
page 1 of 7

UML for Real-Time Overview
Andrew Lyons

April 1998

Abstract
This paper explains how the Unified Modeling Language (UML), and powerful modeling
constructs originally developed for the modeling of complex real-time systems in the Real-Time
Object-Oriented Modeling language (ROOM), have been combined into UML for Real-Time. It
is directed at developers of complex real-time software systems (e.g., telecommunications,
aerospace, defense, and automatic control applications).

Introduction
There are unique challenges faced in real-time software development. Every real-time software
developer recognizes that the requirement for latency, throughput, reliability, and availability are
far more stringent than for general purpose, or business software. For real-time system
developers, understanding the impact of design decisions and effectively communicating
functionality can be a daunting task. An overriding concern is the architecture of the software.
This refers to the essential structural and behavioral framework on which all other aspects of the
system depend.

To facilitate the design of good architectures, it is extremely useful to capture the proven
architectural design patterns of the domain as first-class modeling constructs. UML for Real-
Time combines UML, role modeling, and ROOM concepts to deliver a complete solution for
modeling complex real-time systems. UML, role modeling and ROOM are briefly described below.

UML is a general-purpose modeling language for specifying, visualizing, constructing and
documenting the artifacts of software systems, as well as for business modeling and other non-
software systems. UML has a strong set of general purpose modeling language concepts
applicable across domains.

Role modeling captures the structural communication patterns between software components. In
UML 1.1, collaboration diagrams, which form the basis of structural design patterns, became first
class modeling entities. ObjecTime Limited (ObjecTime) was a member of the UML 1.1
definition team and contributed the role modeling capabilities of ROOM to the UML standard.

ROOM is a visual modeling language with formal semantics, developed by ObjecTime. It is
optimized for specifying, visualizing, documenting, and automating the construction of complex,
event-driven, and potentially distributed real-time systems. It incorporates the role modeling
concepts discussed in this document that enable the capture of architectural design patterns.

UML for Real-Time is a complete real-time modeling standard, co-developed by ObjecTime and
Rational Corporation, that combines UML 1.1 modeling concepts, and special modeling
constructs and formalisms originally implemented in ObjecTime Developer and defined in the
ROOM language. ObjecTime Developer is a software automation tool that provides model
execution capabilities, and automatically generates complete code for complex real-time
applications from these modeling constructs. UML for Real-Time supports all of the automation
capabilities that are available in ObjecTime Developer today.

Modeling Perspectives
As software systems become increasingly more complex, software architecture, and techniques
for capturing it, become increasingly more important. In addition the architecture of these systems

page 2 of 7

can be viewed from many perspectives. UML for Real-Time represents a collection of best
engineering practices that have proven successful in the modeling of large and complex real-time
systems. Typically, the complete specification of the structure, and behavior, of a complex real-
time system is obtained through a combination of model perspectives. This section explores role
models and their relationship to class and instance models.

A class model is a high level generalization of a system. By defining the universal relationships
of a set of classes to each other, it allows us to specify the possible systems that can be
constructed from those classes. For example, an OC48LineCard class may always have a slot
attribute or it may always be associated with an instance of an OC48LineCardController class.
Class diagrams are used to capture class models. Class modeling focuses on relationships and
class decomposition. Class models provide the 10,000-foot view of a design. It is not possible to
determine specific communication relationships between instances from a class model.

An instance model is a low-level specialized view of a system. It captures the properties of
instances of classes in an application. For example, an instance in a switch application may be
an OC48LineCard. An OC48LineCardController may send it a reset message. Instance modeling
often focuses on the interactions of instances (objects) required to satisfy a specific execution
scenario. Interaction diagrams (i.e., collaboration or sequence diagrams) are used to capture
instance models. Instance models provide the ground-level scenario based view of a design. The
communication relationships between instances are derivable from the collection of interaction
diagrams but are not present in a single instance diagram.

