
Stephen J. Mellor
Project Technology, Inc.
http://www.projtech.com

Stephen J. Mellor
Project Technology, Inc.
http://www.projtech.com

System Design:
Architectures and

Archetypes

2

PROJECT TECHNOLOGY, INC.

System Design: Architectures and Archetypes

This tutorial shows you how to:
v identify the characteristics that

determine the system design;
v engineer the system-wide design

to meet performance constraints;
v model the system-wide design—

the software architecture;
v build archetypes to produce

efficient code.

3

PROJECT TECHNOLOGY, INC.

Application-Independent Software Architecture

Physical
Telephone

Off
Hook

On
Hook

Application
Model

Architecture
Code

4

PROJECT TECHNOLOGY, INC.

Properties

Separation of
application from
architecture

Executable
UML models

Code

Translation
according to
rules

5

PROJECT TECHNOLOGY, INC.

What’s in the Architecture?

The architecture comprises:
v an execution engine plus
v a set of archetypes.

Execution Engine Archetypes

6

PROJECT TECHNOLOGY, INC.

Archetypes

 Archetypes define the rules for translating the application
into a particular implementation.

.Function Class
 Class ${Class.name} :
 public ActiveInstance {
 private:
 .invoke PrivateDataMember(Class)
… …

};

placeholder introduced by ${...}

text
(which
happens to be
C++)

.Function PrivateDataMember(inst_ref class)

.select many PDMs from instances
 of Attribute related to Class
.for each PDM in PDMs
${PDM.Type} ${PDM.Name};
.endfor

7

PROJECT TECHNOLOGY, INC.

Application-Independent Software Architecture

The software architecture is independent of the
semantics of the application.

This offers:
v early error detection through verification
v reuse of the architecture
v faster performance tuning
v faster integration
v faster, cheaper retargeting

Table of Contents

The Software Architecture

Architectural Styles

Selecting an Architecture

Performance Requirements

Executable Domain Models

Model Execution

Capturing the Models

Archetype Language

A Direct Translation

Specifying the Architecture

An Indirect Translation

System Construction

The Shlaer-Mellor Method

The Software Architecture

10

PROJECT TECHNOLOGY, INC.

Challenges of Real-Time Development

How can we both:
v provide required

functionality
and
v meet real-time

performance
constraints?

F (Re-)organize
 the software.

11

PROJECT TECHNOLOGY, INC.

Software Architecture

v data
v control
v structures
v time

The abstract organization of software is called the
software architecture.

It proclaims and enforces system-wide rules for
the organization of:

12

PROJECT TECHNOLOGY, INC.

Data

v tables or arrays?
v special purpose structures

such as trees, linked lists?
v independent?

and access to them:
v direct access by name or

pointer?
v indirect access through

functions that encapsulate the
data structure?

The architect prescribes the storage scheme for data elements:

Instances stored as a tree

13

PROJECT TECHNOLOGY, INC.

Control

The architect prescribes control:
v what causes a task to

execute?
v what causes a task to

relinquish control?
v what is the next function to

execute within a task?
v how to coordinate multiple

tasks accessing common
data to ensure data
consistency?

Task 1 Task 2

access

Shared data area

14

PROJECT TECHNOLOGY, INC.

Structures

The architect prescribes how
to package code and data in:
v tasks?
v functions?
v shared data areas?
v classes?

and the allocation criteria for
allocating parts of the
application to these structures.

Application domain

Task 1 Task 2

Shared data area

15

PROJECT TECHNOLOGY, INC.

Time

v absolute time
v relative time

The software architect prescribes how
to provide time-related services:

16

PROJECT TECHNOLOGY, INC.

Uniformity

v reduces cost of
understanding, building,
and maintaining the
software

v decreases integration effort
v leads to smaller, more

robust code

A minimal, uniform set of organization rules:

Architectural Styles

18

PROJECT TECHNOLOGY, INC.

Architectural Styles

v Monitor and control
v Transporters
v Transactions

Real-time and embedded systems
commonly employ (parts of) three
major architectural styles:

19

PROJECT TECHNOLOGY, INC.

Monitor and Control

v set control points
in the hardware
with desired
values

v read values from
hardware for
comparison or
display

This style comprises a collection of related control loops that:

20

PROJECT TECHNOLOGY, INC.

Monitor and Control

v Manufacturing systems
(Aluminum rolling mill)

v Embedded microprocessor
control systems
(automobiles)

v Household microprocessor
(temperature control)

•Real-time control systems
(Fly-by-wire aircraft)

21

PROJECT TECHNOLOGY, INC.

