

1

WHITE PAPER

Visualizing Requirements in UML

Writing down your requirements in a formal, textual way ensures that they are
well specified, and this often forms the basis for a contract between customer
and supplier. However, there are times when being able to visualize those
requirements might help both customer and supplier to gain a much quicker
understanding of what is intended.
UML is a prevalent, graphical notation, much used by systems analysts and
engineers. As such it is a widely known and easily understood notation.
This paper introduces part of the UML notation – Use Cases – and shows how
they might be used to represent formal requirements in an attractive fashion.

Author: Ian Alexander

Version: 1.0

September 1, 2001

2

Capturing and agreeing requirements

Ultimately, systems are built to satisfy people’s needs – for
more efficient work, for faster travel, for easier home life, and
so on. The people building the systems are in general not the
people experiencing the need: there is therefore a
communications gap between feeling a problem and
developing a solution.

With small systems, this gap can be crossed quite readily, as
the developers can discuss what is wanted with the users,
and prototypes and early working versions can be examined
and upgraded quickly.

With larger systems, such an informal approach often does
not work, and all too many projects fail to deliver acceptable
products on time and to budget. Numerous developers may
be scattered over several sites; they may work for different
companies, and are probably divided from the users by
several layers of contract and subcontract, with little or no
opportunity for direct communication.

The requirements clearly need to be documented so as to
communicate the various viewpoints of the different kinds of
user, the nature of the problem, and the shape of any
acceptable solution. Conventional requirements documents
typically contain either a large quantity of dataflow diagrams,
which users often find forbidding and incomprehensible; or a
large number of formally-written statements like ‘The system
shall enable the operator to select a contiguous portion of a
document’. Readers often find these boring and may fail to

see their relevance. Worse, in practice, any document made
of many similar-sounding sentences is incomprehensible, as
mistakes and omissions are hard to detect amidst the
verbiage (‘select an x’, ‘edit an x’, ‘delete an x’, ‘select a y’,
etc).

What we want, therefore, is a way of describing what users
want, and then what systems should do to satisfy those
needs. Both users and developers must be able to
understand the descriptions quickly and easily. The
requirements need to be in the users’ language, but in a
structure precise enough to guide development accurately.
Then we have a chance to agree the requirements properly,
because everyone knows what they mean.

Introducing UML and Use Cases

The Unified Modeling Language, UML, is a large and
complex standard, allowing different kinds of people to build
a wide range of system and software models ranging from
high-level descriptions of business processes to precise
definitions of the structure and behavior of software.

Fortunately, you don’t have to know all about everything in
UML to start using it for requirements. The construct that is
most often used to hold requirements in UML is the Use
Case. System specifications based on Use Case-modeled
requirements often include other UML constructs including
Activity and Sequence diagrams. We’ll say more on these
later, and get started with Use Cases.

3

A Use Case is essentially a properly documented chunk of a
process. It should have a single goal, and a basic scenario (a
sequence of steps or activities) that someone can carry out
to achieve the goal. Since life is never simple, there are
always other ways of doing things, and things can go wrong,
so a use case is not complete without a list of alternative
paths and exceptions. If these are complicated, it is wise to
make them into use cases in their own right, and to include
them in – or otherwise attach them as extensions to – the
parent use case.

The use case notation was invented by Ivar Jacobson to
describe how different actors interacted with and used some
part of a large (existing) system, which explains why process
chunks are known as Use Cases. However, the terminology
is retained even when the cases are actually about the
workings of a business, rather than of a hardware or
software system. In other words, the approach works equally
well whether you want to describe a problem in the user
domain, or the behavior of a system that helps to solve such
a problem. But it is definitely best to focus on one or the
other at a time.

For the sake of example, suppose we are a household
security company selling locks and bolts, wanting to get into
the new and more profitable business of burglar alarms. Our
business plan is to sell household alarms, and to make
ourselves a steady income by servicing these regularly, as
well as by monitoring the households centrally and calling
out a guard when necessary.

We can begin by identifying the main actors involved. A
Householder will buy one of our alarms to protect her house
or apartment. The Householder uses the alarm each normal
day to guard against possible burglary. A Maintenance
Engineer visits once a year to service the alarm. And so on.
In UML, each Actor is represented by default as a stick-man
icon, whether the actor is a human or an active system
(though we can customize this if we aren’t satisfied with it).
Each Use Case is represented as an elliptical bubble.

In the burglar alarm example, servicing the alarm contributes
to the overall goal of protecting the householder’s house, as
an unserviced alarm may well fail. So, we can add an arrow
to show that the ‘Protect House’ use case includes ‘Service
the Alarm’. It also includes the ‘Normal Day’ use of the alarm
by the householder.

