TheDesign of a

Robust Persistence Layer
For Relational Databases

An AmbySoft Inc. White Paper

Scott W. Ambler

Senior Object-Oriented Consultant
AmbySoft Inc.

Material for thisWhite Paper has been excerpted from Scott W. Ambler’s

Building Object Applications That Work
SIGS Books/Cambridge University Press, 1998,

Process Patterns

SIGS Books/Cambridge University Press, 1998,
and the

Design of a Persistence Layer Series
Softwar e Development magazine, January through April 1998

http://www.ambysoft.com/per sistencel ayer .pdf

ThisVersion: October 9, 1999

Copyright 1997-1999 Scott W. Ambler

Copyright 1997-1999 Scott W. Ambler 2

Table Of Contents
GOOD THINGSTO KNOW ABOUT THISPAPER ...ttt sessessssessssessesessssesssssssssssesssesases 1
KINDS OF PERSISTENCE LAYERS.......oooocrietrieiree sttt tsesstsesstsess s ssssssssssssesss st sssassssssssssssssessssesnssesanes 1
THE CLASSTYPE ARCHITECTURE.......oeiitritiriecireieineieiseesessts st ssessssssssssssessssesssssssssssssasssssssssssssssssssssssssens 2
REQUIREMENTSFOR A PERSISTENCE LAYER ...ttt sess st sssesssssss s sssssssesnssesanes 5
THE DESIGN OF A PERSISTENCE LAYER ...ttt ettt sessbsess st st sssssssssssnens 7
OVERVIEW OF THE DESIGNccuturiutureurereeseressiseestssestssssessssessssessssessssessesnes
The PerSiStentOD]ECE CIASS........ou ittt
The PersistentCriteria Class Hierarchy
THE CUISOF ClASSeiuiutietrerieietrtseaste et eis e se et ae s st e e s b e se R b £t b e e e e b s st A b se bt ee e e bt ee bt enne
The PerSistentTranSACHI ON ClASS........cccureeirereree et b sttt
The PerSiSLENCEBI OKE ClaSS......cccuiuriririieiririeieirereeee sttt esess s sas bbbttt se et e sttt eae
The PersistenceMechanisSm Class HIEIarChY ... ssssesees 15
The Map Classes
The SlStatement Class HIEIarChY.........cc e saes 18
IMPLEMENTING THE PERSISTENCE LAYER ...ttt sea s s sssssssssssnsnas
BUY VERSUS BUILD ...eeieieereeireeireseereesesessessesesssessesess s sssssssssssssssesssssssssessens
CONCURRENCY, OBJECTS AND ROW LOCKING
DEVELOPMENT LANGUAGE ISSUES......coituriierereeressereeseressasesasstsssssessssessssssssssssssssssssssssssssssasssssssssssssssssssssssesssnes
A DEVELOPMENT SCHEDULEcuttiuetreeerearestesessesessesessesessssesssessssesnssessssssnsssssssssssssssnes
DOING A DATA LOADoiitieitieetteestrestsesstsesstsessesesssssssessssessssesssssssssssssssssasssssssssssssssssssssssssesssssssssssssssssssassesassesnes 21
TRADITIONAL DATA LOADING APPROACHES......c.oteeiuretererteressesessisesstsessssssssssssessssssssesssssssssssesssesnssesssesssssnns 21
ARCHITECTED DATA LOADING....ccutetreueerturerteresteresseressesessssesesasssssssssssssssssssssssssssssssssssessssesssesssesssssssssssssssssssssnes 2
EJB AND PERSISTENCE LAYERS........co ettt retsesese e assss sttt sess st sesessesesssssessssesssssssssssssnsesnnes 23
SUPPORTING THE PERSISTENCE LAYER ...ttt ettt sess s ssssssense st snssssnens 23
SUMMARY .ottt ettt seas s ses e s e s s s s e s s £ e s e b e e e b e £ A e s s S s R e se s e b e e ee s ee s an s et b nbes et st 24
REFERENCES AND RECOMMENDED READING.........ccoriertrerteeenteeesisesesestsessssessssessssesssssssessssessesesssssssssssesnes 25
LTI @ 1SS A OO 25
ABOUT THE AUTHOR ...ttt sess st sess s sese s ssss st e st esas b ees b eesessasssesesnssesnsnsnsns 28

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 1

In thiswhite paper | present an overview of the design of arobust persistence layer for object-oriented
applications. | have implemented all or portions of this design in several languages, in other words, this
design has been proven in practice.

Good Things To Know About This Paper

1. | assumethat you have read my white paper entitled Mapping Objects to Relational Databases (Ambler,
1998c) which can be downloaded free of charge from http://www.ambysoft.com/mappi ngObj ects.html

2. Throughout this paper | will use the Unified Modeling Language (UML) version 1.1 (Rational, 1997) to
represent my models.

3. Accessor methods (Ambler, 1998), also known as getters and setters, are assumed for all attributes.

4. All attributes are private.

5. When | refer to aninstance of class X, theimplicationisthat I’ m really referring to instances of class X
or any of its subclasses. Thisconcept is called the Liskov Substitution Principle.

6. | donot present code for the persistence layer (and | will not distribute it), nor do | go into language-
specific issuesin the design. | will however discuss implementation issues at the end of the paper.

Kinds of Persistence Layers

I would like to begin with a discussion of the common approachesto persistencethat Hard-coded SQL in
arecurrently in practice today. Figure 1 presents the most common, and least your business

pal atable, approach to persistence in which Structured Query Language (SQL) code classesresultsin
is embedded in the source code of your classes. The advantage of this approachis codethat isdifficult
that it allows you to write code very quickly and is aviable approach for small to maintain and
applications and/or prototypes. The disadvantageisthat it directly couplesyour extend.

business classes with the schema of your relational database, implying that asimple

change such as renaming a column or porting to another database resultsin arework

of your source code.

E SOL i
E —) | RDB

H B

Domain Classes

Figure 1. Hard-coding SQL in your domain/business classes.

Figure 2 presents a slightly better approach in which the SQL statements for your business Hardcoding
classes are encapsul ated in one or more “ data classes.” Once again, this approach is SQL in
suitable for prototypes and small systems of less than 40 to 50 business classes but it still ~ separatedata
resultsin arecompilation (of your data classes) when simple changes to the database are classesor
made. Examples of this approach include developing stored proceduresin the databaseto stored
represent objects (replacing the data classes of Figure 2) and Microsoft’s ActiveX Data proceduresis
Object (ADO) “strategy.” The best thing that can be said about this approach isthat you only dlightly
have at |east encapsulated the source code that handles the hard-coded interactionsin one better.

place, the data classes.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 2

Domain Classes Data Classes

Figure2. Creating data classes corresponding to domain/business classes.

Figure 3 presents the approach that will be taken in this paper, that of arobust persistence layer that maps
objects to persistence mechanisms (in this case relational databases) in such a manner that simple changes
to therelational schemado not affect your object-oriented code. The advantage of this approach is that
your application programmers do not need to know athing about the schema of the relational database, in
fact, they don’t even need to know that their objects are being stored in arelational database. This
approach allows your organization to develop large-scale, mission critical applications. The disadvantageis
that there is a performance impact to your applications, aminor oneif you build the layer well, but thereis

still an impact.

Robust SQL S
E sy Persistence et | RDB
Layer

5 B

Domain Classes

Figure 3. A robust persistencelayer.

To understand our approach better, you must first understand the Class-Type Architecture.

The Class-Type Architecture

Figure 4 shows a class-type architecture (Ambler, 1998a; Ambler, 1998b) that your Layering your
programmers should follow when coding their applications. The class-type architecture application code
is based on the Layer pattern (Buschmann, Meunier, Rohnert, Sommerlad, Stal, 1996), dramatically
the basic idea that a class within agiven layer may interact with other classesin that increasesits
layer or with classesin an adjacent layer. By layering your source codeinthismanner robustness.
you make it easier to maintain and to enhance because the coupling within your

application is greatly reduced.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 3

User Interface Layer

i i
N NS
Domain/Business
=
L ayer
1 System
N L ayer
Persistence Layer —

Persistence
M echanism

Figure4. Theclasstypear chitecture.

Figure 4 shows that users of your application interact directly with the user-interface layer of your
application. The user-interface layer is generally made up of classes that implement screens and reports.
User-interface classes are allowed to send messages to classes within the domain/business layer and the
system layer. The domain/business layer implements the domain/business classes of your application, for
example the business layer for atelecommunications company would include classes such asCustomer and
Phone Call, and the system layer implements classes that provide access to operating system functionality
such as printing and electronic mail. Domain/business classes are allowed to send messages to classes
within the system layer and the persistence layer. The persistence layer encapsul ates the behavior needed
to store objects in persistence mechanisms such as object databases, files, and relational databases.

