A technical discussion of UML

Rational. fyd 1]

Mapping Object to Data
Models with the UML

Table of Contents

SOFTWARE DEVELOPMENT FOR DATABASE APPLICATIONccccoviviiicicnene,

THE APPLICATION MODEL ..ottt s

THE DATA MODEL ...t
THE UML PROFILE FOR DATA MODELING......ctiitteitiiesiieesiieeseeesireesieeessreesseeessseessseesssessnsessaneas
MAPPING AND DEPENDENCIES BETWEEN APPLICATION AND DATA MODELS

(O00) Y 1= 0N = N O BN 7Y 27X =
PACKAGE TO SCHEMAvteie ettt eettee e e ettt e ettt e e et e e s eaaeeesabaeesessseeesssbeeesanseesssesseessanseeesassenesanns
(OIS =S @ T 1Y =TI =S
ATTRIBUTES TO COLUMNSiiittttiiiie e ittt it e e s s s e saibbsesse s s s s sabbasseasssssabbaseeesssssabbbbeessesssasssreneas
ASSOCIATIONS TO RELATIONSHIPS......coiiittiiiiie e e ieitieeie e s s e esbbrr e e s s s s s sbbbsseessssssbbsbeessssssessssreness

SUMMARY e e

Mapping Object to Data Models with the UML

Software Development for Database Application

The development of a database application involves a close working relationship between the software
developers and the database development team. The most successful projects are marked by a shared
vision and clear communication of project details. Software devel opers deal with object oriented software
development and use the logical class model to represent the main view at the application, while the
Database team designs, models, builds and optimizes the database. The areas of interface and overlap
between these two distinct responsihilities often represent the most challenging aspect of database
application development. This white paper discusses how the UML and the UML Profile for Data
Modeling can help resolve this challenge.

The Application Model

The application model uses the class view of the application. Classes tagged as persistent describe the
logical data model.

The application model describes the application layer dealing with the database. It contains classes used as
the layer interface to the application and persistent classes used as the interface to the database.

The Data Model

The data model describes the physical implementation of the database. Thisisthe model of the internal
database structure.

Persistent classes from the application model map to the data model.
The UML Profile for Data Modeling

The UML profile for Data Modeling contains modeling constructs necessary to accurately model a
database. These constructs are used to specify detailed information about the database and database
modeling. See the Rational White Paper, “The UML profile for Data Modeling” for more details.

Mapping and dependencies between Application and Data Models

The physical data model must map to the database. Thisis a simple one to one mapping, which is used to
forward or reverse engineer the database structures.

The mapping between the application model and the database model is more complex. As the data model
can change because of normalization or de-normalization, the application model can change as well.

Therefore, this mapping must be able to describe any and every possible relationship between the
application model and the data model.

Component to Database

The database itself isthe physical layer of data storage. It has no mapping into the application model.
Instead, the application has interfaces to the database.

The database is associated to the application. The type of the association is a dependency.

Mapping Object to Data Models with the UML

Application s=Datahaze=>
------------------- = Oracle Database -
SCOTT

The dependency between database and component is part of a software design and must be modeled
manually.

Package to Schema

The persistent view of the application is most commonly modeled in a persistent layer, represented by a
package.

This package maps to a Schema. The mapping is used for forward and reverse engineering. The mapping,
which can be used on a class diagram, is a dependency.

]]

SCOTT s<Schema==
SRR Y SCOTT

ifram Sche.)

The dependency between package and schemais part of a software design and must be modeled manually.

Classes to Tables

Persistent classes can be mapped to tables. The default mapping isa 1:1 mapping although classes using
associations will be in some cases mapped to more than one table. See the “ Association to Relationships”
section below for details on the mapping of classes associated to another classes.

When aclassis mapped to atable all of the necessary transformations will be done. See the “ Attributes to
Columns” section below.

The Item Class, below, is an example of a persistent table, which will be mapped to a database.

[term
Eitern_id : Long
Eitern_description : String
@;price : Double

Mapping Object to Data Models with the UML

The corresponding table is the Item table.

ltem

PKitem_id : NUMBER
itern_description : YARCHARZ
price : MUMBER

®o PR PR ftern130)

The mapping assigns the table to the class although, as will be seen later, the mapping is additionally
provided on the detailed level of acolumn.