Monitor and Control

This style tends to have:
v hard response deadlines
v data that must have

current values
v significant computation

on the data

22

PROJECT TECHNOLOGY, INC.

Transporters

Transporters:
v move data from one

place to another
v are responsible for

routing data, but not
for the data content

v may split or re-
assemble the data
packets

23

PROJECT TECHNOLOGY, INC.

Transporters

v telephony
v telemetry

v off-line transaction processing
(credit card processing)

v data collection and archiving
systems

24

PROJECT TECHNOLOGY, INC.

Transporters

Transporters:
v must meet throughput

requirements
v may have response time

requirements on some
streams

v have persistent application
data describing routing

v must manage buffers
containing application
packets

25

PROJECT TECHNOLOGY, INC.

Transactions

Transactions:
v maintain a picture of a real or

hypothetical world
v accept requests to query or

update the picture
v perform some amount of

computation
v send responses to the

outside world based on
the computation

26

PROJECT TECHNOLOGY, INC.

Transactions

v on-line banking
v reservation systems
v simulators
v desktop applications

(word processors,
spreadsheets)

27

PROJECT TECHNOLOGY, INC.

Transactions

This style tends to have:
v considerable persistent

application data
v variable response times
v significant throughput

requirements

28

PROJECT TECHNOLOGY, INC.

Hybrids

Many systems use several styles.

General Purpose

Ejection

Injection

Operator Controls

 Network
Computer

Transaction

Monitor
and
Control

Transporter

Selecting an Architecture

30

PROJECT TECHNOLOGY, INC.

Characterize the System

“[E]very design problem begins with an effort to
achieve a fitness between two entities: the form in
question and its context. The form is the solution
to the problem; the context defines the problem.
In other words, when we speak of design, the real
object of discussion is not the form alone, but the
ensemble comprising the form and its context.
Good fit is a desired property of this ensemble
which relates to some particular division of the
ensemble into form and context.”

Notes on the Synthesis of Form
Christopher Alexander

31

PROJECT TECHNOLOGY, INC.

The External World

Understand and quantify the
external world in terms of:
v rate and volume of

events originating in the
external world
w normal quiescent rates
w burst rates in periods of

unusual demand

v its natural periodicities
v how frequently data

elements change values

32

PROJECT TECHNOLOGY, INC.

Non-Localized Requirements

Requirements Meeting
v continuous 24 x 7 operation
v fault tolerance and recovery
v personnel and equipment safety

33

PROJECT TECHNOLOGY, INC.

Business Constraints

Understand and
enumerate any
constraints the
business may place
on the architecture.

• number / location of processors
• upward compatability
• choice of hardware platforms
• choice of software platforms

34

PROJECT TECHNOLOGY, INC.

System Sketch

v processors
v communication

channels
v bandwidth
v external actors
v protocols

Document the system with a sketch to capture:

to provide a reference basis for both the client
and the architect.

D
M
A

Single Processor
Demand Tasks

Periodic

Performance Requirements

36

PROJECT TECHNOLOGY, INC.

The High Spots

“It is common practice in engineering, if we wish
to make a metal face perfectly smooth, to fit it
against the surface of a metal block which is
level within finer limits than we are aiming at, by
inking the surface of this standard block and
rubbing our metal face against the inked surface.
If our metal face is not quite level, ink marks
appear on it at those points that are higher than
the rest. We grind away at these high spots...”

Notes on the Synthesis of Form
Christopher Alexander

37

PROJECT TECHNOLOGY, INC.

Monitor and Control

 Determine the sampling time(s).

 The external process may be:
v naturally periodic

v continuous

v loosely coupled

impose period
based on
fastest data

use natural period

impose period
based on longest
acceptable delay

100 MS 400 MS

spill background

Presence of beam

A naturally periodic
system may require
sampling at several

points in the waveform.

38

PROJECT TECHNOLOGY, INC.

Transporters

Streams* may have packets* that can be:
v state-dependent, or
v throttled, or
v ignored with impunity

For the worst case, figure:
• throughput requirements
• response-time requirements

for each stream.

* A stream is a source of packets.
* A packet is some piece of
 information (control or data).

39

PROJECT TECHNOLOGY, INC.

Transactions

Threads* may be either:
v time-critical
v at operator speeds
v at will

Throughput, then, is:
• subordinate to the critical threads
• important on the average
• the design goal

 * A thread is all the work done
 as a result of some stimulus.