A role model is an intermediate-level view of a system. It is both a specialization of a class
model, and a generalization of an instance model. It captures the properties of an application that
are true for all instances of that application. It captures structural patterns that show in specific
contexts, the roles classes play, and how they interact. For example in Figure 1, a
LineCardController will always command a LineCard. The LineCard role may be realized by an
instance of the class OC48LineCard or OC192LineCard.The LineCardController role may be
realized by an OC48LineCardController, or OC192LineCardController. A role model is the 1,000-
foot view of a design. It is more specific than a class model, but more general than an instance
model. Collaboration diagrams are used to capture role models.

LineCardController LineCard

LineCardShelf

Figure 1 Class LineCardShelf collaboration diagram

Class, role and instance models are complementary; none are “better than” the others. As we
start to analyze a system, instance models give us concrete examples. When we understand
these we can abstract them to the role models which will represent all executions of our system.
When we analyze a system, role models define the architecture. We can validate architecture
using instance models. Role models can be used as specifications for more general class models
or to directly generate systems. Class model libraries provide ready-made classes to implement
role models.

ObjecTime Developer is the only real-time software development tool that implements the UML
1.1 collaboration role modeling constructs and the additional UML for Real-Time modeling
constructs described in this document. Developers build graphical models to specify a system's
components and their relationships (structure) and the system's response to events (behavior)

page 3 of 7

which can then be compiled directly into high performance C++ code in a process analogous to
the way today’s compilers produce machine-language code from higher-level languages.

UML for Real-Time
The modeling approach, described in this document, places a strong emphasis on using UML
collaboration diagrams to explicitly represent structural design patterns. When the semantics of a
UML metaclass must be refined, a new UML stereotype is introduced. This section introduces the
important Capsule, Port, and Connector, stereotypes that have been introduced into UML for
Real-Time to support the modeling of complex real-time systems. Figure 2 shows a UML for
Real-Time collaboration diagram containing these three components.

Ports

Connector

Capsule

Sub-Capsule

Figure 2 - A capsule collaboration diagram

Capsules correspond to the ROOM concept of actors. Capsules are complex, potentially
concurrent, and possibly distributed active architectural components. They interact with their
surroundings through one or more signal-based boundary objects called ports. Collaboration
diagrams are used to describe the structural decomposition of a Capsule class.

A port is a physical part of the implementation of a capsule that mediates the interaction of the capsule
with the outside world—it is an object that implements a specific interface. Ports realize protocols,
which define the valid flow of information (signals) between connected ports of capsules. In a sense, a
protocol captures the contractual obligations that exist between capsules. Because a protocol defines
an abstract interface that is realized by a port, a protocol is highly reusable.

Ports provide a mechanism for a capsule to export multiple different interfaces; each tailored to a
specific role. They also provide a mechanism to explicitly connect an exported interface of one capsule
directly to the interface of another capsule. By forcing capsules to communicate solely through ports, it
is possible to fully de-couple their internal implementations from any direct knowledge they have about
the environment. This de-coupling makes capsules highly reusable.

Connectors capture the key communication relationships between capsules. These relationships have
architectural significance since they identify which capsules can affect each other through direct
communication.

The functionality of simple capsules is realized directly by the state machine associated with the
capsule. More complex capsules combine the state machine with an internal network of
collaborating sub-capsules joined by connectors. These sub-capsules are capsules in their own
right, and can themselves be decomposed into sub-capsules. This type of decomposition can be
carried to whatever depth is necessary, allowing modeling of arbitrarily complex structures with
just this basic set of structural modeling constructs. The state machine (which is optional for
composite capsules), the sub-capsules, and their connections network represent parts of the
implementation of the capsule, and are hidden from external observers.

page 4 of 7

Role modeling and class modeling
The combination of class and role modeling provides a very powerful modeling paradigm. Class
modeling is focused on universal class relationships and class decomposition. Class diagrams
are used to capture class models. Consider the class diagram of Figure 3. CapsuleClassA has a
CapsuleClassB and a CapsuleClassC by value. The class diagram shows us the relationships
between these classes, and could be annotated to show much richer content. Even though the
example appears trivial, even with more associations and annotations it would be difficult to
capture usage patterns in this view.

