki, Frankel, Graff, Helsen, 48

The Role of UML in MDA

MDA does not require UML

Applications of UML in MDA
– General-purpose modeling language
– Basis for extension and reuse
– A way to provide concrete graphical syntax with tool support 

today (will loose importance in the long run)



25

2003-2004 Czarnecki, Frankel, Graff, Helsen, 49

UML Extension Mechanisms

UML acknowledges that it cannot provide predefined support for 
every application domain
– Common dilemma of general-purpose languages

The standard can be specialized for different domains using 
extensibility mechanisms
– “UML as a family of languages”

UML for Real Time

UML Standard

UML for CORBA …

Extensibility 
Mechanism

2003-2004 Czarnecki, Frankel, Graff, Helsen, 50

UML Profile Mechanism

Profiling is the standard, built-in extension 
mechanism in UML

A profile consists of stereotypes, tagged values and 
OCL constraints

An extension conforming to the UML standard cannot 
violate the standard UML semantics
– Extensions can only refine the semantics of the UML for a 

specific domain

Standard UML semanticsStandard UML semanticsStandard UML semantics

refined semantics
(valid)
refined semanticsrefined semantics
(valid)(valid)

different semantics
(NOT valid)
different semanticsdifferent semantics
(NOT valid)(NOT valid)

Source: OMG’s UML Tutorial



26

2003-2004 Czarnecki, Frankel, Graff, Helsen, 51

UML Profile Mechanism

Stereotypes
– Used to refine meta-classes (or other stereotypes) by 

defining supplemental semantics

Constraints
– Predicates (e.g., OCL expressions) that reduce semantic 

variation
– Can be attached to any meta-class or stereotype

Tagged Values
– Individual modifiers with user-defined semantics 
– Can be attached to any meta-class or stereotype

Source: OMG’s UML Tutorial

2003-2004 Czarnecki, Frankel, Graff, Helsen, 52

Example of a Profiled UML Model

<<EntityBean>>
Customer

{persistence = BMP}
<<PrimaryKey>> oid : java.lang.Long

+lastName : java.lang.String
+firstName : java.lang.String

<<EntityBean>>
Account

{persistence = BMP}
+number : java.lang.String

+balance : java.math.BigDecimal
+book(amount : java.math.BigDecimal)

+owner +account

0..n1..n



27

2003-2004 Czarnecki, Frankel, Graff, Helsen, 53

Stereotypes

Used to define specialized model elements based on a core 
UML model element

Defined by
– Base metaclasses (or stereotype)

• What element is specialized?
– Constraints:

• What is special about this stereotype?
– Required tags (0..*)

• What values does this stereotype need to know?
– Icon 

• How should it appear in a model?

A model element can be stereotyped in multiple different ways

1.4 Source: OMG’s UML Tutorial

2003-2004 Czarnecki, Frankel, Graff, Helsen, 54

Example

Capsule: A special type of concurrent object used in 
modeling certain real-time systems

By definition, all classes of this type:
– are active (concurrent)
– have only features (attributes and operations) with protected 

visibility
– have a special “language” characteristic used for code generation 

purposes

In essence, a constrained form of the general UML 
Class concept

Source: OMG’s UML Tutorial



28

2003-2004 Czarnecki, Frankel, Graff, Helsen, 55

Example: Stereotype Definition

Using a tabular form:

Stereotype Base Class Tags Constraints

«capsule» Class language

isActive = true;

self.feature->select(f |
f.oclIsKindOf(Operation))-> 

forAll(o | 
o.elementOwnership.visibility
= #protected)

Tag Stereotype Type Multiplicity
language «capsule» String 0..1

1.4 Source: OMG’s UML Tutorial

2003-2004 Czarnecki, Frankel, Graff, Helsen, 56

Stereotype Notation

Several choices

«capsule»
aCapsuleClass

««capsulecapsule»»
aCapsuleClassaCapsuleClass aCapsuleClassaCapsuleClassaCapsuleClass