40

PROJECT TECHNOLOGY, INC.

Performance Quantification

To quantify performance requirements in an analysis:
v Identify critical threads
v Identify worst bursts
v Identify the required processing for each

Only do this for the
“high spots!”

Executable Domain
Models

42

PROJECT TECHNOLOGY, INC.

Unified Modeling Language

“The Unified Modeling Language is a language for
specifying, constructing, visualizing, and
documenting the artifacts of a software-intensive
system.”

The UML Summary

43

PROJECT TECHNOLOGY, INC.

© 1998 Model Integration, LLC

UML Models

Unified Modeling Language (UML) addresses the following
development tasks:

Requirements

Analysis

Design

requirements analysis
(external usage)

system modeling
(data, control, algorithm)

system deployment
(allocation to processors)

44

PROJECT TECHNOLOGY, INC.

© 1998 Model Integration, LLC

UML Model Notation

UML defines a notation for the following models.
Use Case Diagram: system stimulus-response model
Static Structure Diagram: package, class, and object models
State Diagram: control for dynamic behavior
Activity Diagram: workflow of activities
Sequence Diagram: dynamic interactions with time
Collaboration Diagram: dynamic interactions without time
Component Diagram: software components
Deployment Diagram: allocation of components to
processing elements

45

PROJECT TECHNOLOGY, INC.

© 1998 Model Integration, LLC

Use of UML Models

u Essential Models capture the complete scope and behavior of
the system and support model translation to code.

u Auxiliary Models
augment the
essential models.

u Derived Models show additional
views of the essential
models.

Package Diagram
Class Diagram
State Diagram

Processing Spec

Essential Models

Collaboration Diagram
Sequence Diagram

Derived Models

Use Case Diagram
Component Diagram
Deployment Diagram

Auxiliary Models

UML Models

46

PROJECT TECHNOLOGY, INC.

Class Diagram

Abstract classes based on both:
v data, and
v behavior

Recipe

Recipe Name {I}
Cooking Time
Cooking Temp.
Heating Rate

R2

Batch

Batch ID {I}
Amount of Batch
Recipe Name {R2}
Status

Temperature Ramp

Ramp ID {I}
Batch ID {R4}
Start Temperature
Start Time
End Temperature
End Time
Status

R4

47

PROJECT TECHNOLOGY, INC.

Lifecycles

Build a lifecycle model
for each class.

Lifecycle for
Temperature Ramp

Do Temp. Ramp(Batch ID,
 End Time, End Temp)

Creating

Controlling

Complete

 Start Controlling (Ramp ID)

Temp. Ramp Complete(Ramp ID)

Ended(Ramp ID)

Timer Expired
(Ramp ID)

48

PROJECT TECHNOLOGY, INC.

Actions

Specify the logic for each state’s action.

Do Temp. Ramp(Batch ID,
 End Time, End Temp)

Creating

 Start Controlling
 (Ramp ID)

Creating

Entry/
BatchID, EndTime, EndTemp
 >> TempRamp;
CurrentTime > Self.StartTime;
Self -> [R4] CookingTank.ActualTemp
 > Self.StartTemp;
Signal Start Controlling (Ramp ID);

49

PROJECT TECHNOLOGY, INC.

Action Semantics

The action semantics should:
v not over-constrain sequencing

w i.e concurrency & data flow

v separate computations from
data access
w to make decisions about

data access without affecting
algorithm specification

v manipulate only UML
elements
w to restrict the generality

and so make a
specification language

Creating

Entry/
BatchID, EndTime, EndTemp
 >> TempRamp;
CurrentTime > Self.StartTime;
Self -> [R4] CookingTank.ActualTemp
 > Self.StartTemp;
Signal Start Controlling (Ramp ID);

50

PROJECT TECHNOLOGY, INC.

An Executable Model

Batch

Batch ID {I}
Amount of Batch
Reci pe Name {R2}
Status

Temperature Ramp

Ramp ID {I}
Batch ID {R4}
Start Temperature
Start Time
End Temperature
End Time
Status

R4

Lifecycle for
Temperature Ramp

Action for Creating

Do Temp. Ramp(Batch ID,
 End Time, End Temp)

Creating

Controlling

Complete

 Start Controlling (Ramp ID)

Temp. Ramp Complete(Ramp ID)

Ended(Ramp ID)

Creating

Entry/
BatchID, EndTime, EndTemp
 >> TempRamp;
CurrentTime > Self.StartTime;
Self -> [R4] CookingTank.ActualTemp
 > Self.StartTemp;
Signal Start Controlling (Ramp ID);

Model
Execution

52

PROJECT TECHNOLOGY, INC.