CapsuleClassA

CapsuleClassB CapsuleClassC

2 2

Figure 3 - Capsule class diagram

Collaboration diagrams can be used to capture structural usage patterns. Figure 4 shows us
three of many possible collaboration diagrams for CapsuleClassA. A class can have only one
structural-decomposition, so a single collaboration diagram is required to form a complete class
specification (i.e., one must be chosen). The structure of CapsuleClassA can’t be determined
from its class diagram, however its class diagram can be derived from its structure.

Note: b1, b2, and c1, c2 are roles in CapsuleClassA that can be played by CapsuleClassB and
CapsuleClassC respectively. Optionally we could write b1:CapsuleClassB

b2

c1

b1

CapsuleClassARev1

c2

b1 c1

b2

CapsuleClassARev2

c2

b2c1 b1

CapsuleClassARev3

c2

Figure 4- Several different possible collaborations for CapsuleClassA’s implementation

Role modeling is focused on the roles class instances play in specific contexts. Collaboration
diagrams and class diagrams are views of the same system from different perspectives, and at
different levels of abstraction. Collaboration diagrams provide a mechanism to constrain a class
diagram to precisely specified configurations. They are more specialized than class diagrams and
more general than instance diagrams.

Capsule collaboration diagrams specify the roles Capsules play in different system contexts. For
example, in Figure 4 CapsuleClassB plays a different role in each place it is used. Capsules
communicate solely through ports and have no knowledge of the other Capsules in a
collaboration in which they interact.

page 5 of 7

Mapping ROOM to UML for Real-Time
This section provides a summary of how ROOM structure charts, ROOMCharts, and ROOM
terminology map into UML for Real-Time. The ROOM notation has been aligned with UML 1.1 but
the semantics of ROOM models remain the same.

The advanced modeling capabilities of ROOM have been incorporated into UML for Real-Time
and are available in the ObjecTime Developer toolset. A clear forward migration path, including
loss-less model migration and continued technology enhancement, has been established to
future versions of ObjecTime Developer.

Terminology
UML provides a very rich modeling environment and with it an established notation and
nomenclature. As a result of the incorporation of ROOM concepts into UML for Real-Time, the
ROOM terminology has been adjusted to avoid confusion.

The terms that have not changed their name or meaning are: Port, Relay Port, End Port,
Protocol, Signal, State, Transition, Transition Segment, Entry Action, Exit Action, Initial Point,
Guard, Trigger. Table 1 provides a summary of changed ROOM terminology and the
corresponding equivalent in UML for Real-Time. Any terms not specifically mentioned have not
changed.

ROOM term Equivalent UML for Real-Time term
Actor Capsule
Actor Reference SubCapsule
Optional Actor Optional1 SubCapsule
Imported Actor Plug-in SubCapsule
Actor Structure Capsule Structure
Actor Behavior Capsule Behavior
Replication Factor Multiplicity
Port Port Role2

Port Type Protocol Role
Unconjugated protocol Protocol Base Role
Conjugated protocol Protocol Conjugated Role
Binding Connector
Choice Point Branch Point
Join-Point Chain-State
Initial-Point Initial-State
Data Class Class
External Class Class
MSC Sequence Diagram

Table 1 - ROOM terminology changed in UML for Real-Time

Structure Diagrams
In UML for Real-Time, a capsule collaboration diagram is equivalent to a ROOM actor structure
diagram. Figure 5 shows a simple ROOM actor structure diagram. Figure 6 shows the equivalent
Capsule collaboration diagram in UML for Real-Time.

1 Capsule optionality is specified using multiplicity. For example, in UML for Real-Time, a ROOM fixed actor reference
(i.e.,Capsule) would be specified as n, while an optional or imported actor reference would be specified using 0..n.