By conforming to this class-type architecture the robustness of your source code increases dramatically due
to reduced coupling within your application. Figure 4 showsthat for the user-interface layer to obtain
information it must interact with objectsin the domain/business layer, which in turn interact with the
persistence layer to obtain the objects stored in your persistence mechanisms. Thisisan important feature
of the class-type architecture — by not allowing the user interface of your application to directly access
information stored in your persistence mechanism you effectively de-couple the user interface from the
persistence schema. Theimplication isthat you are now in a position to change the way that objects are
stored, perhaps you want to reorganize the tables of arelational database or port from the persistence
mechanism of one vendor to that of another, without having to rewrite your screens and reports.

By encapsulating the business |ogic of your application in domain/business classes, User-interface
and not in your user interface, you are able to use that businesslogic in more than classes should not

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler

one place. For example, you could develop a screen that displays the total produced
by an instance of the domain/business class|nvoice (Ambler, 1998h) aswell asa
report that does the same. |If thelogic for calculating the total changes, perhaps
complex discounting logic is added, then you only need to update the code
contained within Invoice and both the screen and report will display the correct value.
Had you implemented totaling logic in the user interface it would have been in both
the screen and the report and you would need to modify the source code in two
places, not just one.

Just like you do not want to allow user-interface classes to directly access
information contained in your persistence mechanism, neither do you want to allow
domain/business classes to do so. We'll seein the next section that agood
persistence layer protects your application code from persi stence mechanism
changes. If adatabase administrator decides to reorganize the schemaof a
persistence mechanism it does not make sense that you should have to rewrite your
source code to reflect those changes.

An important thing to understand about the class-type architectureisthatitis
completely orthogonal to your hardware/network architecture. Table 1 shows how
the various class types would be implemented on common hardware/network
architectures. For example, we see that with the thin-client approach to client/server
computing that user-interface and system classes are implemented on the client and
that domain/business, persistence, and system

directly access
your persistence
mechanisms.

Domain/business
classes should not
directly access
your persistence
mechanisms.

Theclasstype
architectureis
orthogonal to your
har dwar e/network
ar chitecture.

classes are implemented on the server. Because system classes wrap access to network communication

protocols you are guaranteed that some system classes will reside on each computer.

Stand Thin-Client Distributed
Class Type Alone Fat-Client n-Tier Objects
User interface Client Client Client Client Client
Domain/business Client Server Client Application Do not care
server
Persistence Client Server Server Database server | Do not care
System Client All machines | All machines All machines All machines

Tablel. Deployment strategiesfor classtypesfor various hardware/network architectures.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 5

Requirements For a Persistence Layer

I have always been afirm believer that the first thing you should do when devel oping software is define the
requirementsfor it. The requirements presented here (Ambler, 1998d) reflect my experiences over the years
building and using persistence layers. | first started working with the object paradigm in 1991, and since
then | have developed systemsin C++, Smdltalk, and Javafor the financial, outsourcing, military, and
telecommunicationsindustries. Some of these projects were small, single-person efforts and some involved
several hundred developers. Some were transacti on-processing intensive whereas others dealt with very
complex domains. The short story isthat these requirements reflect my experiences on a diverse range of
projects.

A persistence layer encapsul ates the behavior needed to make objects persistent, in other words to read,

write, and del ete objects to/from permanent storage. A robust persistence layer should support:

1. Several typesof persistence mechanism. A persistence mechanism is any technology that can be used
to permanently store objectsfor later update, retrieval, and/or deletion. Possible persistence
mechanismsincludeflat files, relational databases, object-relational databases, hierarchical databases,
network databases, and objectbases. In this paper | will concentrate on the relational aspects of a
persistence layer.

2. Full encapsulation of the persistence mechanism(s). Ideally you should only have to send the
messages save, delete, and retrieve to an object to saveit, deleteit, or retrieveit respectively. That’sit,
the persistence layer takes care of therest. Furthermore, except for well-justified exceptions, you
shouldn’t have to write any special persistence code other than that of the persistence layer itself.

3. Multi-object actions. Because it is common to retrieve several objects at once, perhaps for areport or
astheresult of a customized search, arobust persistence layer must be able to support the retrieval of
many objects simultaneously. The same can be said of deleting objects from the persistence
mechanism that meet specific criteria.

4. Transactions. Related to requirement #3 is the support for transactions, a collection of actions on
several objects. A transaction could be made up of any combination of saving, retrieving, and/or
deleting of objects. Transactions may be flat, an “all-or-nothing” approach where all the actions must
either succeed or berolled back (canceled), or they may be nested, an approach where atransactionis
made up of other transactions which are committed and not rolled back if the large transaction fails.
Transactions may also be short-lived, running in thousandths of a second, or long-lived, taking hours,
days, weeks, or even months to complete.

5. Extensbility. You should be able to add new classes to your object applications and be able to change
persistence mechanisms easily (you can count on at | east upgrading your persistence mechanism over
time, if not port to one from adifferent vendor). In other words your persistence layer must be flexible
enough to allow your application programmers and persistence mechanism administrators to each do
what they need to do.

6. Object identifiers. An object identifier (Ambler, 1998c), or OID for short, isan attribute, typically a

number, that uniquely identifies an object. OIDs are the object-oriented equivalent of keysfrom
relational theory, columnsthat uniquely identify arow within atable.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

10.

11

13.

Copyright 1997-1999 Scott W. Ambler 6

Cursors. A persistence layer that supports the ability to retrieve many objects with a single command
should also support the ability to retrieve more than just objects. Theissueisone of efficiency: Do you
really want to allow usersto retrieve every single person object stored in your persistence mechanism,
perhaps millions, all at once? Of course not. An interesting concept from the relational world isthat of
acursor. A cursor isalogical connection to the persistence mechanism from which you can retrieve
objects using a controlled approach, usually several at atime. Thisis often more efficient than
returning hundreds or even thousands of objects all at once because the user many not need all of the
objectsimmediately (perhaps they are scrolling through alist).

Proxies. A complementary approach to cursorsisthat of a“proxy.” A proxy isan object that
represents another object but does not incur the same overhead as the object that it represents. A
proxy contains enough information for both the computer and the user to identify it and no more. For
example, aproxy for a person object would contain its OID so that the application can identify it and the
first name, last name, and middle initial so that the user could recognize who the proxy object
represents. Proxies are commonly used when the results of aquery areto be displayed in alist, from
which the user will select only one or two. When the user selects the proxy object from thelist the real
object isretrieved automatically from the persistence mechanism, an object which is much larger than
the proxy . For example, the full person object may include an address and a picture of the person. By
using proxies you don’t need to bring all of thisinformation across the network for every personin the
list, only the information that the users actually want.

Records. The vast majority of reporting tools available in the industry today expect to take collections
of database records as input, not collections of objects. If your organization is using such atool for
creating reports within an object-oriented application your persistence layer should support the ability
to simply return records as the result of retrieval requestsin order to avoid the overhead of converting
the database records to objects and then back to records.

Multiple ar chitectures. Asorganizations move from centralized mainframe architecturesto 2-tier
client/server architectures to n-tier architectures to distributed objects your persistence layer should be
able to support these various approaches. The point to be made isthat you must assume that at some
point your persistence layer will need to exist in arange of potentially complex environments.

Various database versions and/or vendors. Upgrades happen, as do ports to other persistence
mechanisms. A persistence layer should support the ability to easily change persistence mechanisms
without affecting the applications that access them, therefore awide variety of database versions and
vendors should be supported by the persistence layer.

Multiple connections. M ost organi zations have more than one persistence mechanism, often from
different vendors, that need to be accessed by a single object application. Theimplication isthat a
persistence layer should be able to support multiple, simultaneous connections to each applicable
persistence mechanism. Even something as simple as copying an object from one persistence
mechanism to another, perhaps from a centralized relational database to alocal relational database,
requires at least two simultaneous connections, one to each database.

Native and non-nativedrivers. There are several different strategiesfor accessing arelational database,
and agood persistence layer will support the most common ones. Connection strategiesinclude using
Open Database Connectivity (ODBC), Java Database Connectivity (JDBC), and native drivers supplied
by the database vendor and/or athird party vendor.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 7

14. Structured query language (SQL) queries. Writing SQL queriesin your object-oriented codeisa
flagrant violation of encapsulation —you’ ve coupled your application directly to the database schema.
However, for performance reasons you sometimes need to do so. Hard-coded SQL in your code should
be the exception, not the norm, an exception that should be well-justified before being allowed to occur.
Anyway, your persistence layer will need to support the ahility to directly submit SQL codeto a
relational database.

Persistence layers should allow application devel opers to concentrate on what they do best, develop
applications, without having to worry about how their objects will be stored. Furthermore, persistence
layers should also allow database administrators (DBAS) to do what they do best, administer databases,
without having to worry about accidentally introducing bugsinto existing applications. With awell-built
persistence layer DBAs should be able to move tables, rename tables, rename columns, and reorganize
tables without affecting the applications that accessthem. Nirvana? You bet. My experienceisthatitis
possible to build persistence layers that fulfill these requirements, in fact the design is presented below.