Instances

Recipe
Recipe
Name

Cooking
Time

Cooking
Temp

Heating
Rate

Nylon 23 200 2.23
Kevlar 45 250 4.69
Stuff 67 280 1.82

Batch
Batch ID Amount of

Batch
Recipe
Name

Status

1 100 Nylon Filling
2 127 Kevlar Emptying
3 93 Nylon Filling
4 123 Stuff Cooking

Recipe

Recipe Name {I}
Cooking Time
Cooking Temperature
Heating Rate

Batch

Batch ID {I}
Amount of Batch
Recipe Name {R2}
Status

An executable model operates
on data about instances.

53

PROJECT TECHNOLOGY, INC.

Filling

Cooking

Emptying

Create Batch(Amount of Batch,
 Recipe Name)

Filled(Batch ID)

Temperature Ramp Complete(Batch ID)

Emptied(Batch ID)

Batch 4

Instances

An executable model operates
on instances.

Filling

Cooking

Emptying

Create Batch(Amount of Batch,
 Recipe Name)

Temperature Ramp Complete(Batch ID)

Filled(Batch ID)

Emptied(Batch ID)

Filling

Cooking

Emptying

Create Batch(Amount of Batch,
 Recipe Name)

Filled(Batch ID)

Temperature Ramp Complete(Batch ID)

Emptied(Batch ID)

Batch 2

Batch

Batch ID {I}
Amount of Batch
Recipe Name {R2}
Status

Filled(Batch ID)

Emptied(Batch ID)

Filling

Cooking

Emptying

Create Batch(Amount of Batch,
 Recipe Name)

Filled(Batch ID)

Temperature Ramp Complete(Batch ID)

Emptied(Batch ID)

Batch 1

54

PROJECT TECHNOLOGY, INC.

Execution

The lifecycle model prescribes
execution.

Filling

Cooking

Emptying

Create Batch(Amount of Batch,
 Recipe Name)

Filled(Batch ID)

Emptied(Batch ID)

Batch 2

Filled(Batch ID)

Filling

Cooking

Emptying

Create Batch(Amount of Batch,
 Recipe Name)

Filled(Batch ID)

Temperature Ramp Complete(Batch ID)

Emptied(Batch ID)

Batch 2

Batch
Batch ID Amount of

Batch
Recipe
Name

Status

1 100 Nylon Filling
2 127 Kevlar Emptying
3 93 Nylon Filling
4 123 Stuff Cooking

Temperature Ramp Complete(Batch ID)

When the Temperature Ramp is
complete, the instance moves to the
next state....and executes actions.

55

PROJECT TECHNOLOGY, INC.

Pre-existing Instances

Some instances exist before the model begins to execute...

Recipe

Recipe Name {I}
Cooking Time
Cooking Temperature
Heating Rate

R2

Batch

Batch ID {I}
Amount of Batch
Recipe Name {R2}
Status

Temperature Ramp

Ramp ID {I}
Batch ID {R4}
Start Temperature
Start Time
End Temperature
End Time
Status

R4

Created during execution
Pre-existing

56

PROJECT TECHNOLOGY, INC.

Initialization

Recipe
Recipe
Name

Cooking
Time

Cooking
Temp

Heating
Rate

Nylon 23 200 2.23
Kevlar 45 250 4.69
Stuff 67 280 1.82

Some instances exist before the model begins to execute...
...and so require initialization.

57

PROJECT TECHNOLOGY, INC.

Executing the Model

The model executes in
response to signals from:
v the outside,
v other instances as

they execute
v timers

Filling

Cooking

Emptying

Create Batch(Amount of Batch,
 Recipe Name)

Filled(Batch ID)

Emptied(Batch ID)

Batch 2

Temperature Ramp Complete(Batch ID)

58

PROJECT TECHNOLOGY, INC.

Model Database

Each schema has a corresponding database for instances.