Stereotype
icon

Stereotype
icon

(a) with (a) with guillemetsguillemets
((““gweegwee--maysmays””))

(b) with icon(b) with icon

(c) (c) iconifiediconified formform
Source: OMG’s UML Tutorial



29

2003-2004 Czarnecki, Frankel, Graff, Helsen, 57

Extensibility Method

Refinements are specified at the Model (M1) level but apply to the 
Meta-Model level (M2)

– avoids need for “meta-modeling” CASE tools
– can be exchanged with models

«Capsule»««CapsuleCapsule»»
(M1)(M1)

(M2)(M2)ClassClassClass AssociationAssociationAssociation

CustomerOrderCustomerOrderCustomerOrder

item
quantity
itemitem
quantityquantity

CustomerCustomerCustomer

ididid

«capsule»
aCapsuleClass

««capsulecapsule»»
aCapsuleClassaCapsuleClass

Source: OMG’s UML Tutorial

2003-2004 Czarnecki, Frankel, Graff, Helsen, 58

Graphical Definition

Alternative to the tabular form
– defined in a user (M1) model

«metaclass»
Class

«stereotype»
capsule

Tags
language : String

«stereotype»

1.4 Source: OMG’s UML Tutorial



30

2003-2004 Czarnecki, Frankel, Graff, Helsen, 59

When to Use Stereotypes?

Why not use normal subclassing instead?

Use stereotypes when
– additional semantic constraints cannot be specified through 

standard M1-level modeling facilities
• e.g. “all features have protected visibility”

– the additional semantics have significance outside the scope 
of UML

• e.g. instructions to a code generator 
“debugOn = true”

Source: OMG’s UML Tutorial

2003-2004 Czarnecki, Frankel, Graff, Helsen, 60

Tagged Values

Consist of a tag and value pair

Typed with a standard data type or M1 class name

Typically used to model stereotype attributes
– Additional information that is useful/required to implement/use the 

model
May also be used independently of stereotypes
– e.g., project management data 

(“status = unit_tested”)

1.4 Source: OMG’s UML Tutorial



31

2003-2004 Czarnecki, Frankel, Graff, Helsen, 61

UML Profiles

A package of related extensibility elements that 
capture domain-specific variations and usage 
patterns
– A domain-specific interpretation of UML

Profiles defined by the OMG:
– EDOC
– Real-Time
– CORBA
– ...

Profile defined by the JCP:
– EJB

Source: OMG’s UML Tutorial

2003-2004 Czarnecki, Frankel, Graff, Helsen, 62

UML – Discussion

Unified “best of modeling”

Has the advantages and disadvantages of a general-
purpose modeling language

Extremely large and complex
– Standardized by inclusion and consensus

Several ways to do the same thing

Requires some method or an approach to be usable 
in practice

UML2 reengineered to be more modular
– UML 1.4 was hard to reuse in metamodeling
– Strong shift towards the “family of languages” paradigm



32

2003-2004 Czarnecki, Frankel, Graff, Helsen, 63

Metamodeling

Meta Object Facility (MOF)

Technology Mappings for MOF

The Role of UML in MDA

Defining Modeling Languages in MDA

2003-2004 Czarnecki, Frankel, Graff, Helsen, 64

Approaches to Defining Modeling 
Languages in MDA

Lightweight UML extension
– Extend UML through a profile
– Appropriate for languages that are very close to UML
– Extension stays within the UML semantics

Heavyweight UML extension
– Extend the UML metamodel directly through MOF mechanisms

• E.g., by defining new subclasses in the metamodel)
– Most appropriate if a significant extension necessary and/or only 

some parts of a metamodel need to be reused

Create a new MOF metamodel
– Appropriate for languages that are completely different from UML

• May still reuse some parts of UML model per copy&paste



33

2003-2004 Czarnecki, Frankel, Graff, Helsen, 65

Defining Languages

Defining a language involves
– Define abstract syntax
– Define concrete syntax(es)
– Define semantics