2 ROOM protocols map into UML Protocols and ProtocolRoles. In ROOM we say that a protocol can be unconjugated or
conjugated. In UML for Real-Time we say that a protocol role can represent the base, or conjugated role of a protocol,
and that a port realizes a protocol role.

page 6 of 7

actorB actorC
5

ActorA

Figure 5 - A ROOM actor structure diagram

b:CapsuleClassB
{plugin}

c:CapsuleClassC
5

CapsuleClassA

Figure 6 - A UML for Real-Time capsule
collaboration diagram

Behavior Diagrams
In ROOM the implementation of an actor can be represented using a ROOMChart. In UML for
Real-Time the implementation of a capsule class can be represented using an equivalent UML
hierarchical finite state machine (FSM). Figure 7 shows a simple ROOMChart. Figure 8 shows
the equivalent FSM in UML for Real-Time.

C

S1

S2t1

t1

true
false

isFoo

Figure 7- Example ROOMChart

B

S1

S2t1

t1

true
false

isFoo

Figure 8- Example UML for Real-Time FSM

Summary
UML for Real-Time is an extension to the UML 1.1 visual modeling language that has been
specifically fine-tuned for the development of complex, event-driven, real-time systems, such as
those found in telecommunications, aerospace, defense, and automatic control applications.

Collaboration diagrams, which capture architectural design patterns, use the primary modeling
constructs of capsules, ports and connectors to specify the structure of software components.

Capsules use ports to export their interfaces to other capsules. The functionality of simple capsules is
realized directly by finite state machines, whose transitions are triggered by the arrival of messages on
the capsule’s ports. Capsules themselves can be decomposed into internal networks of communicating
sub-capsules. The state machine and network of hierarchically decomposed sub-capsules allow the
structural and behavioral modeling of arbitrarily complex systems.

Protocols are abstract interface specifications that are realized by ports. Capsules communicate with
other capsules solely through ports; the internal implementation of a capsule is fully decoupled from
any direct knowledge of its environment. This de-coupling makes capsules (and protocols) highly
reusable.

UML for Real-Time is a visual modeling language that lets developers mirror the way real-time,
event-driven systems actually work. These modeling constructs (i.e., role models, capsules,
ports, connectors, and state machines) have rigorous formal semantics that provide for model
execution, and can be used to generate code for complete, mission critical, real-time applications.

page 7 of 7

ObjecTime Developer is an object-oriented software-development tool that implements these
UML for Real-Time concepts. All the benefits of UML 1.1 role modeling and the UML for Real-
Time extensions, including design time model-visualization; run-time model animation of state
machines and message flow (including message sequence charts); and run-time visual model,
and source code level, debugging facilities; are available in ObjecTime Developer today. With
ObjecTime Developer, all of the code for complete, high performance, mission critical applications
is generated. The model is more than a model -- the model is the application.

About ObjecTime
ObjecTime Limited is the leading provider of visual development tools for the complex real-time
systems market and the exclusive supplier of modeling and automatic code generation
technology for the real-time domain to Rational Software Corporation. ObjecTime contributed to
the UML 1.1 definition in the areas of formal specification, extensibility, and behavior, and played
a key role in the definitions for state machines, common behavior, role modeling, and refinement.

ObjecTime Developer (a software automation tool which implements UML for Real-Time
constructs) enables software developers to build applications using component-based visual
design models. TotalCode™ application generation automatically generates complete production
quality C and C++ executables for UNIX, NT and a variety of real-time operating systems directly
from system or component models. Application generation of fully or partially complete designs,
plus animated visual and symbolic debuggers, encourage early and continuous design refinement
and validation.

ObjecTime Developer is used for developing a wide variety of complex, real-time, event-driven
applications in telecommunications, data communications, defense, aerospace, and other
industries. The world’s leading telecommunications, data communications, defense, aerospace
and industrial control companies including Nortel, Lucent, Motorola, Lockheed-Martin, and Kodak.
use ObjecTime Developer to accelerate real-time software delivery, and to improve the quality
and functionality of their real-time products.

About the author
Andrew Lyons is a Senior Applications Specialist with ObjecTime Limited. He has been applying
structured and object-oriented techniques and tools to the design of complex real-time software
systems for seventeen years. He can be reached at andy@objectime.com.