4

Householder

Protect House

Normal Day Service the Alarm

Maintenance Engineer

«include»«include» «include»«include»

Getting Started: The Highest-Level Use Cases
A straight line indicates that an actor is involved in that use

case.
An arrow indicates that a use case includes another use

case.

As we think through the business and the use of the system
– for instance, in a workshop facilitated by an experienced
requirements engineer – we can add more cases at both
high and more detailed levels. It is convenient to show the
high-level cases on the left, and successively lower-level
cases towards the right. For example, the primary job of the
alarm is to detect intrusion; it is up to the operator in the
company’s call center to handle it appropriately. Both cases
are ultimately part of ‘Protect House’.

Protect House

Householder

Alarm

Normal Day

Detected Intrusion

Handle Possible Intrusion
Call Center Operator

«include»«include»

«include»«include»

«include»«include»

Adding Detail: Including the next level of Use Cases
A use case on the left is at the highest level;
several levels can be shown on one diagram.

With a tool, we can add this extra detail, and then hide or
show it as necessary. We can also choose which types of
information to show – e.g., do we want to see all the actors,
or only the primary actor for each Use Case? Here, for
example, is a diagram summarizing all the actors involved in
the normal use of the burglar alarm; other cases, such as
breakdown and power failure, can be dealt with on other
diagrams.

5

Protect House

Householder

Alarm

Normal Day

Detected Intrusion

Handle Possible Intrusion
Call Center Operator

Service the Alarm

Maintenance Engineer
Householder

Alarm

Burglar

Guard

Alarm
«include»«include»

«include»«include»

«include»«include»

«include»«include»

Use Case Diagram Showing Primary and Secondary

Actors
Primary actors are listed on the left; secondary actors on the

right. The actors are subclassed into human, system, and
external agents, so here the stick -man icon has the special
meaning ‘human actor’. UML permits such customization.

Consider the Use Case ‘Replace Circuit Board’. Should we
be including it at this stage? It is certainly something that a
Maintenance Engineer might do in the course of servicing an
alarm. But if we are thinking about high-level cases like
protecting a house and the business of servicing alarms as a
whole, it is clearly a minor detail. We can follow the Use
Case guru Alistair Cockburn and cut short the ‘diving down a
hole’ behavior that often troubles requirement discussions,

by drawing a simple and even humorous icon to indicate the
level of the use case. ‘Replace Circuit Board’ is well below
the surface for our purposes (though highly relevant when
we come to consider the details), so we can draw a
swimming fish icon. It is also looking inside the burglar alarm
system (how do you know it is made of circuit boards?), so
we can show it as a white-box use case. Once you have
marked up a use case as being low-level like this, everyone
will smile and turn their attention to the real business, which
is to identify and describe all the major cases first.

6

Cockburn-Style Icons for Use Case Level and Span

This tabular view summarizes the use cases in the project.
Each use case has a defined level, indicated by an icon; a
title (with all other text hidden); a list of actors, with primary

actor starred; a list of included use cases; a span, which may
be organization-wide (house icon) or focused only on a

system (box icon), and which may be black - or white-box;
and a scope (in or out).

Advantages of capturing requirements with Use Cases

Use Cases divide up the problem into bite-sized chunks,
which everybody can understand, especially those people
who are experts in the domain (burglar alarms) but who may
not be expert in requirements engineering. Because the use
case stories are easy to follow, they are more likely than
conventional requirements to be checked carefully before
development begins. This cuts down the risk of building the
wrong system, and the embarrassment and cost of having a
subcontractor come back to you having discovered
deficiencies in your requirements. Equally, the subcontractor
benefits from the confidence that the requirements are well
unders tood.

Use Cases are also a practical preparation for development,
as UML is becoming the dominant approach for system
analysis and design. In such a development project,
modeling tools permit rapid navigation between use cases
and associated specification and design diagrams. Such
tools can check that definitions are consistent, and by
switching between different models you can quickly build up
an understanding of the system.

7

In short, Use Cases are a great navigational aid in a complex
project, acting as index headings for the more design-
oriented information. Handling requirements as Use Cases
ensures a smooth and easy transition from problem to
solution.

People often follow up on detailed system use cases (ones
that go into what different parts of a sys tem do in turn to
satisfy a need) by drawing UML activity diagrams with a
‘swimlane’ for each type of person or subsystem playing a
role in the use case. This helps in the transition from
specification to design, as the actors are natural candidates
for design objects.

UML activity diagrams are similar to traditional flow
diagrams, showing activities, decision points, and
concurrency. The activities should correspond to steps or
tasks in a use case, and the actors should already exist in
the use case model, so a tool can check the consistency of
the different models and facilitate refinement as necessary.

Another representation useful in system specification is the
Sequence diagram. This shows (as its name implies) a
sequence of messages passing between the participating
objects. Receipt of a message implies that the receiving
object has a responsibility to respond to the request. This
allows depiction of different courses of action (or scenarios)
that can be taken through the use case. Time flows from top
to bottom of the sequence diagram.