The Design of a Persistence Layer

Inthis section | will present the design of arobust persistence layer. In alater section | will discussthe
implementation issues associated with this design.

Overview of the Design

Figure 5 presents a high-level design (Ambler, 1998b) of arobust persistence layer and Table 2 describes
each classin thefigure. Aninteresting feature of the design isthat an application programmer only needs
to know about the following classes to make their objects persistent: Per sistentObj ect, the
PersistentCriteriaclass hierarchy, PersistentTransaction, and Cursor. The other classes are not directly
accessed by application development code but will still need to be devel oped and maintained to support the
“public” classes.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler

SglStatement {abstract}

0..n

Figureb5. Overview of thedesign for a persistence layer.

Per sistenceM echanism {abstract}

Fconnection : Connection

name : String

created from
tatementComponents : Collecti
1.0 kbuildForObject()
[+buildForCriteria()
[rasString()
1.1
0.1
maps $
ClassM
PersigentObject {abstract) e, assMap
= Booioa -name : String
-ISProxy : Boolean
isPersistent : Boolean +getInsertSqlFor()
0..n : DateTime +getDel eteSql For()
+save() +getUpdateSql For()
+retrieve() +getSel ectSql For()
+delete()
Cursor
: _— 1.1 _
ISze Teger | 0..n PersistentCriteria {abstract} . Per sistenceBroker
- processed by
+neXtObJe.CtS() creates 1.1 -areSubclassesincluded : Boolean -$singlelnstance : Object
+nextProxies() -forClass : Class -connections : Collection
:HEXIROV;;%“ +addSelectX XX () processed by |+saveObject()
previousObjects(+addOrCriteria() +retrieveObiect()
+pre\/|_0usPro><|es(+perform() 11 +deleteObject()
+previousRows() 0..n ect)
efalts +processCriteria()
-$defaultSize) +processTransaction()
+processSql ()
PersistentTransaction 1.1 -connectTo()
~~5|-disconnectFrom()
tasks - Collection processed by |-rétrieveClassMaps()
+processTransaction()
+retry()
+addTransaction()
+addSaveObject()
+addRetrieveObject()
+addDel eteObject()
+addCriteria()
-attempt() 0..n
-rollback()
-commit()

connects t@..n

[+$open()
[ropen()
I+close()
frisOpen()

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 9

Class Description

ClassMap A collection of classes that encapsul ate the behavior needed to map classesto
relational tables.

Cursor This class encapsul ates the concept of a database cursor.

Per sistenceBroker Maintains connections to persistence mechanisms, such asrelational

databases and flat files, and handles the communication between the object
application and the persistence mechanisms.

PersistentCriteria This class hierarchy encapsul ates the behavior needed to retrieve, update, or
delete collections of objects based on defined criteria.

Per sistenceM echanism A class hierarchy that encapsulates the access to flat files, relational
databases, and object-relational databases. For relational databases this
hierarchy wraps complex class libraries, such as Microsoft's ODBC (open
database connectivity) or Java' s JDBC (Java database connectivity),
protecting your organization from changes to the class libraries.

Per sistentObject This class encapsul ates the behavior needed to make single instances
persistent and is the class that business/domain classes inherit from to
become persistent.

PersistentTransaction This class encapsul ates the behavior needed to support transactions, both flat
and nested, in the persistence mechanisms.
SqlStatement This class hierarchy knows how to build insert, update, delete, and select SQL

(structured query language) statements based on information encapsul ated by
ClassM ap objects.

Table2. Theclassesand hierarchiesof the persistence layer.

The classes represented in Figure 5 each represent cohesive concepts, in other words each class does one
thing and one thing well. Thisisafundamental of good design. PersistentObject encapsulates the
behavior needed to make a single object persistent whereas the Per sistentCriteriaclass hierarchy

encapsul ates the behaviors needed to work with collections of persistent objects. Furthermore, I’d like to
point out that the design presented here represents my experiences building persistence layersin Java, C++,
and Smalltalk for several problem domainswithin several different industries. Thisdesign worksandis
proven in practice by awide range of applications.

The PersistentObject Class

Figure 6 shows the design of two classes, PersistentObject and OID. PersistentObject encapsulates the
behavior needed to make a single object persistent and is the class from which all classesin your
problem/business domain inherit from. For example, the business classCustomer will either directly or
indirectly inherit fromPer sistentObject. The OID class encapsul ates the behavior needed for object 1Ds,
called persistent IDsin the CORBA (Common Object Request Broker) community, using the HIGH/LOW
approach for ensuring unique identifiers. Details of the HIGH/LOW OID approach will be added to this
white paper in the Autumn of 1998, for now take my word for it that the OID class as shown works very well.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 10

PersistentODbj ect {abstract}

-isProxy : Boolean 01 OID
-isPersistent : Boolean m i

-timeStamp : DateTime 1.1 identifies -hlghVaIue_: Long
+save() -lowValue : Integer
+retrieve() Fvalue()

+del ete()

Figure 6. Thedesign of PersistentObject and OID.

Asyou can see, PersistentObjectisfairly simple. It hasthree attributes, isProxy, isPer sistent, and
timeStamp which respectively indicate whether or not an object isaproxy, if it wasretrieved from a
persistence mechanism, and the timeStamp assigned by the persistence mechanism for when it was last
accessed by your application. Proxy objectsinclude only the minimal information needed for the system
and the user to identify the object, therefore they reduce network traffic as they are smaller than the full
objects. When the “real” object is needed the proxy is sent the retrieve() message which refreshes all of the
object’ sattributes. Proxies are used when the user isinterested in asmall subset of the objects that would
be theresult of aretrieval, often the case for a search screen or simplelist of objects. The attribute

isPer sistent isimportant because an object needs to know if it already existsin the persistence mechanism
or if it was newly created, information that is used to determineif an insert or update SQL statement needs to
be generated when saving the object. The timeStamp attributeis used to support optimistic locking in the
persistence mechanism. When the object is read into memory itstimeStamp is updated in the persistence
mechanism. When the object is subsequently written back the timeStamp isfirst read in and compared with
theinitial value—if the value of timeStamp has changed then another user has worked with the object and
thereis effectively acollision which needsto be rectified (typically viathe display of a message to the user).

Per sistentObj ect implements three methods —save(), delete(), and retrieve() — messages which are sent to
objects to make them persistent. Theimplication isthat application programmers don’t need to have any
knowledge of the persistence strategy to make objects persistent, instead they merely send objects
messages and they do theright thing. Thisiswhat encapsulationisall about.

Per sistentObj ect potentially maintains arelationship to an instance of OID, which is done whenever object
IDs are used for the unique keys for objectsin the persistence mechanism. Thisisoptional because you
don’t always have the choice to use object IDsfor keys, very often you are forced to map objectsto a
legacy schema. The need to map to legacy schemasis an unfortunate reality in the object-oriented

devel opment world, something that we' |l discuss later in this white paper we look at how the map classes are
implemented. Anyway, you can easily have Per sistentObj ect automatically assign object IDs to your
objects when they are created if you have control over your persistence schema.

The PersistentCriteria Class Hierarchy

Although Per sistentObj ect encapsul ates the behavior needed to make single objects persistent, it is not
enough because we also need to work with collections of persistent objects. Thisiswherethe
PersistentCriteriaclass hierarchy of Figure 7 comesin —it supports the behavior needed to save, retrieve,
and delete several objects at once.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 11

PersistentCriteria {abstract}
SelectionCriteria {abstract}

-areSubclassesincluded : Boolean
-forClass : Class

-attributeName : String

-value : Object +addSelectX XX ()
+asSql Clause() +addOrCriteria()
+perform()

XXXCriteria {abstract o L
{) RetrieveCriteria InsertCriteria UpdateCriteria
as(l -returnType : Type -attributeValues : Collection
rasSqlClarse) +asCurys';r() = +markForDeletion() -+perform()
+asProxies() +permanentlyDel ete() +addAttribute()
+a§3bjeqs() 0.1 | creates
0.1 +asRecords()
Cursor

creates creates 1\ 0.1

Figure7. The PersistentCriteria class hierarchy.

PersistentCriteriais an abstract class, one that captures behavior common to its subclasses but one that is
not directly instantiated, which allows you to define selection criteriathat limits the scope to a small subset
of objects. The addSdectXXX() method of PersistentCriteriarepresents a collection of methods that take
two parameters, an attribute of aclass and avalue, and create corresponding instances of subclasses of
SelectionCriteria. The SelectionCriteriaclass hierarchy encapsulates the behavior needed to compare a
single attribute to agiven value. Thereis one subclass for each basic type of comparison (equal to, greater
than, less than, less than or equal to, and greater than or equal to). For example, the method
addSdectGreater Than() method creates an instance of Greater ThanCriteria, and addSdectEqual To()
creates an instance of EqualToCriteria

Thefor Class attribute of PersistentCriteriaindicates the type of objects being dealt with, perhaps
Employee or Invoice objects, and the isSubclasses! ncluded attribute indicates whether or not the criteria
also appliesto subclasses of for Class, effectively supporting inheritance polymorphism. The combination
of these two attributes and the addSelect XXX () methods are what makes it possible to define that you want
to work with instances of the Per son class and it subclasses where their first names begin with the letter * J
(through wild card support) that were born between June 14", 1966 and August 14™ 1967.