• specify semantics
• provide an implementation

In the MOF metamodel approach
– MOF allows specifying abstract syntax and semantics
– Implementation can be provided through model 

transformation (that eventually map a model to some 
programming language)

– MOF has currently no support for concrete syntax
• Extensible model editor (as in Meta CASE tools)
• Mapping to a UML profile

2003-2004 Czarnecki, Frankel, Graff, Helsen, 66

Example: Feature Modeling

Modeling notation used in Product-Line Engineering

Captures common and variable features in a family of 
systems

 

Automatic Manual 

Pulls trailer Car body 

Electric Gasoline 

Transmission Engine 

Car 

mandatory 
optional 

alternative 
or 

Legend: 



34

2003-2004 Czarnecki, Frankel, Graff, Helsen, 67

Feature Models vs. UML Class Models

Feature models are not part-of hierarchies

Features are not classes, but properties
– Don’t have instances

Connections between features are not associations
– They are interpreted together with adornments and define 

possible feature selection choices during configuration

Most appropriate strategy: MOF metamodel

2003-2004 Czarnecki, Frankel, Graff, Helsen, 68

Sample Metamodel for Feature Modeling 
(Abstract Syntax)

FeatureModel
FeatureNode
Name : String Child

Cardinality
Min: Integer
Max: Integer

Group
Min: Integer
Max: Integer

0..1 0..1 0..*

0..12..*
In BNF:

FeatureModel ::= Root
Root ::= FeatureNode
FeatureNode ::= Name (Child)*
Child ::= Cardinality | Group
Cardinality ::= Min Max FeatureNode
Group ::= Min Max Cardinality Cardinality (Cardinality)*
Name ::= String
Min ::= Number
Max ::= Number

Root

0..1

0..1

1



35

2003-2004 Czarnecki, Frankel, Graff, Helsen, 69

In an Ideal MDA World…

You draw a MOF metamodel in a MDA modeling tool 
(including well-formedness rules in OCL)

Annotate it with declarative statements about 
concrete syntax and editing behavior

Provide semantics by defining transformations to 
some lower level modeling notations (or code)

Package all the above as a DSL plug-in

Load the DSL plug-in in the MDA modeling tool as an 
extension

Load a number of other DSL plug-ins to cover the 
necessary viewpoints of your application

2003-2004 Czarnecki, Frankel, Graff, Helsen, 70

The Result Might Look Like This



36

2003-2004 Czarnecki, Frankel, Graff, Helsen, 71

Existing Meta CASE Tools

…come close to this vision

Examples
– MetaEdit+ (MetaCase Consulting)
– GME (ISIS, Vanderbilt University)
– ATOM (McGill University)

However…
– They all use their own metamodeling notations rather than 

MOF
• GME comes closest

– Uses a special UML profile
– Has an OCL engine. i.e., will validate a model against well-

formedness constraints in the metamodel

– The control of concrete syntax is still limited
• MetaCASE is strongest in this respect

2003-2004 Czarnecki, Frankel, Graff, Helsen, 72

Metamodel for Feature Modeling in GME 



37

2003-2004 Czarnecki, Frankel, Graff, Helsen, 73

Feature Model in GME

2003-2004 Czarnecki, Frankel, Graff, Helsen, 74

Sample Visual DSL in MetaEdit+



38

2003-2004 Czarnecki, Frankel, Graff, Helsen, 75

Mapping To UML Profiles

Any MOF M1 model can be mapped to a profiled UML model
– The UML semantics of the profiled diagram is irrelevant
– The resulting concrete syntax may be more or less clumsy or 

compact
– Limitations of current UML tools

• E.g., some would not allow attaching a stereotype to certain model 
elements (e.g., association ends)

– Unsatisfactory solution in the long run
This works very well for MOF itself (because of its alignment 
with UML)
– Draw the metamodel using the MOF profile in an UML tool

• MOF profile constrains which UML elements may be used
• Standard MOF profile defined in EDOC, but most tools need their own