Recipe
Recipe
Name

Cooking
Time

Cooking
Temp

Heating
Rate

Nylon 23 200 2.23
Kevlar 45 250 4.69
Stuff 67 280 1.82

Batch
Batch ID Amount of

Batch
Recipe
Name

Status

1 100 Nylon Filling
2 127 Kevlar Emptying
3 93 Nylon Filling
4 123 Stuff Cooking

Recipe

Recipe Name {I}
Cooking Time
Cooking Temperature
Heating Rate

Batch

Batch ID {I}
Amount of Batch
Recipe Name {R2}
Status

Model Schema Model Database

Capturing The Models

60

PROJECT TECHNOLOGY, INC.

Model Repository

Capture the model in a
model repository.

Filling
Cooking

EmptyingWhat is the
structure of the

repository?

61

PROJECT TECHNOLOGY, INC.

Model Structure

A meta-model defines the structure
of the repository.

Attribute

Attr ID {I}
Class ID {I, R12}
Name
Type

R12
0..* 1

State Chart

Class ID {I, R13}
Name

Class

Class ID {I}
Name
Description

R13
1 0..1

State

Class ID {I, R14}
State Number {I}
Name

1

1..*

R14

62

PROJECT TECHNOLOGY, INC.

Model Structure

A meta-model defines the structure of the repository.

State Event Matrix Entry

Class ID {I, R22}
State Number {I, R22}
Event ID {I, R22}
New State {R23}

State

Class ID {I, R14}
State Number {I}
Name

Signal Event

Event ID {I}
Name

R22

R23

1..* 1..*

1

1..*

Action Group

Class ID {I, R27}
State Number {I, 27}

1

1

R27

63

PROJECT TECHNOLOGY, INC.

Model Structure

A meta-model defines the structure of the repository.

Signal Generator

Event Name {I}
Supplemental Data

Data Accessor

Accessor ID {I, R13}
Class Name
Selector Expression

Action

Class ID {I, R34}
State Number {I, R34}
Action ID {I}

R34Action Group

Class ID {I}
State Number {I}

Computation

Computation ID {I}
Expression

1 1..*

64

PROJECT TECHNOLOGY, INC.

Meta-Model Instances

Just like an application model,
the meta-model has instances.

Class
Class ID Name Descr'n

100 Recipe
101 Batch
102 Temp

Ramp
.....

State
Class ID State # Name

101 1 Filling
101 2 Cooking
101 3 Emptying
102 1
102 2
102

Filling

Cooking

Emptying

Create Batch(Amount of Batch,
 Recipe Name)

Filled(Batch ID)

Temperature Ramp Complete(Batch ID)

Emptied(Batch ID)

Recipe

Recipe Name {I}
Cooking Time
Cooking Temperature
Heating Rate

Batch

Batch ID {I}
Amount of Batch
Recipe Name {R2}
Status

Model
Schema

Recipe
Recipe
Name

Cooking
Time

Cooking
Temp

Heating
Rate

Nylon 23 200 2.23
Kevlar 45 250 4.69
Stuff 67 280 1.82Batch

Batch ID Amount of
Batch

Recipe
Name

Status

1 100 Nylon Filling
2 127 Kevlar Emptying
3 93 Nylon Filling
4 123 Stuff Cooking

Model Database

State
Class ID State # Name

101 1 Filling
101 2 Cooking
101 3 Emptying
102 1
102 2
102

Class
Class ID Name Descr'n

100 Recipe
101 Batch
102 Temp

Ramp
.....

MetaModel
Database

State

Class ID {I, R13}
State Number
Name

Appl. Class

Class ID {I}
Name
Description

R13

MetaModel
Schema

PROJECT TECHNOLOGY

Shlaer–Mellor Method n BridgePoint

INC.

Archetype
Language

68

PROJECT TECHNOLOGY, INC.

Purpose

To generate code… .

State
Class ID State # Name

101 1 Filling
101 2 Cooking
101 3 Emptying
102 1
102 2
102

Class
Class ID Name Descr'n

100 Recipe
101 Batch
102 Temp

Ramp
.....

MetaModel
Database

69

PROJECT TECHNOLOGY, INC.

Purpose

… .traverse the repository and...

Action Group
State Event
Matrix Entry

State Signal Event

… output text.
ÊÊ

70

PROJECT TECHNOLOGY, INC.

Example

The archetype language produces text.

.select many stateS related to instances of
 class->State->StateChart

where (isFinal == False)
public:
 enum states_e
 { NO_STATE = 0 ,
.for each state in stateS
 .if (not last stateS)
 ${state.Name } ,
 .else
 NUM_STATES = ${state.Name}
 .endif
.endfor
};

public:
 enum states_e
 { NO_STATE = 0 ,
 Filling ,
 Cooking ,
 NUM_STATES = Emptying
 };

71

PROJECT TECHNOLOGY, INC.

