
Model-Driven Testing with UML 2.0

Zhen Ru Dai

Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany
dai@fokus.fraunhofer.de

Abstract. The UML 2.0 Testing Profile provides support for UML 2.0
based model-driven testing. This paper introduces a methodology of how
to use the profile in order to transform an existing UML system design
model for tests. For the formalization of the proposed methodology, the
QVT transformation rules defined by CBOP/IBM/DSTC are considered.

1 Introduction

The Model-Driven Architecture (MDA) is not only about system modelling
throughout the abstraction levels in terms of platform independent system mod-
elling, platform specific system modelling and system code generation [1, 2]. The
MDA abstraction levels can also be applied to test modelling [3].

Due to increasing complexity of today’s software systems, the early integra-
tion of testing into the development process becomes more and more important.
By doing so, design mistakes and implementation faults can be detected in an
early stage of the design process. This allows reduction of time and costs. Addi-
tionally, the developed tests can be executed against the developed system after
it has been released to the customer in order to check its correct behavior in the
customer’s target environment.

The Unified Modeling Language (UML) is a visual language to support the
design and development of complex object-oriented systems. With the growing
system complexity the need for solid testing increases. But UML itself, even the
newest version 2.0 [4, 5], provides no means to describe a test model. Thus, a
UML 2.0 profile for the testing, called the UML 2.0 Testing Profile (U2TP) [6],
has been defined which has become an official OMG standard since March 2004.
U2TP bridges the gap between designers and testers by providing a means for
using UML for both system modeling and test specification. This allows a reuse
of UML design documents for testing and enables test development in an early
system development phase.

According to the philosophy of MDA, the same modelling mechanism can be
re-used for multiple targets [7]. Strict distinguishment should be made between
platform independent and platform specific system models before generating
executable system codes. Within these three abstraction levels, transformation
techniques are applied. Similarly, test models can be specified platform indepen-
dently and platform specific before generating executable test codes. Researches
have been made on transformation between the different system or test develop-
ment abstraction levels (vertical arrows in Figure 2) [8–10]. But only few research



has been done for the transformation between system models and test models
(horizontal arrows in Figure 2).

In this paper, we introduce a methodology of how to apply U2TP concepts to
an existing UML system design model effectively in order to retrieve a test design
model. The methodology is concretized by transformation rules which are formal-
ized in Query/View/Transformation (QVT) rules defined by CBOP/IBM/DSTC
[11].

The paper is structured as follows: After a short introduction about model-
driven testing and UML 2.0 Testing Profile in Sections 2 and 3, the methodology
is provided in Section 4, where different test aspects of UML 2.0 Testing Profile
are discussed. In Section 5, a transformation example is outlined. Section 6
summarizes and concludes this paper.

2 Approaches to Model-Driven Testing

The philosophy of MDA can be applied both on system modelling and test
modelling. As shown in Figure 1, platform independent system design models
(PIM) can be transformed into platform specific system design models (PSM).
While PIMs focus on describing the pure functioning of a system independently
from potential platforms that may be used to realize and execute the system, the
relating PSMs contain a lot of information on the underlying platform. In another
transformation step, system code may be derived from the PSM. Certainly, the
completeness of the code depends on the completeness of the system design
model.

trans−

formation
trans−

formation
trans−

formation
trans−

System Design Test Design

formation

Models:

transformation refinement

transformation refinement

Models:

(PIM)

(PST)
specific

System
Code Code

Test

PlatformPlatform

Platform Platform
independentindependent

(PSM)
specific

(PIT)

Fig. 1. System Design Models vs. Test Design Models

The same abstraction in terms of platform independent, platform specific
modelling and system code generation can be applied to test design models.



Furthermore, test design models might be transformed from system design mod-
els directly. This enables the early integration of test development into the overall
development process. Once the system design model is defined at PIM level, a
platform independent test design model (PIT) can be derived. This model can
be transformed either directly to test code or to a platform specific test design
model (PST) [12]. The same transformation technology can be used for deriving
PSTs from the PSM. After each transformation step, the test design model can
be refined and enriched with test specific properties. Although the transformed
test design model may already contain static and dynamic aspects, the behav-
ior has to be completed in order to cover unexpected system behavior as well.
Also, test issues such as e.g. test control and deployment information has to be
manually added to the test design model. At last, the test design model can be
finally transformed into executable test code from either PST or PIT.