– Use a tool to convert the MOF profiled UML XMI to MOF XMI
• The result can be used for MOF tools such as MOF repositories

Tools for automatically converting between MOF M1 XMI and 
profiled UML XMI based on a mapping are available

2003-2004 Czarnecki, Frankel, Graff, Helsen, 76

Feature Models Rendered as Profiled UML

«feature»
Car

«feature»
CarBody

«feature»
Transmission

«feature»
Engine

«feature»
PullsTrailler

«feature»
Automatic

«feature»
Manual

«feature»
Gasoline

«feature»
Electric

«xorgroup»
XOR

«orgroup»
OR

1 1 1 0..1

1 1 1 1



39

2003-2004 Czarnecki, Frankel, Graff, Helsen, 77

Discussion

Profiles were defined to make life of tool vendors 
easier

MOF based language definitions will become more 
important in the long run

2003-2004 Czarnecki, Frankel, Graff, Helsen, 78

Outline

Motivation and MDA Basics

Metamodeling

Model Transformation

Case Study

Tools

Discussion and Further Readings



40

2003-2004 Czarnecki, Frankel, Graff, Helsen, 79

Role of Model Transformations in MDA

Model compilation
– Automatic PIM to PSM

Model query and view
– Synchronization between models (propagation of change)

• Different levels of abstraction (high-level vs. detailed)
• Different system aspects (e.g., business objects, workflow)

Model evolution
– PIM to PIM (e.g., refactoring)

2003-2004 Czarnecki, Frankel, Graff, Helsen, 80

General Transformation Model

Model 1

Model 2

Metamodel A

Metamodel B

Transformation
Definition

Source language

Target language

Transformation
Language

MOFTransformation
Tool

Refers To

Refers To

Input

Output

Is Written In

Ex
te

nd
s



41

2003-2004 Czarnecki, Frankel, Graff, Helsen, 81

Approaches to Model Transformations

Major categories of approaches [Czarnecki&Helsen03]
– Model-to-code

• Visitor-based
• Template-based (most MDA tools today)

– Model-to-model
• Direct manipulation (e.g., through JMI)
• Relational approach (aka logic-based programming)
• Graph-transformation approaches
• Structure-driven approaches (source or target)

Several areas of variation, e.g.,
– Representation of transformation rules

• Declarative and/or imperative logic; use of patterns (graph or string)
– Application control (where in  model)
– Scheduling mechanisms (execution order of transformations)
– Reversibility (esp. for synchronization)
– Reuse and extension mechanisms for transformations
– Modularity

2003-2004 Czarnecki, Frankel, Graff, Helsen, 82

Example - Overview

Transformation between UML class diagrams
– Relatively simple and not very realistic
– But…

• Illustrates main ideas of MDA
• Details of transformation already elaborate



42

2003-2004 Czarnecki, Frankel, Graff, Helsen, 83

Simple MDA Mapping

PIM: UML class diagram
– Analysis level
– Classes, attributes, associations, operations

PSM: UML class diagram
– Implementation level
– No associations, no public attributes

2003-2004 Czarnecki, Frankel, Graff, Helsen, 84

PIM Instance

Example class diagram at the analysis level



43

2003-2004 Czarnecki, Frankel, Graff, Helsen, 85

Requested Changes

Transformations
– Public attributes become private

• Access methods to private attributes
– Association ends modeled as private attributes

• Access methods for these new attributes

Issues to address
– What if multiplicity ≠ 1?
– Form of access methods?