Text

To generate text:

The quick brown fox jumped over the lazy dog.

The quick brown fox jumped over the lazy dog.

72

PROJECT TECHNOLOGY, INC.

Data Access

To select any instance from the repository:

 .select any class from instances of Class

Instance reference

Class
Class ID Name Descr'n

100 Recipe
101 Batch
102 Temp

Ramp
.....

73

PROJECT TECHNOLOGY, INC.

Substitution

To access attributes of the selected instance… .

 ${class.Name}

Class
Class ID Name Descr'n

100 Recipe
101 Batch
102 Temp

Ramp
.....Batch

just text

74

PROJECT TECHNOLOGY, INC.

Association Traversal

To traverse an association… ..

.select one StateChart related to instances of class->StateChart

State Chart

Class ID {I, R13}
Name

Class

Class ID {I}
Name
Description

R13

0..1 1
Filling

Cooking

Emptying

Create Batch(Amount of Batch,
 Recipe Name)

Filled(Batch ID)

Temp. Ramp Complete(Batch ID)

Emptied(Batch ID)

Not just any one--
the one that’s associated

75

PROJECT TECHNOLOGY, INC.

Arbitrary Instance

To select an arbitrary one… .

.select any state related to instances of StateChart->State

State Chart

Class ID {I, R13}
Name

Class

Class ID {I}
Name
Description

R13
1 0..1

1 1..*
R14 State

Class ID {I, R14}
State Number {I}
Name
isFinal

.select any state related to instances of
Class->StateChart->State

Or...

76

PROJECT TECHNOLOGY, INC.

Complex Traversals

To qualify the selection...

State Chart

Class ID {I, R13}
Name

Class

Class ID {I}
Name
Description

R13
1 0..1

1 1..*
R14 State

Class ID {I, R14}
State Number {I}
Name
isFinal

.select any state related to instances of StateChart->State
where (isFinal == False)

77

PROJECT TECHNOLOGY, INC.

Instance Sets

To select many instances:

.select many stateS related to instances of Class->
StateChart ->State where (isFinal==False)

Filling

Cooking

Emptying

Create Batch(Amount of Batch,
 Recipe Name)

Filled(Batch ID)

Temperature Ramp Complete(Batch ID)

Emptied(Batch ID)

StateS =

Filling

Cooking

Emptying

78

PROJECT TECHNOLOGY, INC.

Iteration

To iterate over instances…

.select many stateS related to instances of
Class->StateChart -> State where (isFinal == False)
.for each state in stateS
 ${state.Name} ,
.endfor

Filling,
Cooking,
Emptying,

79

PROJECT TECHNOLOGY, INC.

Putting It Together

We may combine these techniques… .

.select many stateS related to instances of
 class->StateChart-> State

where (isFinal == False)
public:
 enum states_e
 { NO_STATE = 0 ,
.for each state in stateS
 .if (not last stateS)
 ${state.Name } ,
 .else
 NUM_STATES = ${state.Name}
 .endif
.endfor
};

public:
 enum states_e
 { NO_STATE = 0 ,
 Filling ,
 Cooking ,
 NUM_STATES = Emptying
 };

80

PROJECT TECHNOLOGY, INC.

Application Semantics

An archetype language gives access to
F the semantics of the application
F as stored in the repository.

We may use the archetype language to generate code.

A
Direct

Translation

82

PROJECT TECHNOLOGY, INC.

Application Classes

Each application class becomes an implementation class.

.select many classES from instances of class

.for each class in classES
class ${class.Name} : public ActiveInstance {
 .invoke addPDMDecl(inst_ref class)
 ...
};
.endfor

83

PROJECT TECHNOLOGY, INC.

Application Attributes

Each attribute becomes a private data member:

.function addPDMDecl(inst_ref class)
private:

 .select many attrS related to class->Attribute
 .for each attr in attrS
 ${attr.Type} {attr.Name} ;
 .endfor

.end function

84

PROJECT TECHNOLOGY, INC.

State Chart Declaration

To declare a state chart:

 .function addProtectedActions(inst_ref class)
 .select one statechart related by class->StateChart
 protected:
 // state action member functions
 .select many stateS related by statechart->State
 .for each state in stateS
 .invoke addActionFunctionDecl(inst_ref state)
 .endfor
 .end function

(i.e. all the actions in the state
chart)

85

PROJECT TECHNOLOGY, INC.