3 The UML 2.0 Testing Profile (U2TP)

The UML 2.0 Testing Profile provides concepts to develop test specifications and
test models for black-box testing [13]. The profile introduces four logical concept
groups covering the aspects [6]: test architecture, test behavior, test data and
time. Together, these concepts define a modeling language for visualizing, spec-
ifying, analyzing, constructing and documenting a test system. In the following,
the U2TP concepts are introduced (Figure 2).

Test Architecture Concepts One or more objects can be identified as the
System Under Test (SUT). Test components are objects within a test system
which can communicate with the SUT or other components to realize the test
behavior. The test context allows users to group test cases, to describe a cor-
responding test configuration, i.e. the connection between test components and
the SUT, and to define the test control, i.e. the required execution order of the
test cases. Arbitration is a means for evaluating an overall verdict for a test
context. A tester can either use the default arbitration or define their own arbi-
tration scheme using an arbiter. The scheduler controls the test execution and
test components. It is responsible for the creation of test components, a syn-
chronized start of the different test components, and the detection of test case
termination.

Test Behavior Concepts A test objective defines the aim of a test. Herefore,
UML Interaction Diagrams, such as State Machines and Activity Diagrams can
be used to define test stimuli, observations, test control/invocations, coordina-
tion and actions. The normative test behavior is specified in a test case, which is
an operation of the test context specifying how a set of co-operating components
interact with the SUT to realize a test objective. When normative test behav-
ior is defined, focus is given to the definition of unexpected behaviors which is
achieved through specification of defaults. A validation action is performed by
a local test component to inform the arbiter about its local test verdict. A test



verdict shows the result of the executed test. Possible test verdicts are pass,
inconclusive, fail, and error.

Test Data Concepts In the UML 2.0 Testing Profile, wildcards are used to
handle unexpected events, or events containing many different values. The profile
introduces wildcards allowing the specification of: (1) Any value and (2) Any or
omitted values. Data pools are associated with test context and include concrete
test data. Data selectors are operations to retrieve test data from the data pool
or data partitions. The notion of coding rules allows the tester to define the
encoding and decoding of test data when communicating with the SUT.

Time Concepts The time concept group defines concepts to constrain and
control test behavior with regard to time. Timers are needed to manipulate and
control test behavior as well as to ensure the termination of test cases. Time
zones are used to group components within a distributed system, allowing the
comparison of time events within the same time zone.

�������������
�������������
�������������

�������������
�������������
��������������������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

Test Behavior

�������������
�������������
�������������

�������������
�������������
�������������

���������
���������
���������
���������

���������
���������
���������
���������

�������������
�������������
�������������

�������������
�������������
�������������

Concepts
Test Data
Concepts

Time
Concepts

Test Architecture
Concepts

�������������
�������������
�������������

�������������
�������������
�������������

Mandatories Optionals Derivable
Optionals

Derivable
Mandatories

Test context

Test control

Arbiter

Scheduler

Test objective

Test component

Test configuration

Defaults

Validation action

Verdicts

Wildcards

Data partition

Data selector

Coding rules

Timer

Time zone

SUT

Test case Data pool

Fig. 2. U2TP Concepts & A Methodology on Test Design Model Development

4 A Methodology on Model-Driven Test Development

In this section, we introduce a methodology for using the UML 2.0 Testing Profile
effectively after having received a detailed system design model which is to be
tested [14]. In the following, we determine system design model to be the UML
2.0 system model in UML and the test design model to be the UML 2.0 model
using U2TP concepts.

Having a system design model, a tester may have to specify tests for the
system. This can be done by extending the system design model with U2TP
concepts. The following aspects must be considered when transforming a system
design model into a test design model:



First of all, define a new UML package as the test package of the system.
Import the classes and interfaces from the system design package in order to
get access to messages and data types in the test specification. Next, start with
the specification of the test architecture and continue with test behavior spec-
ifications. Test data and time are mostly already comprised in either the test
architecture (e.g. timezone or data pool) or test behavior (e.g. timer or data
partitioning) specifications.

Below, issues regarding test architecture and test behavior specifications are
listed. They are subdivided into two categories: mandatory issues and optional
issues (Figure 2 on page 4). Mandatories are issues which are essential for a test
design model with U2TP. The most important mandatory issues are e.g. SUT
and test components. Optional issues are specific to test requirements and are
therefore not always needed for the test design model specification. Optional
issues are e.g. test control and timers. Additionally, there are both mandatory
and optional concepts which can be derived directly from existing system design
diagrams1.