The class RetrieveCriteriasupports the retrieval of zero or more objects, proxy objects, rows, or a cursor
because we want to be able to retrieve more than just objects: Proxies are needed to reduce network traffic,
rows are needed because many reporting class libraries want collections of rows (not real objects) as
parameters, and cursors allow you to deal with small subsets of the retrieval result set at atimeincreasing
the responsiveness of your application. The Cursor classwill be discussed |ater.

DeleteCriteriasupports the deletion of several objectsat once. Thisrobust class supports both marking
objects asdeleted, my preferred approach, and actually deleting of them (perhapsto clean up the database
and/or for archiving). To mark objects as deleted the instance of DeleteCriteriacreates an instance of
UpdateCriteriaand simply updates a deletionDateTime or isDeleted column within the appropriate tables.

The classUpdateCriteriais used to update one or more attributes within a collection of classes
simultaneously. The perform() method basically creates an instance of RetrieveCriteriato obtain the
objects, loops through them to assign the new values to the attributes, and then sends the save() message
to each object to write it back to the persistence mechanism. Y ou need to retrieve the objects so that you

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 12

can use the appropriate setter methods to update the attributes — the setter methods will ensure that the
applicable business rules are followed when the new values are set. Remember, objects encapsul ate
business rules which are often not reflected in the database, therefore you cannot simply generate asingle
SQL statement to update all objects at once.

Thetypical life cycle of apersistent criteria object isto define zero or more selection criteriafor it and then to
have the object run itself (it submitsitself to the single instance of PersistenceBroker) viathe perform()
method. Instances of SelectionCriteriaare related to one another within a single instance of
PersistentCriteriaviathe use of “AND logic.” To support OR logic the or Criteria() method takes an
instance of PersistentCriteriaas aparameter and effectively concatenates the two criteriatogether. As
you would guess, this makesit possible to generate very complex criteria objects.

The advantage of this class hierarchy isthat it allows application programmersto retrieve, delete, and

update collections of objects stored within a persistence mechanism without having any knowledge of the
actual schema. Remember, the SelectionCriteriaclass deals with the attributes of objects, not with columns
of tables. Thisallows application programmersto build search screens, lists, and reports that aren’t coupled
to the database schema, and to archive information within a persi stence mechanism without direct
knowledge of itsdesign. Once again, our persistence layer supports full encapsulation of the persistence
mechanism’ s schema.

The Cursor Class

Figure 8 shows the design of the Cursor class which encapsulates the basic functionality of a database
cursor. Cursors allow you to retrieve subsets of information from your persistence mechanism at asingle
time. Thisisimportant because a single retrieve, supported by the RetrieveCriteriaclass described last
month, may result in hundreds or thousands of objects coming across the network — by using a cursor you
can retrieve thisresult set in small portionsone at atime. Cursor objects allow you to traverse forward and
backward in the result set of aretrieval (most databases support forward traversal but may not support
reverse traversal due to server buffering issues), making it easy to support users scrolling through lists of
objects. The Cursor class also supports the ability to work with rows (records) from the database, proxy
objects, and full-fledged objects.

Cursor

-size : Integer
+nextObjects()
+nextProxies()
+nextRows()
+previousObjects()
+previousProxies()
+previousRows()
-$defaultSize()

Figure 8. The Cursor class.

Cursor has an instance attribute size, whose value is typically between one and fifty, which indicates the
maximum number of rows, objects, or proxiesthat will be brought back at asingletime. Asyouwould
expect, the class/static method defaultSize() returns the default cursor size, which | normally set at one.
Note how agetter method for the default size is used, not a constant (static final for the Java programmers

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 13

out there). By using a getter method to obtain the constant value | |eave open the opportunity for
calculating the value, instead of just hardcoding it asaconstant. | argue that the principle of information
hiding pertainsto constants aswell as variables, therefore | use getter methods for constants to make my
code more robust.

The PersistentTransaction Class

The fourth and final class that your application programmers will directly deal with —the others were
PersistentObject, PersistentCriteria, and Cursor —isPersistentTransaction, shown in Figure 9.
PersistentTransaction instances are made up of tasksto occur to single objects, such as saving, deleting,
and retrieving them, aswell asinstances of PersistentCriteriaand other PersistentTransaction objects.

PersistentTransaction

-tasks : Collection
+processT ransaction()
+retry()
+addTransaction()
+addSaveObject()
+addRetrieveObject()
+addDel eteObject()
+addCriteria()
-attempt()

-rollback()

-commit()

Figure9. ThePersistentTransaction class.

Thetypical lifecycle of atransaction isto create it, add a series of tasks, send it the processTransaction()
message, and then either commit the transaction, rollback the transaction, or retry the transaction. Y ou
would commit the transaction, make the tasks of the transaction permanent, only if the processT ransaction()
method indicated that the transaction was successful. Otherwise, you would either rollback the transaction,
basically give up trying the transaction, or retry the transaction if it’ s possible that locks in your persistence
mechanism have been removed (making it possible to succefully run the transaction). The ability to commit
and rollback transactions isimportant — because transactions are atomic, either the succeed or they fail —
you must be able to either completely back out of the transaction by rolling it back or completely finish the
transaction by committing it.

Tasks are processed in the order that they are added to an instance of PersistentTransaction. If asingle
task fails, perhapsit is not possible to delete an indicated object, then processing stops at that task and the
processT ransaction() method returns with afailure indication.

When a PersistentTransaction instance is added to another transaction, viainvoking the add T ransaction()
method, it is considered to be nested within the parent transaction. Child transactions can be successful, be
committed, even when the parent transaction fails. When anested transaction is attempted, if it is

successful it is automatically committed before the next task in thelist is attempted, otherwise if it failsthe
parent transaction stops with afailure indication.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 14

An advanced version of this class would allow for non-persistence mechanism tasks to beincluded in a
transaction. For example, perhapsit’simportant to run atransaction only on days where the moonisfull,
therefore one of your transaction steps would be to send the message isFull() to an instance of the Moon
class, if isFull() returns true then the transaction continues, otherwise it fails.

The PersistenceBroker Class

In many waysthe PersistenceBroker class, show inFigure 10, isthe key to the persistence layer. This
classfollows the Singleton design pattern in that thereis only oneinstance of it in the object space of the
application. During run time Per sistenceBr oker maintains connections to persistence mechanisms
(databases, files, ...) and manages interactions with them. Per sistenceBroker effectively actsasago
between for the classes Per sistentObj ect, PersistentCriteria, and Transaction asit is where instances of
these classes submit themselves to be processed. PersistenceBroker interacts with the SglStatement
class hierarchy, map classes, and Per sistenceM echanismclass hierarchy.

Per sistenceBr oker

-$singlelnstance : Object
-connections : Collection

+saveObject()
+retrieveObject()

+del eteObject()
+processCriteria()
+processTransaction()
+processSql()
-connectTo()

-di sconnectFrom()
-retrieveClassMaps()

Figure 10. The PersistenceBroker class.

When you start your application one of theinitiation tasksisto have Per sistenceBroker read in the
information needed to create instances of the map classes (ClassM ap, AttributeMap, ...) from your
persistence mechanism. PersistenceBroker then buffersthe map classesin memory so they can be used to
map objects into the persistence mechanism.

An important feature of Per sistenceBroker isthe processSgl () method, which you can use to submit
hardcoded SQL (structured query language) statementsto the persistence. Thisisacritical feature because
it allows you to embed SQL in your application code —when performanceis of critical importance you may
decide to override the save(), delete(), and/or retrieve() methodsinherited from Per sistentObject and submit
SQL directly to your persistence mechanism. Although this always sounds like agood idea at thetime, itis
often afutile effort for two reasons:. first, the resulting increase in coupling between your application and
the persistence schema reduces the maintainability and extensibility of your application; second, when you
actually profile your application to discover where the processing istaking placeit is oftenin your
persistence mechanism, not in your persistence layer. The short story isthat to increase the performance of
your application your timeis better spent tweaking the design of your persistence schema, not your
application code.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 15

The PersistenceMechanism Class Hierarchy

The Per sistenceM echanism class hierarchy, shown in Figure 11, encapsul ates the behaviors of the various
kinds of persistence mechanisms. Although support for object-relational databases and filesis shown here,
we' re concentrating on mapping objectsto relational databases. Flat filesin general provide less
functionality than relational databases, basically the sequential reading and writing of data, whereas object-
relational databases provide more.