State Action Declaration

.function addActionFunctionDecl(inst_ref state)
// State action: ${state.Name}
static void sAsyncAction${state.Name}(
 stda_eventMsg_c *eventPtr, int nextState);
 void ${state.Name}(stda_eventMsg_c *p_evt);
void asyncAction${state.Name }();
.endfor

To generate the state action declaration:

86

PROJECT TECHNOLOGY, INC.

State Action Definition

 To define the state action function… .

Signal Generator

Event Name {I}
Supplemental Data

Data Accessor

Accessor ID {I, R13}
Class Name
Selector Expression

Action

Class ID {I, R34}
State Number {I,R34}
Action ID {I}

R34Action Group

Class ID {I}
State Number {I}

Computation

Computation ID {I}
Expression

1 1..*

… traverse the repository in the same manner.

Specifying the Architecture

88

PROJECT TECHNOLOGY, INC.

Model the Architecture

To specify the architecture,
build a model of its
conceptual entities.

Protected
Function
Declaration

Class
Declaration

1 0..1
1 1..*

Action
Function
Declaration

PDM
Declaration

Action
Function
Definition

1

1

1

1

State
Enumeration
Declaration

1

1

Use the same
approach to
modeling the

“design.”

89

PROJECT TECHNOLOGY, INC.

Model the Architecture

To specify the architecture, build a model of its
conceptual entities.

State Event
Matrix Table
Declaration

Action
Pointer

Signal
Event
Enumeration
Declaration

R22

R23

1..* 1..*

1

1..*

Action
Group

1

1

R27

90

PROJECT TECHNOLOGY, INC.

Example Architecture

The architecture specification should be
very detailed--as well as “high-level.”

Application
Class Decl

Instance

0..*
1

PDM
Declaration

Container

Iterator
1

0..* 0..1

1

0..*

0..*

1
1

1..*

0..*

91

PROJECT TECHNOLOGY, INC.

.Function addClassDeclaration

Archetypes

Build an archetype for each conceptual entity in
the architecture.

.Function addProtectedFunctionDecl

Protected
Function
Declaration

Class
Declaration 1 0..1 1 1..*

Action
Function
Declaration

92

PROJECT TECHNOLOGY, INC.

 Metamodel and Architecture Model

The models are similar because the
architecture is a direct translation.

Protected
Function
Declaration

Class
Declaration 1 0..

1
1 1..*

Action
Function
Declaration

State Chart

Class ID {I, R13}
Name

Class

Class ID {I}
Name
Description

R13
1 0..1

State

Class ID {I, R14}
State Number {I}
Name

1 1..*

R14

An Indirect Architecture

94

PROJECT TECHNOLOGY, INC.

Description of Architecture

Because of the periodic nature of the system,
we can build:
v two tasks,
v one of which is periodic and higher

priority
v one bit per instance to indicate presence in

the periodic state
v duplicated data needed for the control

loop, and
v copied over by the periodic task when

required by it

95

PROJECT TECHNOLOGY, INC.

Description of Architecture

Periodic
Task

Instance bits

Data Copy

Event-driven
Task

Event
message

Timer

Event
messages

96

PROJECT TECHNOLOGY, INC.

Application Mapping

Recipe

Recipe Name {I}
Cooking Time
Cooking Temperature
Heating Rate

Batch

Batch ID {I}
Amount of Batch
Recipe Name {R2}
Status

Temperature Ramp

Ramp ID {I}
Batch ID {R4}
Start Temperature
Start Time
End Temperature
End Time
Status

Temperature Ramp
Ramp ID {I}
Start Temperature
Start Time
End Temperature
End Time

Start Temperature
Start Time
End Temperature
End Time

Ramp Id Bits

Event Driven Task

Periodic Task

97

PROJECT TECHNOLOGY, INC.

Application Mapping

Ramp Id Bits

Event Driven Task Periodic Task

Temp. Ramp Complete(Ramp ID)

Do Temp. Ramp(…)

Creating

Controlling

Complete

 Start Controlling (Ramp ID)

Ended(Ramp ID)

Controlling

98

PROJECT TECHNOLOGY, INC.

Extended Properties

To make certain distinctions, we need to tag elements
of the meta-model.

State

Class ID {I, R14}
State Number {I}
Name
isFinal
isPeriodic

.function addPeriodicStateAction
…
RampIDbits[insNumber].activateActions();

System Construction

100

PROJECT TECHNOLOGY, INC.