2003-2004 Czarnecki, Frankel, Graff, Helsen, 86

PSM Instance

Example class diagram at the implementation level



44

2003-2004 Czarnecki, Frankel, Graff, Helsen, 87

PSM Decisions

Decisions  for PSM are domain and/or platform 
specific
– E.g., use java.utils.HashSet instead of Set

MDA particularly strong whenever
– Platform specific knowledge complex
– Platform specific details mostly orthogonal to platform 

independent details 

2003-2004 Czarnecki, Frankel, Graff, Helsen, 88

For Our Example …

… we provide
– a simplified UML meta-model in MOF
– a description of transformations in natural language
– a more formal description based on graph transformations



45

2003-2004 Czarnecki, Frankel, Graff, Helsen, 89

Simplified MOF Meta-model of UML

– In the actual UML meta-model
• many more classes and associations
• many OCL constraints to refine semantics

– PIM/PSM UML-diagrams: pretty-printed versions of instances of this meta-
model.

2003-2004 Czarnecki, Frankel, Graff, Helsen, 90

Transformation in Natural Language

For each class in PIM, we have a class in PSM with the same 
name

For each public attribute attrName in a PIM-class, we have the 
following features in the associated PIM-class:
– A private attribute with name attrName

– A public operation with name getattrName, no parameters, and 
the type of the PIM-attribute as return type

– A public operation with name setattrName, no return type, and 
one parameter of the name attrName with a type equal to the type 
of the PIM-attribute.

Etc.

� Natural language is obviously non-executable …



46

2003-2004 Czarnecki, Frankel, Graff, Helsen, 91

Graph Transformation Language

For the purpose of our example, we select a simple 
graph transformation language (GTL)
– Simplified graph transformation sufficient 
– More complex formalism may be required for more complex 

examples
– Informal Presentation

• For a formal treatment, see a.o. [VarroVarroPataricza2002, 
AgrawalKarsaiShi2003, BraunMarschall2003, 
AppukuttanClarkReddyTrattVenkatesh2003, etc.]

2003-2004 Czarnecki, Frankel, Graff, Helsen, 92

GTL Informal Explanation

Both LHS and RHS ≈ model graph patterns with  (meta-) 
variables

LHS pattern has possibly extra constraints

RHS graph-pattern enriched with simple calculus on primitive 
types (e.g., string concatenation)

All rules apply concurrently on all possible matches in PIM

Model destructively transformed in place as follows:
1. Keep classes/associations that match
2. Remove classes and associations that do not match
3. Add new associations and classes

RHSLHS



47

2003-2004 Czarnecki, Frankel, Graff, Helsen, 93

Transformation Rule 1

2003-2004 Czarnecki, Frankel, Graff, Helsen, 94

Transformation Rule 2

UPPER1 ≤ 1 and UPPER2 ≤ 1



48

2003-2004 Czarnecki, Frankel, Graff, Helsen, 95

Remaining Rules

The 3 other variations of Rule 2 where upper-bound 
> 1 are very similar
– Attribute gets type SET instead

Alternatively only two versions of Rule 2
– However: requires more complicated rule scheduling and 

attribute assignment

A lot of design space for a transformation language!

2003-2004 Czarnecki, Frankel, Graff, Helsen, 96

Discussion

OMG is working on a standard for defining transformations, 
known as Query/View/Transformation (QVT)
– For the most recent proposal, see 

http://www.omg.org/cgi-bin/doc?ad/04-04-01

Most MDA tools provide model-to-code transformations based 
on code templates (aka JSP)

Many proposals geared towards EJB application development

Some tools provide a framework for model-to-model 
transformations

Graph-based approaches are in research stage

No satisfactory solutions for synchronization yet



49

2003-2004 Czarnecki, Frankel, Graff, Helsen, 97

Outline

Motivation and MDA Basics

Metamodeling

Model Transformation

Case Study

Tools

Discussion and Further Readings

2003-2004 Czarnecki, Frankel, Graff, Helsen, 98

Criteria

Modeling and metamodeling
– UML support
– Profile support

• Support for checking of a model against OCL constraints in the 
profile

– Support for creating MOF metamodels and editing 
conforming models

• Support for checking of a model against OCL constraints in the 
metamodel

– Control over concrete syntax and editing behavior
– Import/export in UML XMI and/or MOF XMI