The class method (static method in Javaand C++) open() is effectively a constructor method that takes as a
parameter the name of a persistence mechanism to connect to, answering back the corresponding instance
of Per sistenceM echanism

Per sistenceM echanism {abstract}

connection : Connection

name : String
+$open()
+open()
+close()
+isOpen()

Relational Database {abstract} FlatFile ObieDct?aiational

{abstract} atabase
{abstract}
+processSql()
+getClauseStringX X X ()
Vendor ADatabase Vendor BDatabase
{abstract} {abstract}

Figure 11. The PersistenceM echanism class hierar chy.

The getClauseStringX X X () of Relational Databaserepresents a series of getter methods that return strings
representing a portion of a SQL statement clause (this information is used by the SglStatement class
hierarchy). Examples of XXX include: Delete, Select, I nsert, Order By, Where, And, Or, Clause EqualTo,
and Between. Often therewill be two versions of each method, for example And really needs an
getClauseStringAndBegin() method that returnsthe string ‘ AND(* and getClauseStringAndEnd() which
returnsthe string ‘)’ in order to build a complete AND clause within an SQL statement. These methods are
invoked by instances of the SglStatement class hierarchy so that they may take advantage of the unique
features of each kind of relational database.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 16

Relational Database supports the ANSI standard SQL clauses, whereas its subclasses will override the
appropriate methods to support their own unique extensionsto ANSI SQL. Thisclass, and its subclasses,
wrap complex class libraries such as Microsoft's ODBC (open database connectivity) or Java's JDBC (Java
database connectivity), protecting your organization from changes to the classlibraries. The method
processSQL () takes as input a string representing an SQL statement and returns either aresult set of zero or
more rows or an error indicating aproblem. This method isinvoked only by Per sistenceBroker, which

mai ntains connections to your persistence mechanisms, and not by your application code which knows
nothing about this class hierarchy (nor should it).

The Map Classes

Figure 12 presents the class diagram for the ClassM ap component, a collection of classes that encapsul ate
the behavior needed to map objects to persistence mechanisms. The design is geared toward mapping
objectsto relational databases, although you can easily enhance it to support other persistence mechanisms
such asflat files and object-relational databases.

UniDirectional AssociationM fap

for Lcardinality : Integer

isMust : Boolean
isSaveAutomatic : Boolean
isDeleteAutomatic : Boolean
isRetrieveAutomatic : Boolean

1.
1

2 implemented 1.

by n
> T .
ClassMap - | AttributeMap ColumnMap
1 maps
- subclas o o
-name : String s name : String - ame T Stng
+getlnsertSqlFor() 0.. lrisProxy() 1 |-iskeyColumn : Boolean
+getDel eteSql For(0" -columnName() ;t_{pl)ﬁl: Stri:gnn:uwwn
+getUpdateSqlFor() 1 l-assql SaveV al ue(X Y e
+getSelectSqlFor()| superclas U T
s n
0.. | buffer
"y ° ProxyAttributeM TableM) DatabaseM ap
SqglStatement p ableM ap -
[————-name : String
- : Stri -vendor : String
abstract name : String vendor : Strir
. [tisProxy() +fullyQualifiedName() : String version : String

Figure 12. The ClassM ap component.

Let’ sstart at the ClassM ap class, instances of which encapsul ate the behavior needed to map instances of a
given classto arelational database. If instances of the Customer class are persistent then there would be
ClassM ap object which maps Customer objectsinto the database. If instances of aclass are not persistent,
for examplesinstances of the classRadioButton (a user interface widget), then there will not be an instance
of ClassMap for that class.

ClassM ap objects maintain a collection of AttributeM ap objects which may map an attribute to asingle
columnin arelationa table. AttributeM ap objects map simple attributes such as strings and numbers that
are stored in your database, or are used to represent collections to support instances of the
UniDirectional AssociationM ap class (more on thisin aminute). AttributeM ap objects know what

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 17

ColumnM ap objects they are associated to, which in turn know their TableMap and DatabaseM ap objects.
Instances of these four classes are used to map an attribute of an object to atable column within arelational
database.

A ProxyAttributeM ap object is used to map a proxy attribute, which is an attribute that is needed to build
the proxy version of an object. Proxy objects have just enough information to identify the real object that it
represents, forgoing the values of attributes which require significant resources such as network bandwidth
and memory. The ProxyAttributeMap classis needed to support the ability for PersistentCriteriaobjects
and Cursor objectsto automatically retrieve proxies from the database.

The class UniDirectional AssociationM ap encapsul ates the behavior for maintaining a rel ationship between
two classes. When arelationship is bi-directional, for example a Student object needs to know the courses
that it takes and a Cour se object needs to know the students taking it, then you will need to maintain a
UniDirectional AssociationM ap for each direction of the relationship. Y ou could attempt to develop a
BiDirectional AssociationM ap class if you wish, but when you consider the complexities of doing so you'll
recognize that using two instances of UniDirectional AssociationM ap is much easier. The map maintainsa
relationship between two classes, and includes knowledge of whether or not the second class should be
saved, deleted, or retrieved automatically when the first classis, effectively simulating triggersin your OO
application (removing the need to maintain them in your database if you wish to do so).

The implemented by association between UniDir ectional AssociationM ap and AttributeM ap reveals the
most interesting portion of this component — sometimes AttributeM ap objects are used to represent a
collection attribute to maintain a one-to-many association. For example, because a student takes one or
more courses there is a one-to-many association from the Student class to the Cour seclass. To maintain
this association in your object application the Student class would have an instance attribute called cour ses
which would be a collection of Cour seobjects. Assuming the isRetrieveAutomatic attributeis set to true,
then when a Student object isretrieved all of the courses that the student takes would be retrieved and
references to them would be inserted into the collection automatically. Similar to defining triggersin
relational databases, you want to put alot of thought into the triggers that you define using the
isSaveAutomatic, isRetrieveAutomatic, and isDeleteAutomatic attributes of

UniDirectional AssociationM ap.

Why do you need these mapping classes? Simple, they are the key to encapsulating your persistence
mechanism schema from your object schema (and vice versa). If your persistence mechanism schema
changes, perhaps atable is renamed or reorganized, then the only change you need to make isto update the
map objects, which aswe' |l seelater are stored in your database. Similarly, if you refactor your application
classes then the persistence mechanism schema does not need to change, only the map objects. Naturally,
if new featuresare added requiring new attributes and columns, then both schemas would change, along
with the maps, to reflect these changes.

For performance reasons instances of ClassM ap maintain a collection of SglStatement objects, buffering
them to take advantage of common portions of each statement. For similar reasons, although | don’t show
it, ClassM ap should also maintain a collection of Database M ap objects that Sql Statement objects use to
determine the proper subclass of RelationalDatabase for example Or acle8, to obtain the specific string
portionsto build themselves. Without this relationship the SqlStatement objects need to traverse the

rel ationships between the map classes to get to the right subclass of RelationalDatabase

There are two interesting lessons to be learned from the class diagram in Figure 12. First, isthe cardinality

of “2” used on the association between ClassM ap and UniDirectional AssociationM ap— | rarely indicate a
maximum cardinality on an association, but thisis one of the few times that a maximum is guaranteed to hold
(there will only ever be two classes involved inauni-directional association). The modeling of maximums, or
minimums for that matter, is generally abad idea because they will often change, therefore you don’t want to
develop adesign that is dependent on the maximum. Second, recursive relationships are one of the few
timesthat | use rolesin an association — many people find recursive relationships confusing, such asthe

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 18

one that ClassM ap has with itself, so you want to provide extrainformation to aid them in their
understanding.

The SqlStatement Class Hierarchy

Figure 13 presents the SglStatement class hierarchy which encapsulates the ability to create SELECT,
INSERT, UPDATE, and DELETE structured query language (SQL) statements. As you would expect, each
subclass knows how to build itself for agiven object or instance of PersistentCriteria. For example,
SelectSgl Statement objects will be created to retrieve a single Customer object, viainvoking theretrieve()
method on the object, or by creating an instance of the classRetrieveCriteria, a subclass of
PersistentCriteria, and invoking the perform() method on it.

SqlStatement {abstract}

-statementComponents : Collection

+buildForObject()
+buildForCriteria()

+asstring()
A

SelectSqlStatement UpdateSqIStatemerLt
+buildForObject() +buildForObject()
+buildForCriteria() +buildForCriteria()

DeleteSqlStatemept InsertSqlStatement

+buildForObject() +buildForObject()

+buildForCriteria() +buildForCriteria()

Figure 13. The SglStatement class hierar chy.

Aswe saw earlier the Relational Databaseclass hierarchy encapsul ates the specific flavor of SQL supported
by each database vendor/version (although SQL is astandard, every vendor supportsits own unique
extensions that we want to automatically use). Instances of SqlStatement collaborate with instances of
ClassM ap to determine the subclass of Relational Databasefrom which to retrieve the portions of SQL
clausesto builditself.