Recap

At this point we have:
v a populated instance database for the

application describing the system to be built
v archetypes for objects in the OOA of the

architecture

What’s next?
F Producing the

executable code.

101

PROJECT TECHNOLOGY, INC.

Generating the Production Code

Invoke the archetypes and iterate over instances of the
corresponding architecture objects to generate the
complete source code for the system.

 Compile the
Application Models

Application Models Archetypes

102

PROJECT TECHNOLOGY, INC.

Production Code

Compile the source code and include initialization data
files (if any) to generate the deliverable production code.

Application Models

Architecture

Compile the
Application Models

Code for
the System

Libraries, Legacy or
Hand-written code

Run-Time Library
(Mechanisms)

(Archetypes)

103

PROJECT TECHNOLOGY, INC.

Model-Based Maintenance

To address performance-based issues:
v modify the architecture models, and
v and regenerate the system.

Design
Changes

Code for the System

Application Models

 Architecture

F Do not modify the
 generated code directly.

104

PROJECT TECHNOLOGY, INC.

Application Changes

Design
Changes

Code
for the
System

Application Models

Architecture

Model-Based Maintenance

To address application behavior issues,
v modify the relevant application model, and
v regenerate the system.

F Do not modify the
 generated code directly.

105

PROJECT TECHNOLOGY, INC.

Model-Based Maintenance

For subsequent product enhancements,
v modify or replace the domain in question, and
v regenerate the system.

F Do not modify the
 generated code directly.

Application Changes

Design
Changes

Code
for the
System

Application Models

Architecture

106

PROJECT TECHNOLOGY, INC.

Model Compiler

An architecture is an OOA-model compiler.

It translates a system specified in OOA into the target
programming language incorporating decisions made by
the architect about:
v data,
v control,
v structures, and
v time.

Architectures, like
programming
language compilers,
can be bought.

The Shlaer-Mellor Method

108

PROJECT TECHNOLOGY, INC.

The Shlaer-Mellor Method

The Shlaer-Mellor Method is a software-construction
method based on:

v separating systems into
subject matters (domains)

v specifying each domain
with an executable OOA
model

v translating the models

109

PROJECT TECHNOLOGY, INC.

Subject Matter Separation

Separation of
application from
architecture

Code

The application and
architecture are
separate subject matters.

110

PROJECT TECHNOLOGY, INC.

Executable UML Models

Executable
UML models

Code

111

PROJECT TECHNOLOGY, INC.

Executable UML Models

Executable models
can be simulated
before coding begins.

Batch

Batch ID {I}
Amount of Batch
Reci pe Name {R2}
Status

Temperature Ramp

Ramp ID {I}
Batch ID {R4}
Start Temperature
Start Time
End Temperature
End Time
Status

R4

Lifecycle for
Temperature Ramp

Action for Creating

Do Temp. Ramp(Batch ID,
 End Time, End Temp)

Creating

Controlling

Complete

 Start Controlling (Ramp ID)

Temp. Ramp Complete(Ramp ID)

Ended(Ramp ID)

Creating

Entry/
BatchID, EndTime, EndTemp
 >> TempRamp;
CurrentTime > Self.StartTime;
Self -> [R4] CookingTank.ActualTemp
 > Self.StartTemp;
Signal Start Controlling (Ramp ID);

112

PROJECT TECHNOLOGY, INC.

Translation

 Translation is the act of
combining the subject

matters.

Code

Translation
according to
rules

113

PROJECT TECHNOLOGY, INC.

Translation

Translating the application domain models generates:
v highly systematic
v uniform
v reproducible
v understandable application code

and minimizes:
v coding and code inspection effort
v coding errors
v component integration issues

114

PROJECT TECHNOLOGY, INC.

Shlaer-Mellor Method

The Shlaer-Mellor Method meets the challenges of
real-time software development by:
v localizing critical software design issues to

the software architecture domain
v ensuring that the design decisions are

incorporated uniformly and systematically
v providing a framework to modify system

performance without affecting system
behavior

115

PROJECT TECHNOLOGY, INC.

System Design: Architectures and Archetypes

This tutorial showed you how to:
v identify the characteristics of the problem that

determine the system design;
v engineer the system-wide design to meet

performance constraints;
v model the system-wide design— the software

architecture;
v build archetypes to produce efficient code.

116

PROJECT TECHNOLOGY, INC.