In the following, the mandatories and optionals are listed and possible deriva-
tions outlined. A test design model based on U2TP may use all UML diagram
types for test specification. Depending on the given system design diagram types,
different test design diagram types can be transfered. Therefore, in the method-
ology, we also point to the diagram type feasable for the derivations. These
derivations are used for the test design model transformation in Section 5:

1. Test architecture:
i. Mandatory:

– Assign the classes (in a Class Diagram) or objects (in an Object
Diagram) you would like to test to SUT class/object.

– Specify a test context class listing the test attributes and test cases,
also possible test control and test configuration.

ii. Optional:
– Depend on their functionalities, test components have to be de-

fined. Group the classes/objects (except the SUT) to test component
classes/objects. Test components are not needed in unit tests.

– In order to define the ordering of test case execution, specify the test
control. If there are Activity Diagrams given in the system design
model, each activity illustrates one test case and the activity flow
describes the test flow in the test control specification. If there are
Use Case Diagrams provided, each use case depicts one test case
which should be stringed together for the test control specification.
If neither Activity Diagram nor Use Case Diagram exist in the sys-
tem design model, string the test cases together for the test control
specification. In a more complex test control specification, loops and
conditions should also be used.

– Test configuration are easily retrieved by means of existing Interac-
tion Diagrams. Whenever two components exchange messages with

1 A detailed case study on the methodology can be found in [14].



each other, assign a communication channel between the compo-
nents. If there is no Interaction Diagram provided, connect the test
components and SUT to an appropriate test configuration so that
the configuration is relevant for all test cases included in the test
suite.

– Assign timezones to the components if the test system is a distributed
system.

– Provide coding rule information.
2. Test behavior:

i. Mandatory:
– For the specification of test cases, take given Interaction Diagrams

from the system design model. Change (i.e. rename or group) the
instances and assign them with stereotypes according to their roles
(i.e. test component or SUT). If there are Use Case Diagrams or Activ-
ity Diagrams provided in the system design model, the use cases and
activities are specified in additional Interaction Diagrams. Thus, for
each use case or activity, a test case should be specified.

– Assign verdicts at the end of each test case specification. Usually, the
verdict in a test case is set to pass.

ii. Optional:
– Define test objectives for each test case that is to be specified.
– System behavior which are not used for the tests should be taken for

default specifications. Herefore, Interaction Diagrams like Sequence
Diagrams, State Machines or Activity Diagrams should be used. Use
wildcards to catch unexpected behavior. Verdict settings in a default
are either fail or inconclusive.

– Timers should be derived from time constraint specifications within
a Sequence Diagram or State Machine.

UML 2.0 Testing Profile provides default arbitration and scheduling mecha-
nisms which by default should be implemented by the tool vendor. Additionally,
the profile also provides the tester the means to specify his own arbiter and
scheduler. To do so, the tester needs additional diagrams in order to describe
the behavior of the arbiter and the scheduler. Furthermore, the tester should
also consider the modification in the whole test architecture.

5 Test Design Model Transformation

Figure 3 shows the meta-model based transformation for the test design model
transformation. Herein, the source meta-model is the UML meta-model and the
target meta-model is the U2TP meta-model. In the methodology (Section 4),
classes and objects are grouped together in order to define test components
or SUT. Such mechanisms cannot be performed by transformations. Thus, for
our transformation approach, we have to define those mechanisms in order to



provide the tester a means to group or delete elements2, reference test behavior
fragments etc. These mechanisms are called test directives and its meta-model
is the Test Directive Meta-Model. Transformation rules are applied on both the
UML meta-model and the Test Directive Meta-Model to create an instance of
the U2TP Meta-Model. All three meta-models are based on MOF.

applied toMOF

UML
Meta−Model

Test Directives
Meta−Model

Transformation
rules

U2TP

Model

UML

Model

U2TP
Meta−Model

transformation
instance of

Fig. 3. Meta-Model Based Transformation

The transformation of the UML model to U2TP model is specified by a
set of rules defined in the transformation meta-models [15] according to the
QVC specification from CBOP/IBM/DSTC[11]. The introduced transformation
language is aspect-oriented, declarative and pattern-based. It shows concepts for
specification of rules, patterns and tracking relationships. Transformation rules
are used to describe a correspondence between patterns of elements in the source
model(s) and the elements to be created in a target model. Patterns are reusable
definitions. When used in the source of a rule, a pattern is a query. When it is
used in the target, it acts as a template for model elements. Tracking relationships
associate the source model elements with the target model elements.