The attribute statementComponents is a collection of strings that can be reused for the single objects of a

given class. For example, the attribute list of an INSERT statement does not change between instances of
the same class, nor doesthe INTO clause.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 19

Implementing The Persistence Layer

There are several issues that you need to be aware of with persistence layersif you wish to be successful.
Theseissues are:

Buying versus building the persistence layer

Concurrency, objects, and row locking

Development language i ssues

A potential development schedule

Buy Versus Build

Although this white paper is aimed at people who are building a persistence layer, the fact is that building
and maintaining a persistence layer isacomplex task. My advice isthat you shouldn’t start the
development of apersistence layer it if you can't finish through. Thisincludes the maintenance and
support of the persistence layer onceit isin place.

If you decide that you either can’t or don’t want to build a persistence layer A feasihility study should
then you should consider purchasing once. In my third book, Process Patterns ook at the economic,
(Ambler, 1998b), | go into detail about the concept of afeasibility study, which technical, and

looks at the economic, technical, and operational feasibility of something. The operational feasibility of
basic ideaisthat your persistence layer should pay for itself, should be building/buying a
possibleto build/buy, and should be possible to be supported and maintained persistence layer.

over time (asindicated previously).

The good news isthat there are alot of good persistence products available on the market, and | have
provided links to some of them at http://www.ambysoft.com/mappingObjects.html to provide an initial basis
for your search. Also, | have started, at least at ahigh level, alist of requirements for you in this document
for your persistence layer. Thefirst thing that you need to do is flesh them out and then prioritize them for
your specific situation.

Concurrency, Objects, and Row Locking

For the sake of thiswhite paper concurrency deals with the issuesinvolved with allowing multiple people
simultaneous access to the same record in your relational database. Becauseitispossible, if you allow it,
for several usersto access the same database records, effectively the same objects, you need to determine a
control strategy for allowing this. The control mechanism used by relational databasesislocking, andin
particular row locking. There are two main approachesto row locking: pessimistic and optimistic.

1. Pessimisticlocking. An approach to concurrency in which an itemislocked in the persistence
mechanism for the entire timethat it isin memory. For example, when a customer object is edited alock
is placed on the object in the persistence mechanism, the object is brought into memory and edited, and
then eventually the object is written back to the persistence mechanism and the object is unlocked.
This approach guarantees that an item won’t be updated in the persistence mechanism whiletheitemis
in memory, but at the same time s disallows others to work with it while someone else does. Pessimistic
locking isideal for batch jobs that need to ensure consistency in the data that they write.

2. Optimisticlocking. An approach to concurrency in which an item islocked in the persistence
mechanism only for thetime that it is accessed in the persistence mechanism. For example, if acustomer
object isedited alock is placed on it in the persistence mechanism for the time that it takestoread itin
memory and then it isimmediately removed. The object is edited and then when it needsto be saved it
islocked again, written out, then unlocked. This approach allows many people to work with an object

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 20

simultaneously, but also presents the opportunity for peopleto overwrite the work of others.
Optimistic locking is best for online processing.

Y es, with optimistic locking you have an overhead of determining whether or not the record has been
updated by someone else when you go to saveit. Thiscan be accomplished viathe use of acommon
timestamp field in all tables: When you read arecord you read in the timestamp. When you go to write the
record you compare the timestamp in memory to the onein the database, if they are the same then you
update the record (including the timestamp to the current time). If they are different the someone else has
updated the record and you can’t overwrite it (therefore displaying a message to the user).

Development Language Issues

The design as presented in this paper requires something called reflection, the ability to work with objects
dynamically at runtime. Reflection is needed to dynamically determine the signatures of, based on the meta
data contained in the map classes, getter and setter methods and then to invoke them appropriately.
Reflection is built into languages such as Smalltalk and Java (at least for JDK 1.1+) but not (yet) in C++. The
result isthat in C++ you need to code around the lack of reflection, typically by moving collections of data
between the business/domain layer and the persistence layer in a structured/named approach. Asyou
would expect, thisincreases the coupling between your object schemaand your data schema, although still
provides you with some protection.

A Development Schedule
If you intend to build a persistence layer, hereis one potential schedule that you may choose to follow:

Milestone Tasksto Perform
1. Implement basic - Implement Per sistentObj ect.

CRUD behavior. - Implement connection management in Per sistenceBr oker .
Implement map classes (at |east the basics) with the meta data being read
from tables where the datais input manually.
Implement basics of the SqlStatement hierarchy for asingle object.
Implement the Per sistenceM echanism hierarchy for the database(s) that
need to be supported within your organization.

2. Implementsupport | - Implement the UniDir ectional AssociationM ap class.
for Associations. - The SglStatement hierarchy will need to be updated to reflect the additional
complexity of building SQL code to support associations.
3. Implementsupport | - Implement the PersistentCriteriahierarchy, typically starting with
for RetrieveCriteriato support search screens and reports.
PersistentCriteria. | - Update PersistenceBroker to process PersistentCriteriaobjects.
4. Implement support | - Add ProxyAttributeM ap.
for cursors, - Add Cursor class.
proxies, and - Add Recordclass (if your language doesn’t already support it).

records. - Add Proxy class (if your language doesn’t already support it).
- Modify PersistenceBroker to hand back objects, rows, proxies, or records
when processing Per sistentCriteriaobjects.

5. Implement an - Seesection 8.
administration
application.

6. Implement - Implement the Transaction class.
transactions. - Modify PersistenceBroker.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 21

| always suggest starting simple by supporting a single database, and then if needed support multiple
databases simultaneously.

Steps 2 through 6 could be done in any order depending on your priorities.

Doing A Data Load

Inthis section | will discussthe issuesinvolved with loading datainto your object-oriented application.
Dataloads are areality of system development: you need to convert alegacy database to a new version;
you need to load testing/devel opment objects from an external data source; or you need to perform regular
loads, potentially in real time, of data from non-OO and/or external systems. | begin by reviewing the
traditional loading techniques, and then present one that is sensible for OO applications.

Traditional Data Loading Approaches

Thetraditional approach to dataloading, shown inFigure 14, isto write a program to read datain from the
source database, cleanseit, then writeit out to the target database. Cleansing may range from simple
normalization of data, to single field cleansing such as converting two-digit yearsto four-digit years, to
multi-field cleansing in which the value in one field implies the purpose of another field (yes, thiswould be
considered incredibly bad design within the source data, but it isthe norm in many legacy databases).
Referential integrity, the assurance that all references within arecord to other records do in fact refer to
existing records, is also coded in the data loading program.

Source :'|> Data Target
Data Loader Data

Figure 14. Thetraditional approach to loading data.

There are several problemswith this approach. First and foremost, the target datais no longer encapsul ated
—if the schema of your persistence mechanism changes then you will need to change your dataloader code.
Granted, this can be alleviated by dataloading tools that operate on meta data (they effectively have a
persistence layer for structured technology). Second, your dataloader is likely implementing a significant
portion of the logic that is already encapsulated in your business objects. Y our business objects will not be
coded to fix problemsin the legacy source data, but they will be coded to ensure consistency of your
objects, including all referential integrity issues. The bottom lineisthat with this approach you are
programming alot of basic behavior in two places: in your business layer where it belongs and in your data
loader where it does not. There hasto be a better way.

Architected Data Loading

Figure 15 depicts an approach to dataloading that is more in line with the needs of object development. The
dataloader application itself will be made up of acollection of classes. First, there may be several user
interface classes, perhaps an administration screen for running the dataload and alog display screen.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 22

Second, there will be a collection of business classes specific to the data loader, classeswhich encapsul ate
the data cleansing logic specific to the source data. Y ou don’t want thisin your normal business classes
because at some point your legacy source dataislikely to go away and be replaced by the new and
improved target data. There will also be classes that encapsul ate the data load process logic itself, using the
dataload business classes to read the incoming data and then to create the “real” business objects for your
application based on that data. If you are not doing a complete refresh of the target datayou will need to
first read the existing objectsinto memory, update them based on the source data, and then write them back
out.

Data Application
Loader Ul Ul
[[

% %

Data Loader Business/
I:‘I > Message Flow
Classes Domain Classes g
[[

Vv

Persistence
Layer

Source
Data

>
Target

Data

Figure 15. An architected approach to loading data.

There are two interesting points to be made about Figure 15. First, notice how your “dataloader code”
never directly accesses the source data—it goes through the persistence layer to get at the data. Second,
the data loader code could easily be removed without affecting the applications and business classes, in
other words the applications don’t know and don’t care about the source of the data that they manipulate.

There are several advantagesto this approach:

- The dataloader logic isdecoupled from the schema for the target data, allowing you to update the
target schema as needed by your business applications without requiring an update to your data
loader.

Key businesslogic is encapsulated in the business classes of your application, exactly where it
belongs, enabling you to code it one place.

Datacleansing logic is encapsulated in the business classes of your dataloader, exactly where it
belongs, enabling you to codeit in one place.