50

2003-2004 Czarnecki, Frankel, Graff, Helsen, 99

Criteria

Model transformation
– Support for model-to-model transformations
– Support for parameterization and customization of 

transformations
– Support for user-defined transformations
– Support for automatic and interactive transformation
– Ability to modify the result
– Support for traceability and record of transformation
– Support for code, test, and documentation generation
– Synchronization between models and between models and 

code

2003-2004 Czarnecki, Frankel, Graff, Helsen, 100

Criteria

Other capabilities
– Support for specific target platforms
– What DSLs, patterns, and components are supported
– Openness for new platforms
– MOF repository
– Versioning and concurrent development
– Support for reverse engineering



51

2003-2004 Czarnecki, Frankel, Graff, Helsen, 101

Tools

Some tools in random order…
– Commercial

• Business apps (typically targeting J2EE): OptimalJ, Codagen 
Architect, ArcStyler, XDE, …

• Real-time embedded: BridgePoint, iUML, Real-Time Studio, 
Rhapsody, Software through Pictures, Rose Realtime, …

– Commercial, but freely available
• ANGIE, b+m Generator Frameworks, …

– Open source
• UMT, UMLAUT / MTL, ATL, ModFact / TRL, OpenMDX, 

AndroMDA, Jamda, GMT, …

See generator tool database at 
www.codegeneration.org

And also http://www.modelbased.net/

2003-2004 Czarnecki, Frankel, Graff, Helsen, 102

MDA in OptimalJ

Commercial tool from 
Compuware
Specialized for 
generating J2EE 
applications
Provides a set of 
predefined 
metamodels and 
editors (e.g., class 
diagrams, ER-
diagrams for DB 
schemas, J2EE-
specific metamodels, 
etc.)
Has a model-to-
model transformation 
framework
Architect Edition 
enables adding user-
defined 
transformations



52

2003-2004 Czarnecki, Frankel, Graff, Helsen, 103

ATL (http://www.sciences.univ-nantes.fr/lina/atl/)

2003-2004 Czarnecki, Frankel, Graff, Helsen, 104

ATL repository on the Web – Transformation repository

Target
metamodel

Transformation

Source
metamodel

From Jean Bézivin



53

2003-2004 Czarnecki, Frankel, Graff, Helsen, 105

UMLAUT/MTL (http://modelware.inria.fr)

QVT Implementation
– Language: MTL

Integrates with different
repositories
– Netbeans MDR MOF
– Eclipse EMF
– ModFact repository

class MyTransformation
{

run ()
{

attributeIterator : Standard::Iterator;
anAttribute : source_model::Core::Attribute;

attributeIterator := !source_model::Core::Attribute!.allInstances().getNewIterator();
attributeIterator.start();
while attributeIterator.isOn() 
{

anAttribute := attributeIterator.item().oclAsType (!source_model::Core::Attribute!);
……

From
 A

rne B
erre

2003-2004 Czarnecki, Frankel, Graff, Helsen, 106

ModFact (http://modfact.lip6.fr)

MOF Repository
– CORBA and JMI Interfaces

QVT Engine
– SimpleTRL language

From
 A

rne B
erre



54

2003-2004 Czarnecki, Frankel, Graff, Helsen, 107

UML Model Transformation Tool (UMT) 
(http://sourceforge.net/projects/umt-qvt)

Open source tool for code 
generation from UML 
models
Reads UML models via 
XMI from a UML tool

– Rational Rose, Together, 
ArgoUML, Poseidon, 
Objecteering

Uses Java and XSLT to 
generate code

– EJB, Servlets, WSDL, 
XML schema, IDL, SQL

Easy to plug in new 
generators (scripts) or 
adapt existing ones
Graphical environment to 
install generators and run 
them
Supports structural models 
(class models) and process 
models (activity diagrams)
From SINTEF