In the following, we will show a small example of our test design model
transformation: Let us assume that we have an existing Object Diagram from
the system design model and want to perform system test on this model. For
the transformation for test components, the methodology says (in the test archi-
tecture optionals in Section 4): Depend on their functionalities, test components
have to be defined. Group the objects (except the SUT) to test component objects.
Thus, besides the Object Diagram, we also need a grouping mechanism, which
should be provided by the Test Directives Meta-Model. A grouping mechanism
is applied to at least two objects in the diagram.

Figure 4 shows how the transformation can be performed on instance level.
On the left upper corner, a UML package with three objects is shown. In the
left lower corner, the relationship between the objects which should be grouped

2 Elements are UML elements such as classes, objects, instances etc.



T
es

t D
ire

ct
iv

es
:

U
2T

P
 D

iagram
:

<<group>>

Class1
object1: object3:

Class3

DesignPkg

TestPkg

TestDirectivePkg

Class1
object1: object2:

Class2

newObject

<<TestComponent>>object3:
Class3

object2

<<SUT>>

U
M

L 
D

ia
gr

am
:

+

Fig. 4. Test Component Transformation

to a test component is specified in a test directives model. The grouping nota-
tion is an association between the objects with the stereotype <<group>>. In
this example, only object1 and object3 should be grouped into one test compo-
nent. Therefore, after the transformation in this example, the output test model
consists of one test component and one SUT instance. Of course, two test com-
ponents could also be specified, depending on the choice of the transformation
rules. The stereotypes <<TestComponent>> and <<SUT>> are U2TP notations.
By performing appropriate transformation rules on the different system design
diagrams, test architecture and behavior can be specified for the test design
model.

6 Summary and Outlook

In this paper, we have presented a methodology of how to derive a U2TP test
design model from an existing UML system design model. Furthermore, the
methodology can be formalized by defining transformation rules from system
design diagrams to test design diagrams. For the transformation, we chose the
QVT specification from CBOP/IBM/DSTC.

The definition of the transformation rules is not fully completed. Thus, we
shall complete this work first. Unfortunately, due to lacking tool support for
UML 2.0 and U2TP at time, we are not able to proof our model transformation
rules. Thus, in our future work, we plan to investigate in tools which support
the U2TP concepts and automated derivation of test design models from system
design models.

Acknowledgement

Many thanks to Mr. Keith Duddy from DSTC for the various intensive discussion
sessions.



References

1. OMG: (Model-Driven Architecture (MDA)) http://www.omg.org/mda/.
2. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven
Architecture–Practice and Promise. Addison-Wesley Pub Co (2003)

3. Gross, H.: Testing and the uml – a perfect fit. Technical report, Fraunhofer IESE
Report 110.03E (2003)

4. http://www.omg.org/uml.
5. Born, M., Holz, E., Kath, O.: Softwareentwicklung mit UML 2. Addison-Wesley
(2004)

6. U2TP Consortium: UML 2.0 Testing Profile. (2004) Final Adopted Specification
at OMG (ptc/04-04-02).

7. Siegel, J., the OMG Staff Strategy Group: Developing in omg’s model-driven
architecture. OMG white paper (2001)

8. OMG: MDA Guide Version 1.0. (2003)
9. Bézivin, J.: From object composition to model transformation with the mda. In:
IEEE TOOLS-39, Santa Barbara, USA, TOOLS (2001)

10. Born, M., Schieferdecker, I., Gross, H.G., Santos, P.: Model-driven development
and testing – case study (2003) http://www.fokus.fraunhofer.de/mdts/.

11. CBOP/DSTC/IBM: MOF Query/Views/Transformations, 2nd Revised Submis-
sion (ad/04-01-06). OMG. (2004)

12. Schieferdecker, I., Din, G.: A meta-model for ttcn-3. 1st International Workshop
on Integration of Testing Methodologies (ITM 2004) (2004)

13. B.Beizer: Black-Box Testing. John Wiley & Sons, Inc (1995)
14. Dai, Z.R., Grabowski, J., Neukirchen, H., Pals, H.: From Design to Test with

UML. Testing of Communicating Systems (Editors: R. Groz and R. Hierons ) –
16th IFIP International Conference, TestCom2004, Oxford, Proceedings. Lecture
Notes in Computer Science (LNCS) 2644, Springer, pp. 33-49 (2004)

15. Duddy, K., Gerber, A., Lawley, M., Raymond, K., Steel, J.: Model Transformation:
A declarative, reusable patterns approach. (In: 7th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2003)) pp. 174–185