Call Center Operator Householder Maintenance Engineer

agree appointmentagree appointment

appointment agreedappointment agreed

read scheduleread schedule

service alarmservice alarm

Sequence Diagram used during System Specification
Time flows downwards. Each ‘lifeline’ shows activity

sequence of one agent; interactions are shown as call-and-
return arrows.

This approach leads directly to thinking about design – how
does the call center supply a schedule to the maintenance
engineer? Should the schedule be a design object? Does the
engineer have a computer with a radio modem? These
‘how?’ questions move attention on from requirements to
design. Conversely, ‘why?’ questions focus attention on
essential requirements issues: why does the engineer have
to read a schedule? How much of it must the engineer see?
Making a satisfactory specification depends on being able to
move freely in both directions, checking out questions of
practicality as well as of the users’ wants and needs.

Tools that allow easy navigation forwards and back between
different models – say, Use Cases and Sequence Diagrams
– can greatly speed and simplify the development process,
as well as helping to give the users more precisely what they

8

want. No-one ever came up with a quality product straight
off: there is a vital iteration and set of trade-offs between
what people want, what can be built, and what can be
afforded. From an engineer’s point of view, this is between
the requirements, system specification, and design. From a
manager’s point of view, the trade-off is between quality,
cost, and timescale. Either way, Use Cases are a firm
foundation for reasoning about development.

Organizing requirements as Use Cases

All this is very nice and simple, but how does it help you
organize your requirements? Alistair Cockburn argues that
Use Cases are fundamentally a textual form:

“The trouble starts when you … believe that the diagrams
define the s ystem’s functional requirements. Some people
become infatuated with the diagrams… They try to capture
as much as possible in the diagram, hoping, perhaps, that
text will never have to be written...

The result, of course, was an immensely complicated
drawing that took up more space than the equivalent text and
was harder to read. To paraphrase the old saying, he could
have put a thousand readable words in the space of his one
unreadable drawing.”

Writing Effective Use Cases, page 233

The Use Case diagram is, in short, a helpful summary list
that shows the names of the use cases, their relationships
and their actors: but it provides practically no detail on what
each case consists of, beyond its goal (named in the title)
and perhaps its main exceptions (if these are dealt with as

separate use cases). In many systems, for instance, it is
crucial that the designers know exactly what triggers each
use case; this must be written down in the requirements.

There is no agreed standard for documenting use cases, but
Cockburn, along with other authors such as Derek Coleman
of Hewlett-Packard, have proposed templates for the
purpose. The clear need is to describe the various paths of
action as story-like scenarios, together with the
circumstances in which they apply. These must be in a style
that is clear both to engineers and to users of various kinds.
Therefore the requirements must be written simply and
without confusing detail.

Here then is a complete example Use Case for our burglar
alarm, documented in full as suggested by Cockburn. It is a
business use case as it describes the operation of the alarm
company, rather than the mechanism of a system. It is white-
box as it peeks inside the business. It is at high level
because it avoids details like how the operator punches the
keys to update a schedule. It is not particularly long; some
examples in Cockburn’s book run to several pages. Make
your requirements as short as they can be, without being so
terse that people misunderstand them.

9

2.1.5 Service the Alarm:

2.1.5.1 Primary Scenario
Call Center Operator arranges an appointment with the
householder.
Call Center Operator schedules a Maintenance Engineer to
service the alarm on the agreed date.
Maintenance Engineer reads the schedule on the agreed
date, and travels to the householder's address.
Maintenance Engineer runs the standard diagnostic checks
on the Alarm.

2.1.5.2 Alternative Paths
Householder contacts Call Center Operator to change the
appointment. Call Center Operator updates the maintenance
schedule.

2.1.5.3 Exceptions
Alarm is Faulty: Maintenance Engineer repairs the alarm and
tests it again to ensure it is working correctly.
Alarm irreparable: Maintenance Engineer logs the problem,
informs the householder that the alarm needs to be replaced,
and makes an appointment with the householder for a return
visit. The same Maintenance Engineer returns on the agreed
date to replace the alarm.

2.1.5.4 Constraints
One-Star service contract holders are not guaranteed their
choice of service date.

2.1.5.5 Trigger
A year has elapsed since installation or the last service.

2.1.5.6 Preconditions
Householder has a valid maintenance contract with the alarm
company.

2.1.5.7 Stakeholders and Interests
Householder wants reliable alarm to provide security.
Alarm company wants regular service income.

2.1.5.8 Minimal Guarantees
Alarm operation is not disturbed by servicing.

2.1.5.9 Success Guarantees
Appointment happens on the agreed date.
Servicing is carried out regularly at the recommended
interval.
Faults detected during servicing are handled promptly.
Serviced alarm works correctly.