The mapping does not require the special design of aclass or atable. The forward and reverse engineering
itself provides the ability to generate primary keys and primary key constraints.
Attributes to Columns

Attributes of persistent classes map to columns of atable. Mapping of attributes must consider the datatype
conversion between application datatype and database datatype. Although SQL-92 defines standard
datatypes for the database, most vendors implement additional datatypes or change the name of standard
datatypes.

The Item class also provides an example of the attribute to column conversion.

[tem
Eitem id : Long
Ehitern_description : String
Earice : Double

The datatypes used are Long for the id, String for the description and double for the price. In the case of an
Oracle 8.x database this mapping is done as follows.

Mapping Object to Data Models with the UML

ltern
PKitern_id : MUMBER
iterm_description : YARCHARZ
price : NUMBER

oo PRes PR Iterm130)

The Long is mapped to NUMBER(10)*, the String to VARCHAR2, and the Double to NUMBER(20).
See the Rational Rose Data Modeler Online Help for a complete list of mapping for every database.

Associations to Relationships

In a persistent data class model any of the provided association types can be used. To make it even more
complex, all of the possible cardinalities of the class rolesin the association must be supported.

It is difficult to use relationships in a data model, because the relational data model understands only
identifying and non-identifying relationships and thel:N cardinality. The 1:1 cardinality must be forced
through constraints.

Following are some examples of the mapping between the persistent class model and the relational data
model.

1:1 association maps to a non-identifying relationship

In the object-oriented design often a 1:1 association represents the relationship between two independent
objects (in the example, Item and Picture). Each Item has to have a Picture, whereas the Picture has to be
assigned to the Item. The association is unidirectional .

lterm
@itern_id : Long ltemPicture
%item_descriptinn : String '?opin::ture 2 Ohj.
@price : Double 1 1

The mapping to a data model uses two tables and a non-identifying relationship.

! Thelength is specified in the detail specification of the column.
4

Mapping Object to Data Models with the UML

[t5h @ <<Mon-ldentifying=:= ltermPicture
PKitern id : NUMEBER +PK_Item3d +FK_ltemPicture37 Fx_picture :.NUMBER
itern_description : YARCHARZ T ik :temﬁlld ; NU%BENRUMBER
ptice : NUMBER 1 - ternPicture_ID ;
S Pl PR temPicture3s)
‘ —
R R e Pl FI_temPictura3? ()

The foreign key of the table I[temPicture (item_id) uses the primary key of the Item table to build the
relationship. The foreign key constraint must be generated.

Because of the basic functionality of the relational data model the relationship is always bi-directional .
1:N association maps to a hon-identifying relationship

The 1:N association is used as the association between the Item and the Ordereditem in this example. Every
instance of an ordered item has to have an association to exact one instance of the Item — only existing
Items can be ordered.

An instance of an Item may or may not be associated with every Ordereditem — not every Item must be
ordered.

ltem
itern_id : Long Orderadltem
Eyitern_description : String Spiterns_ordered © Inte. .
Eyprice © Double 1 0.

A non-identifying relationship is used to specify the relationship between the tables.

v @ Orderedltem

: _ PK ;
PKitern_id - NUMBER +PK_tem13 +FK Orderediter20 ferfnesreglrtdeerfg!,p NERA“QEER

itern_description ; WARCHARZ 1 o 0. pr o :

price_; s <<MNon-ldentifyings> 7| FRitern_id : NUMBER

%Pl PK_Ordereditern10)

% .

<zPRer PR_Item130) $oFes FC_Ordereditem20()

A foreign key on the column item_id is generated to build the relationship. Aswith every foreign key a
foreign key constraint is also generated.

M:N association maps to 3 tables

The object-oriented design allows m to n (many-to-many) associations between classes. Many Employees
in the example care about one Customer. One Employee cares about many Customers.

Mapping Object to Data Models with the UML

Customer Employee
&scust id - Lang Eemployee id: Long
@}cust_name Str 0+ a *@name atring

Astherelational data model does not allow m to n relationships, an additional table, called an associate
table, must be created. The associatetable splits the m to n relationship into two 1 to n relationships, using
identifying relationships.

il il

Customer Employee
cust name : WARCHARZ PKemployee id : NUMBER
PK Customer_|D : MUMEBER name:: YARCHARZ

cust id: NUMBER

$ooPKes PK_Employes30)

*2 2Pl PR Customer26]) +PK_Employssan M
1 +PK_Customer2b
<<ldantifying>>
+Fi_232
<<|dentifying=:= = HK 233 g »
ﬁ

2

EXErnployee ID : NUMEER
EXCustomer 1D : NUMBER

®oPles PRC231)
S PG FIK_2330)
$ooFss FlK 2320
S cindexs> TG 2650
®ocndexss TC 2640

The primary keys of both basic tables are used as primary and foreign keys in the relationship table. The
corresponding primary and foreign key constraints are generated.