Thereis one disadvantage to this approach: expensive dataloading tools that your organization has

purchased are likely not able to work within this architecture, likely based on the ancient/legacy approach of
Figure 14, causing political problemsfor the users of those tools.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 23

EJB and Persistence Layers

Enterprise JavaBeans (EJB) definestwo types of beans: Entity beans and Session beans. Entity beans
model basic business concepts, Account and Customer in abank. A good rule of thumb isthat entity beans
implement nouns. Entity beans are persistent. Session beans implement the business |ogic needed to
implement activities, such as transfer between accountsin abank. A good rule of thumb is that session
beans implement verbs. Session beans are either stateful or stateless. Stateful beans maintain knowledge
between method invocations on them, perhaps the current status of along-lived transaction, whereas

statel ess beans do not "remember" anything between method invocations. The properties of stateful beans
may need to be persisted somehow if the bean is swapped from memory, something called pacification in
EB.

EJB supports two approaches to persistence: bean-managed persistence and contai ner-managed
persistence. With bean-managed persistence the burden of persisting abean isthe responsibility of the
bean itself. Container managed persistence, on the other hand, is effectively automatic from the point of
view of the bean devel oper.

A persistence layer can be used to implement either approach to persistence. With bean-managed
persistence nothing has really changed because you are still on the hook to do all the work, you can either
hardcode SQL or use a persistence layer. With container-managed persistence the EJB server comeswith a
persistence layer/framework integrated into it, someone will still need to map the bean properties to columns
in the database if arelational database is used.

For more information about EJB visit http://java.sun.com

Supporting the Persistence Layer

How do you support this persistence layer within your organization? First, you need to develop an
administration system that provides the ability to maintain instances of the mapping classes. This
administration system would be updated by your persistence modelers responsible for developing and
mai ntaining your persistence schema, and by your lead devel opers responsible for maintaining the object
schema of your applications. Y ou may also choose to add a cache to your persistence layer to improveits
performance.

To support the persistence layer an administration application needs to be built to maintain the instances of
the ClassM ap classes, as shown in Figure 16. These objects encapsulate the behavior needed to map
objectsinto the persistence mechanism, including the complex relationships between the objects that make
up your application, and form the information that is stored in the data dictionary for your application. This
isthe secret to a successful persistence layer: the objects stored in the data dictionary provide the
behaviors needed to map objectsinto the persistence mechanism(s) where they are stored. When the
design of your application or persistence mechanism schema changes you merely have to update the
mapping objects within your data dictionary, you do not have to update your application source code.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 24

Persistence
Layer (——>
Administration
Application
Data Dictionary
Persistence
Layer
Your <:‘>
Application(s)
Persistence

M echanism(s)

Figure 16. How the persistence mechanism works.

This approach to persistence effectively allows your database administrators (DBAs) Robust

to do what they do best, administer databases, without forcing them to worry about persistencelayers
what their changes will do to existing applications. Aslong asthey keep the data protect application
dictionary up-to-date they can make whatever changes they need to make to the developersfrom
persistence mechanism schema. Similarly, application programmers can refactor their changes made by
objects without having to worry about updating the persistence mechanism schema database

because they can map the new versions of their classes to the existing schema. administrators
Naturally when new classes or attributes are added or removed to/from an application and viceversa.
there will be aneed for similar changes within the persistence mechanism schema.

Summary

The purpose of thiswhite paper wasto present aworkable design for arobust persistence layer, adesign
provenin practiceto work. Itispossible for object-oriented applicationsto use relational databases as

persi stence mechanisms without requiring the use of embedded SQL in your application code which couples
your object schemato your data schema. Technologies such as Java Database Connectivity (JDBC) and
Microsoft’s ActiveX Database Connectivity (ADO) can be wrapped using the design presented in this
white paper, avoiding the inherent brittleness of applications whose design gives little thought to the

mai ntenance and administration issues associated with persistence mechanisms. Persistence within object-
oriented applications can be easy, but only if you choose to make it so.

References and Recommended Reading

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 25

Ambler, SW. (1995). The Object Primer: The Application Developer’s Guide To Object Orientation. New
York: SIGS Books.

Ambler, SW. (1998a). Building Object Applications That Work — Your Step-by-Step Handbook for
Developing Robust Systems With Object Technology. New Y ork: SIGS Books/Cambridge University Press.

Ambler, S. W. (1998b). Process Patterns: Delivering Large-Scale Systems Using Object Technology. New
Y ork: SIGS Books/Cambridge University Press.

Ambler, SW. (1998c). Mapping Objects To Relational Databases: An AmbySoft Inc. White Paper.
http://www.ambysoft.com/mappingObj ects.html.

Ambler, SW. (1998d). Persistence Layer Requirements, Software Devel opment, January 1998, p70-71.
Ambler, SW. (1998¢). Robust Persistence Layers, Software Devel opment, February 1998, p73-75.

Ambler, SW. (1998f). Designing a Persistence Layer (Part 3 of 4), Software Development, March 1998,
p68-72.

Ambler, SW. (1998g). Designing a Robust Persistence Layer (Part 4 of 4), Software Development, April
1998, p73-75.

Ambler, SW. (1998h). Implementing an Object-Oriented Order Screen, Software Devel opment, June 1998,
p69-72.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). A Systems of Patterns: Pattern-
Oriented Software Architecture. New Y ork: John Wiley & Sons Ltd.

Rational (1997). The Unified Modeling Language for Object-Oriented Development Documentation v1.1.
Rational Software Corporation, Monterey California.

Glossary

Aqggregation -- Represents “is-part-of” relationships.

Anti-pattern — The description of acommon approach to solving a common problem, an approach that in
time proves to be wrong or highly ineffective.

Application server — A server on which businesslogic isdeployed. Application servers are key to an n-tier
client/server architecture.

Association -- Relationships, associations, exist between objects. For example, customers BUY products.
Associativetable — A table in arelational database that is used to maintain arelationship between two or
more other tables. Associative tables aretypically used to resolve many-to-many relationships.

Client — A single-user PC or workstation that provides presentation services and appropriate computing,
connectivity, and interfaces relevant to the business need. A client isalso commonly referred to asa*“front-
end.”

Client/server (C/S) architecture—A computing environment that satisfies the business need by
appropriately allocating the application processing between the client and the server processes.
Concurrency — Theissues involved with allowing multiple people simultaneous access to your persistence
mechanism.

Coupling —A measure of how connected two items are.

CRUD — Acronym for create, retrieve, update, delete. The basic functionality that a persistence mechanism
must support.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 26

Data dictionary — A repository of information about the layout of a database, the layout of aflat file, the
layout of aclass, and any mappings among the three.

Database proxies — An object that represents a business object stored in adatabase. To every other object
in the system the database proxy appears to be the object that it represents. When other objects send the
proxy amessage it immediately fetches the object from the database and replacesitself with the fetched
object, passing the message onto it. See the Proxy pattern in chapter 4 for more details.

Database server —A server which has a database installed on it.

Database server —A server which has a database installed on it.

Distributed objects — An object-oriented architecture in which objects running in separate memory spaces
(i.e. different computers) interact with one another transparently.

Domain/business classes — Domain/business classes model the business domain. Business classes are
usually found during analysis, examples of which include the classes Customer and Account.

Fat-client — A two-tiered C/S architecture in which client machinesimplement both the user interface and
the business |logic of an application. Serverstypically only supply datato client machineswith little or no
processing donetoit.

Key —Oneor more columnsin arelational datatable that when combined form a unique identifier for each
record in the table.

Lock —An indication that atable, record, class, object, ... isreserved so that work can be accomplished on
theitem being locked. A lock is established, the work is done, and the lock is removed.

n-Tier client/server — A client/server architecture in which client machines interact with application servers,
which in turn interact with other application servers and/or database servers.

Object adapter — A mechanism that both converts objects to records that can be written to a persistence
mechanism and converts records back into objects again. Object adapters can also be used to convert
between objects and flat-file records.

Object identifiers (Ol Ds) — A unique identifier assigned to objects, typically alarge integer number. OIDs
are the object-oriented equivalent of keysin the relational world.

ODMG — Object Database Management Group, a consortium of most of the ODBM S vendors who together
set standards for object databases.

OOCRUD - Object-oriented CRUD.

Optimistic locking — An approach to concurrency in which anitem islocked only for thetimethat itis
accessed in the persistence mechanism. For example, if a customer object isedited alock isplaced onitin
the persistence mechanism for the time that it takesto read it in memory and then it isimmediately removed.
The object is edited and then when it needsto be saved it islocked again, written out, then unlocked. This
approach allows many people to work with an object simultaneously, but also presents the opportunity for
people to overwrite the work of others.

OQL —Object Query Languages, a standard proposed by the ODMG for the selection of objects. Thisis
basically SQL with object-oriented extensions that provide the ability to work with classes and objects
instead of tables and records.

Pattern — The description of ageneral solution to acommon problem or issue from which a detailed solution
to a specific problem may be determined. Software development patterns come in many flavors, including
but not limited to analysis patterns, design patterns, and process patterns.

Persistence — The issue of how to store objects to permanent storage. Objects need to be persistent if they
areto be available to you and/or to others the next time your application is run.