A Fully-Documented Business Use Case
The heart of the use case is its title, which names its goal,

and its primary scenario, which states how that goal is
normally achieved, and which actor is responsible for each

step. The other information fills in the details, setting
conditions for success.

10

We certainly don’t claim to be perfect at writing use cases;
no doubt you can improve on this one. But it is simple and
clear, and the headings force the writer to think – just a
minute, what exceptions could there possibly be in this case?
What triggers this case? Under what conditions can it start?
Who has a stake in this, and what do they want? How will we
know when the case has completed successfully? These are
valuable questions, and they concentrate the mind
wonderfully.

Controlling development

On a small and simple project, you may be able to document
the use cases as just described using ordinary office tools.
Word is fine if all you are doing is writing a specification with
a hierarchy of headings and attaching it to a contract, and
you can knock up the diagrams using a box-and-arrows
graphics tool such as Visio.

But if your project is at all large, you will have to divide it into
stages, and allocate the use cases to different developers or
subcontractors; and you will need some at once, and some
later. A solution comprising a requirements management tool
with a UML modeling tool is very helpful for controlling such
a project. It can among other things:

• Maintain traces between requirements and
corresponding system specifications

• Maintain traces between requirements and acceptance
tests

• Calculate metrics to indicate progress, and to highlight
areas that need attention

• Draw up-to-date diagrams (such as use case
summaries), guaranteed to be consistent with the
requirements database

• Summaries the relationships of the use cases and
actors

• Display tables of use cases to show status, scope, level,
progress, and other attributes.

These are quite powerful advantages. In addition, if
you – or your development contractors – are using
tools such as Telelogic Tau to design the software,
then you can benefit from automatic traceability and
navigation between requirements, system
specification, design, and test. Good requirements
tools such as DOORS provide interfaces to many
design, test, and project management tools, as well
as application programming interfaces to allow new
connections to be created readily.

11

Here, for example, are some metrics calculated for
the current state of the burglar alarm project.

Metrics for Use Cases in Module 'Use Cases

for Alarm'
--
Statistics:
 Use Cases: 9
 Actors: 6
 Primary Steps: 28
 Alternative Paths: 5
 Exceptions: 8
 Local Constraints: 2
--
Possible Problems:
 Use Cases with No Exceptions: 4
 Use Cases with Undefined Steps: 1
 Use Cases with Undefined Level: 0
 Use Cases with No Actors: 0
 Use Cases with No Primary Actor: 0

Simple Metrics on Use Cases

These metrics provide straight factual details on the use
case model, and highlight possible problems with the model

as it now stands.

Consider what these results mean. There seem to be about
three steps per use case, which might be rather few but is
certainly in the right ballpark. There are very few constraints
and alternative paths, which suggests that not too much
analysis of these aspects has yet been done. One case has
no steps at all, and four have no exceptions at all, so these
have obviously not been completed. However, all the cases
have actors, so we know who is doing what. The project
manager can get a clear impression of the state of the
requirements, even though the metrics are quite basic.

Summary

Requirements in UML are clearer, easier to understand,
simpler to assess, and offer better possibilities for control
than old-fashioned specifications. Contrary to popular belief,
they are neither arcane nor meant only for object-oriented
software. They consist mainly of structured text, summarized
by simple diagrams. Their sharp structure enables projects to
be monitored using simple but informative use case metrics.

UML Use Cases allow you to visualize your requirements
quickly and effectively. The resulting specifications remain
mainly in plain English text, but are well-organized and can
be understood immediately by both domain experts and
engineers. UML Use Cases can be managed using ordinary
office tools, but large and critical projects will certainly benefit
from using professional requirements management and
modeling tools such as Telelogic’s DOORS and Tau
products.

12

References

Alistair Cockburn, Writing Effective Use Cases, Addison-
Wesley, 2001, ISBN 0-201-70225-8
(see NewsByte at http://www.telelogic.com/newsbyte/ for a
review of this book)

Telelogic DOORS (Requirements Management tool),
http://www.telelogic.com/

Telelogic Tau (UML Modeling Environment),
http://www.telelogic.com/

About the Author

Ian Alexander is an independent
consultant specializing in
Requirements Engineering and
Business Process Modeling. He often
works with Telelogic, providing
consultancy and training on
requirements using the DOORS
platform.

His principal research interest is in
improving the requirements
engineering process by modeling

business goals, processes, constraints, and scenarios. He is
currently exploring the advantages of Use Cases on a
technology project to investigate the reuse of specifications
for control systems in the German automobile industry.

He helps to run the BCS Requirements Engineering
Specialist Group and the IEE Professional Network for
Systems Engineers. He is a Chartered Engineer.

Visit the Telelogic Resource Center at http://www.telelogic.com/resources for other
articles, technical papers, case studies and user presentations covering

various aspects of software and systems development.