Indexes can be built to improve the performance of database access.
Aggregation by reference maps to a non-identifying relationship

An optional aggregation by reference, as in the case of the BillingAddress, maps to a non-identifying
relationship. An Address can be the billing address of a CorporateCustomer.

+heCorporateCustomer i
@}name ; 3tring
CorporateCustomer +theBillingAddress |Bstreet : String
&off price : Single Bozip | Integer
o 1 |Escity String
country & 3tr...

Mapping Object to Data Models with the UML

The datamodel uses a non-identifying relationship to represent this type of relation.

i

@ Address
EK Custorner_ID : NUMBER
CorparateCustomer name - WARCHARZ
off_price : NUMBER +FK_CorporateCustomerd PK Address_ID : NUMBER
B Customer 1D - NUMBER +PK Address?0 street : WVARCHARZ
FK Address_ID : NUMBER = country | WARCHARZ
FK CorporateBillingAddress : MUMBER 0. <<MNan-ldentifyings= 1 city © WARCHARZ
zip : MUMBER

*PKs> PR_CaorporateCustomer32()
SR Fi_CorporateCustamer33{) ®2oPKss Pk_Address29()
®oF s FIK_Corporate Custormerd 1) ®oFlss FR Address31()

The CorporateBillingAddressis used as aforeign key for the CorporateCustomer table and may be null.
The foreign key constraint must be generated.

Aggregation by value (composite aggregation) maps to an identifying relationship

A non-optional aggregation (by value) is used in this example to represent the Address as a part of the
Customer, resulting in two separate objects which act as one.

Address
Customer %name L 3tring
i street | String
cust id: Lon .
%cust_name ' gStr - l%I!p : |nte_ger
— 1 1 | @ity String
Ecountry © Str..

The corresponding representation in the data model is the identifying relationship.

il

Addrass

@ FK Customer_ID : NUMEER
Custarmer name | YARCHARZ
cust_name | VARCHARZ ;F:K_CustnmerQE +FR_Address31 | PR ,;fedéis.s\?ER:Cﬂli\hégER
PE Customer_ID : MUMBER :

i 1 <=z|dentifying=> 1.7 | country @ WARCHARZ
cust_id D MUMBER city | VARCHARD

zip:: MUMBER

<Pl PR_Customer26()

S Pl PR_Address29()
®ooFldx FK Address31()

Mapping Object to Data Models with the UML

The primary key of the Customer table migrates to the Address as foreign and primary key. A composite
primary constraint and aforeign key constraint are built for the address table based on the relationship.

Generalization maps to identifying relationship

Generalization specifies “akind of” relation between two tables. CorporateCustomer is a kind of Customer.

Customer

&cust_id @ Long
&cust_narne : Str..

CorporateCustomer

@yoff_price : Single

The corresponding data model specifies two tables and an identifying relationship.

Custamer

i

cust_name : YARCHARZ
PK Customer_ID - MUMBER
cust_id . NUMEBER

1
-

=<ldentifying=> 0.

CorporateCustomer

i

+

®oaPle= PIK_Custarmer26()

The primary key of the base table migrates to the child table as a primary and foreign key. The primary and
foreign key constraints are specified.

One class can map to several tables

In the process of normalization the data model is often split into more tables to reduce data redundancy.

+HK_CustomerZ

+FK_CorporateCustomer3d

off_price : NUMEER
B Customer_ D NUMBER
FK Address_ID - NUMBER

FK CorporateBillingAddress : NUMBER

$o PR Pk_CorporateCustomer32()

$ooFlss FK_CarporateCustomer32()
®ooFl s FK_ComporateCustomerd 1)

The Address table, for example, is quite redundant because of the zip code definition.

Address

Ename © String
Bstreet =tring
Bzip ¢ Integer
@eity | String
@country © String

The data analyst will in most cases split one table into two — the Address table and the Zip_codes table.