From
 A

rne B
erre

2003-2004 Czarnecki, Frankel, Graff, Helsen, 108

Whitehorse : Bill Gates on models
http://www.eweek.com/, 30 march 2004

Modeling is the future …
You know UML [Unified Modeling Language] made the meta-models a 
little complex, so I don't think UML alone is the answer …
And the promise here is that you write a lot less code, that you have a 
model of the business process. And you just look at that visually and say
here is how I want to customize it …
So even a business could express in a formal, modeled way, not just
scribbling on paper, how the business process is changing over time or 
how it's different from other companies. So instead of having lots of code 
behind that, you just have visual, essentially model, customization …
So, I think we believe that. There are certainly some people from IBM who
have that same vision, and I think it'll be healthy competition between the
two of us because today's modeling products fall short. That's one part of 
Visual Studio 2005, that we do have some neat things coming along that
will be part of it that we haven't shown completely …
So, modeling is pretty magic stuff, whether it's management problems or 
business customization problems or work-flow problems, visual
modeling. Even the Office group now really gets that for document life-
cycle rights management, that this visual modeling will be key to them. 
Business intelligence, where you let people navigate through things, is
another area where modeling could be used. It's probably the biggest
thing going on. And both Visual Studio and Office need to be on top of 
that …

From
 Jean B

ézivin



55

2003-2004 Czarnecki, Frankel, Graff, Helsen, 109

MS VisualStudio 2005

See: Steve Cook, Domain-Specific Modeling and Model Driven Architecture, MDA Journal, January 2004:

http://www.bptrends.com/publicationfiles/01%2D04%20COL%20Dom%20Spec%20Modeling%20Frankel%2DCook%2Epdf

2003-2004 Czarnecki, Frankel, Graff, Helsen, 110

Outline

Motivation and MDA Basics

Metamodeling

Model Transformation

Case Study

Tools

Discussion and Further Readings



56

2003-2004 Czarnecki, Frankel, Graff, Helsen, 111

Déjà vu?

Program generation is not new…

What is different this time?
– More infrastructure and components available to leverage 

from
– Computing power and technology is ripe to support 

sophisticated modeling efficiently
– We have better understanding of software architecture and 

patterns
– The time seems right – there is a real push for this 

technology in the industry

Is this enough? Time will show…

2003-2004 Czarnecki, Frankel, Graff, Helsen, 112

Progress in Related Areas

System family engineering (product-line engineering) seeks to 
exploit the commonalities among systems from a given problem 
domain while managing the variabilities among them in a 
systematic way.
– Reuse requires system family focus 

Generative software development aims at modeling and 
implementing system families in such a way that a given system 
can be automatically generated from a specification written in a
domain-specific language.

Potential contribution to MDA
– Systematic domain scoping and DSL development

• Addresses important MDA questions
• What is the right language for a PIM? What is a platform?

– Advances in metaprogramming



57

2003-2004 Czarnecki, Frankel, Graff, Helsen, 113

Relationship GP and MDA

Technical variability
(distribution, data-base connection, GUI, ...)

D
om

ai
n 

va
ria

bi
lit

y
(W

ha
t’s

 in
 a

 P
IM

?)

Generative Software Development

Current focus of
Model Driven Architecture

2003-2004 Czarnecki, Frankel, Graff, Helsen, 114

Potential Benefits of MDA Revisited

Preserving the investment in knowledge
– Independent of implementation platform
– Tacit knowledge made explicit

Speed of development
– Most of the implementation is generated 

Quality of implementation
– Experts provide transformation templates

Maintenance and documentation
– Design and analysis models are not abandoned after writing
– 100% traceability from specification to implementation



58

2003-2004 Czarnecki, Frankel, Graff, Helsen, 115

Caveats

Existing tools are far still from realizing the MDA vision
– Poor or no support for metamodeling, model transformation, and 

synchronization
The MDA vision is in its fast early evolution phase
– Many important standards are still at an early definition stage (e.g., 

Query / View / Transformation)
– Other standards (like UML 2.0 and MOF 02.) underwent significant

evolution and tools need to catch up
Very few domain-specific modeling languages (or profiles) and 
platform mappings are implemented and available for reuse
– Most of today’s MDA tools target generating J2EE apps

Many developers still prefer coding over working with modeling 
tools
– The handling and efficiency of modeling tools is still far from that of 

programming IDEs

2003-2004 Czarnecki, Frankel, Graff, Helsen, 116

MDE and MDA™

MDA™ is one specific example of MDE based on some OMG 
standards such as MOF, UML, CWM, QVT, etc.  