Per sistence classes — Persistence classes provide the ability to permanently store objects. By
encapsulating the storage and retrieval of objects via persistence classes you are able to use various
storage technol ogies interchangeably without affecting your applications.

Persistencelayer — The collection of classes that provide business objects the ability to be persistent. The
persistence layer effectively wraps your persistence mechanism.

Per sistence mechanism— The permanent storage facility used to make objects persistent. Examplesinclude
relational databases, object databases, flat files, and object/relational databases.

Pessimistic locking — An approach to concurrency in which an item islocked for the entiretimethat itisin
memory. For example, when a customer object is edited alock is placed on the object in the persistence
mechanism, the object is brought into memory and edited, and then eventually the object is written back to
the persistence mechanism and the object is unlocked. This approach guaranteesthat anitemwon’t be

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 27

updated in the persistence mechanism whereas the item isin memory, but at the sametimeisdisalows
othersto work with it while someone el se does.

Process anti-pattern — An anti-pattern which describes an approach and/or series of actions for developing
software that is proven to be ineffective and often detrimental to your organization.

Process pattern — A pattern which describes a proven, successful approach and/or series of actions for
developing software.

Read lock — A type of lock indicating that atable, record, class, object,... is currently being read by someone
else. Other people may also obtain read locks on the item, but no one may obtain awrite lock until all read
locks are cleared.

Reading into memory —When you obtain an object from the persistence mechanism but don’t intend to
updateit.

Retrieving into memory — When you obtain an object from the persi stence mechanism and will potentially
updateit.

Server — A server isone or more multiuser processors with shared memory that provides computing
connectivity, database services, and interfaces relevant to the business need. A server isaso commonly
referred to as a*“back-end.”

SQL — Structured Query Language, a standard mechanism used to CRUD recordsin arelational database.
SQL statement — A piece of SQL code.

System layer — The collection of classes that provide operating-system-specific functionality for your
applications, or that wrap functionality provided by non-OO applications, hardware devices, and/or non-OO
code libraries.

Thin client — A two-tiered client/server architecture in which client machines implement only the user
interface of an application.

Transaction — A transaction is asingle unit of work performed in a persistence mechanism. A transaction
may be one or more updates to a persistence mechanism, one or more reads, one or more del etes, or any
combination thereof.

User -interface classes — User-interface classes provide the ability for usersto interact with the system.
User interface classestypically define a graphical user interface for an application, although other interface
styles, such as voice command or handwritten input, are also implemented via user-interface classes.
Wrapping —Wrapping is the act of encapsulating non-OO functionality within aclass making it look and
feel like any other object within the system.

Writelock — A type of lock indicating that atable, record, class, object,... is currently being written to by
someone else. No one may obtain either aread or awrite lock until thislock is cleared.

About the Author

Scott W. Ambler isaobject devel opment consultant living in the village of Sharon, Ontario, which is 60 km
north of Toronto, Canada. He hasworked with OO technology since 1990 in various roles. Business
Architect, System Analyst, System Designer, Project Manager, Smalltalk programmer, Java programmer, and
C++ programmer. He has aso been active in education and training as both aformal trainer and as an object
mentor. Scott isa contributing editor with Software Devel opment (http://www.sdmagazine.com) and writes
columns for both Object Magazine (http://www.sigs.com) and Computing Canada
(http://www.plesman.com). He can be reached viae-mail at: scott@ambysoft.com and you can visit his
personal web site: http:/mww.ambysoft.com

About The Object Primer

The Object Primer is astraightforward, easy to understand introduction to object-oriented analysis and
design techniques. Object-orientation is the most important change to system development since the advent
of structured methods. While OO is often used to develop complex systems, OO itself does not need to be
complicated. Thisbook is different than any other book ever written about object-orientation (OO) —itis
written from the point of view of areal-world devel oper, somebody who has lived through the difficulty of
learning this exciting new approach. Readers of The Object Primer have found it to be one of the easiest

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler 28

introductory booksin OO development on the market today, many of whom have shared their comments
and kudos with me. Topicsinclude CRC modeling, use cases, use-case scenario testing, and class
diagramming.

About Building Object Applications That Work

Building Object Applications That Work is about: ar chitecting your applications so that Usesthe
they are maintainable and extensible; analysis and design techniques using the Unified 0

M odeling Language (UML); creating applications for stand-alone, client/server, and

distributed environments; using bothrelational and object-oriented (OO) databases for b
persistence; OO metrics; applying OO patterns to improve the quality of your Unified Modeling
applications; OO testing (it is harder, not easier); user interface design so your users can Language
actually work with the systems that you build; and coding applicationsin away that

makesthem maintainable and extensible.

About Process Patterns

Process Patterns breaks ground in anew and exciting areafor object developers: reusable Usesthe
approaches to developing software. Just as design and analysis patterns describe 0
reusabl e solutions to common modeling problems, process patterns describe reusable

solutions to how to organize and manage your software process. This book presents a p

collection of approach, life cycle, phase, stage, and task process patterns which together Unified Modeling
form aclear and consistent vision for developing, maintaining, and supporting large-scale,
mission-critical software using object technology. Object development is serial inthe
large, iterative in the small, delivering incremental releases over time. This book can now
be pre-ordered from Cambridge University press (see
http://www.ambysoft.com/processPatter ns.html for details)!

Language

About the AmbySoft Inc. Java Coding Standards

The AmbySoft Inc. Java Coding Standar ds summarizes in one place the common coding standards for Java,
aswell as presents several guidelinesfor improving the quality of your code. Itisin Adobe PDF format and
can be downloaded from http://www.ambysoft.com.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler

I ndex

A

ACCESSOr MEtNOAScecveereeeereeree e
ACHVEX s
Administration application
AQregation.......oeveernererreeenenns
ANL-PEELEIN ...
APPIICALiON SEIVEN.......ocviecrrecreereeereeesee s
Associative table
ATIDULEM @D ...
Author

CONLACTING ovvvvereerreeree e

B

Bean-managed persistence
BUY VS. DU ...

Client/server (C/S) architecture.........cccocoeevervenee

and class-type architecture
Concurrency
CONNECLION.....ceeeeereeereeereeeeeeene
Container-managed persistence
Coupling

Datadictionaryccocceveveeenvesecsssesee s 26

Dataloading
Database administrators (DBAS).......ccccoevevvernnnen. 7
Database ProXyocceceevereeeenenensessssssssessesessesenns

Database SErVEr.......oocerierireneineeesessiseeeeseeeeees

[DIC TS (S @] (< T OO

Design overview.
Development schedule
Distributed Objects.......ccooeevevveccrreeeeereeene
Domain/business class.
Domain/business layer

Encapsulationcccoceveeecreenene.
Enterprise Java Beans
Entity beans........cccoovvveevevccennene,

EXtenSiDilityccocvvveececeec e

29
F
Fat CHENt ... 26
Feasibility StUAYcccverierereneereeeeeeeens 19
H
HIGH/LOW 8pproach...........ceeeeeeeeeeereereereerernernenes 9
I
Instance relationshipcccoceeevvenccsenesseseseeens 25

optimistic locking................
pessimistic locking
FEAA 10CK ...

WHEEIOCK ...t
Locking..............

optimistic.......

pessimistic
M
Modeling pattern

[AYET ot 2
N
N-Tier Client/SEIVEr ...t 26
(0]
Object adapter........ocvvererirerireereerereses e 26
Object database management group................... 26
Object identifier ... 26
Object query [anguage...........coveeeuveeerrereererseressenenn. 26
OID ettt 59
OOCRUDoitetitetereeete st 26
Open Database Connectivity (ODBC)coc..... 6
Optimistic [0CKING.v e 20, 26
P
Patternccoveeeeeee e 26
PErSIStENCE ... 26
Persistence Class.......cocovvvevveveessessseeee s 27

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1997-1999 Scott W. Ambler

Persistence layer.......cococvecevnenccnneeesenenens 3,27
Persistence mechanism..........ccccevvevvverecsnene, 27
PersistenceBroker.

PersistenceMechanism..........cccecevvevvvsereesnnenes 15
PersistentCriteria......cccoceveveveevvrersreesseeee s 10
PersistentObJECtcocevveeeerrecse s 9
PersistentTransaction..........c.cccoeevveeeseseseesnnenes 13
Pessimistic locking

Process anti-patterncocovveveneneneereseseennnns 27
Process patterncovvvrvvnnssnssssesesseses 27

Requirements
R L= Y= O] 1= T 11

S
Scott Ambler

Session beans...
SMARAK ..o

ThiNCHENE. ..o 27
TranSACLiON ...c.ecveecececeee e 59,27

U

UniDirectionAssociationMap.........cccccevereeeennnn. 17
Unified Modeling Language (UML)ccccceune. 1
UpdateCriteria.....ccoovvrerrererreresese s

User interface class
User-interface layer

W

LTAT A" o] o1 o TS 27
WIITE 1OCK .. 27

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