Mapping Object to Data Models with the UML

il
Address @

B Customer D MUMBER zip_codes
name : VARCHARZ PKzip - NUMBER
PK Address 1D NUMBER +PIK zin codes!T city : VARCHARZ
street | WARCHAR? HK Address 17 e PK cauntry | VARCHAR?
FK country : WARCHARZ 0. <<Mon-ldentifying=> 1
FKzip : NUMBER S P> PK_zip codest7()

SocPlzr PK_Address12()
®ocFie» FK_Address10()
®ooF I s FR_Address17()

A non-identifying relationship is used to specify the relationship between the tables. The primary key of the
outsourced table is used as foreign keys in the Address table.

The foreign key constraints must be generated.

Multiple classes can map to one table

Because of performance and data accessibility the data model is often de-normalized. This resultsin the
mapping from multiple classes to one table.

In the example the PrivateCustomer just adds some attributes to the Customer. The attributes are never used

with other types of customers, but the data analyst could decide to make the columns within the
PrivateCustomer nullable.

Custarmer PrivateCustamer

@ycust id: Long] &spurchasze limit : Double
&scust_name : Stro. &sprepaid_only : Boolean

Asaresult just one table of Customer is used in the data model. This table can be further refined for other
types of customers, but it already contains all of the columns of the PrivateCustomer. A data modeler may

add additional columns as well. For example, to map the PrivateCustomer, a column called cust_type could
be created.

i

Customer

cust name : VARCHARZ
PK Customer_|D : NUMBER
cust id : NUMEBER
purchase limit : NUMEBER
prepaid _anly @ NUMEER

®o<Plss PR Customerd()

In most cases, merging tables requires additional checks at the application logic to qualify data, or the
definition of additional views on atable for different accessibility.

9

Mapping Object to Data Models with the UML
In most cases, he data analyst makes decisions about merging tables based on optimizing the database for
data access.

Summary

Mapping object to data models is not easy. The object-relational mapping must be updated continuously as
the regquirements, object and data model change.

There are several levels of mapping — from the database, schema, up to table and column. The examplesin
this white paper are not complete. There are additional types of associations and additional mapping
examples.

Tracking of object-relational mapping is the key to success when building database applications.

10

IBM software integrated solutions
IBM Rational supports a wealth of other offerings from IBM software. IBM
software solutions can give you the power to achieve your priority business

and IT goals.

« DB2® software helps you leverage information with solutions for data
enablement, data management, and data distribution.

+ Lotus® software helps your staff be productive with solutions for
authoring, managing, communicating, and sharing knowledge.

+ Tiwoli® software helps you manage the technology that runs your e-
business infrastructure.

. WebSphere® software helps you extend your existing business-critical
processes to the Web.

* Rational® software helps you improve your software development
capability with tools, services, and best practices.

Rational software from IBM

Rational software from IBM helps organizations create business value by
improving their software development capability. The Rational software
development platform integrates software engineering best practices, tools,
and services. With it, organizations thrive in an on demand world by being
more responsive, resilient, and focused. Rational's standards-based, cross-
platform solution helps software development teams create and extend
business applications, embedded systems and software products. Ninety-
eight of the Fortune 100 rely on Rational tools to build better software,
faster. Additional information is available at www.rational.com and
www.therationaledge.com, the monthly e-zine for the Rational community.

Rational is a wholly owned subsidiary of
IBM Corp. (c) Copyright Rational
Software Corporation, 2003. All rights

reserved.

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Printed in the United States of America
01-03 All Rights Reserved.
Made in the U.S.A.

IBM the IBM logo, DB2, Lotus, Tivoli
and WebSphere are trademarks of
International Business Machines
Corporation in the United States, other
countries, or both.

Rational, and the Rational Logo are
trademarks or registered trademarks of
Rational Software Corporation in the
United States, other countries or both.

Microsoft and Windows N'T are
registered trademarks of Microsoft
Corporationin the United States, other
countries, or both.

Java and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in
the United States, other countries, or

both.
ActionMedia, LANDesk, MMX, Pentium

and ProShare are trademarks of Intel
Corporation in the United States, other
countries, or both.

UNIX is a trademark of The Open Group
in the United States, other countries or

both.

Other company, product or service
names may be trademarks or service
marks of others.

The IBM home page on the Internet can
be found at ibm.com