Model-Driven Engineering (MDE)

MDA™
Model-Driven
Architecture

(OMG) MIC
Model

Integrated
Computing

Note:

MDA™ is one
subfield of 
MDE Model-

Driven
Engineering

Other MDE
subfields

MM: Model
ManagementSoftware

Factories
(MS)  

From Jean Bézivin

Metamodels DSLs



59

2003-2004 Czarnecki, Frankel, Graff, Helsen, 117

Technology Spaces (TSpaces) - Jean Bézivin

Any TSpace is 
organized 
around an 
explicit or 
implicit "meta-
meta-model"

TSpaces are 
linked by 
bridges 

A Tspace is 
organized 
around a set of 
concepts

TSpaces are 
similarly 
organized and 
operationally 
interoperable.

Program

Grammar

Data

Schema

Model

Meta-Model

Document

Schema

Ontology

Top Level O.

Syntax XML

MDA

DBMS Ontology
engineering

From Jean Bézivin

2003-2004 Czarnecki, Frankel, Graff, Helsen, 118

MDA Today

Many of the available technologies can be put into 
good use
– Don’t write CRUD (create, read, update, delete) functionality 

by hand
– A lot of infrastructure can be generated today
– MOF and XMI provide metadata interoperability



60

2003-2004 Czarnecki, Frankel, Graff, Helsen, 119

Future

Merging of modeling and programming IDEs
– The distinction between modeling and programming will be blurred

Greater focus for domain-specific languages
– Many DSLs and platform mappings will be available to choose from
– DSLs will enable domain experts who are not programmers to build 

software
– Programmers will focus on providing infrastructures and 

transformations
Emergence of “software supply chains” (Jack Greenfield)
– Greater specialization and reuse in the software industry

MDA will not solve all problems
– Interoperability

• Will not be provided by MDA
• Specific industries may develop their own standards in the long run

2003-2004 Czarnecki, Frankel, Graff, Helsen, 120

Further Readings – Books

Frankel. “Model Driven Architecture: Applying MDA to 
Enterprise Computing.” Wiley, 2003

Kleppe, Warmer, & Bast. MDA Explained: The Model Driven 
Architecture--Practice and Promise. Addison-Wesley, 2003

Hubert. “Convergent Architecture: Building Model Driven J2EE 
Systems with UML.” Wiley 2001

Grose, Doney, & Brodsky. Mastering XMI: Java Programming 
with XMI, XML, and UML. Wiley, 2002

Czarnecki & Eisenecker, “Generative Programming: Methods, 
Tools, and Applications.” Addison-Wesley, 2000

Greenfield & Short. “Software Factories: Automating Component 
Design, Implementation, and Assembly.” Wiley, 2004

“Domain Driven Development” – Bacvanski & Graff & Mitchell, to 
be published late 2004



61

2003-2004 Czarnecki, Frankel, Graff, Helsen, 121

Further Readings – Online

MDA Guide
– www.omg.com/mda

DSTC MOF Pages
– www.dstc.edu.au/Research/Projects/MOF/

Online collection of metamodels
– http://mdr.netbeans.org/metamodels.html

Tool websites
– www.codegeneration.org
– www.modelbased.net/

Open source MOF repositories
– http://mdr.netbeans.org
– http://nsuml.sourceforge.net/

2003-2004 Czarnecki, Frankel, Graff, Helsen, 122

Questions?



62

2003-2004 Czarnecki, Frankel, Graff, Helsen, 123

Outline

Motivation and MDA Basics

Metamodeling

Model Transformation

Case Study

Tools

Discussion and Further Readings


