
CRC Modeling:
Bridging the Communication Gap

Between Developers and Users

An AmbySoft Inc. White Paper

Scott W. Ambler
Software Process Mentor

AmbySoft Inc.

Material for this paper has be excerpted from:

The Object Primer: The Application Developer’s Guide to
Object-Orientation

- and -

Process Patterns: Building Large-Scale Systems Using
Object Technology

This Version: November 29, 1998

Copyright 1998 Scott W. Ambler

Table of Contents

CLASS RESPONSIBILITY COLLABORATOR CARDS..1

CRC MODELS..2

CRC MODELING IN A NUTSHELL..3

PUTTING TOGETHER THE CRC MODELING TEAM...3
ORGANIZE THE ROOM...4
BRAINSTORM ...4
EXPLAIN THE CRC MODELING TECHNIQUE ...5
PERFORM THE ITERATIVE STEPS OF CRC MODELING ...5

Finding Classes ...5
Finding Responsibilities ..5
Defining Collaborators..5
Defining Use-Cases ...6
Moving the Cards Around..6

PERFORM USE-CASE SCENARIO TESTING ...6

HOW CRC MODELING FITS IN ...8

IN CONCLUSION…...11

CRC MODELING TIPS AND TECHNIQUES..11
THE ADVANTAGES OF CRC MODELING ...12
THE DISADVANTAGES OF CRC MODELING ..12
AND A FEW CLOSING WORDS..12

REFERENCES AND RECOMMENDED READING ...13

GLOSSARY OF TERMS ...14

ABOUT THE AUTHOR...15

INDEX ...16

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

1

This white paper describes the CRC (class responsibility collaborator) modeling process for identifying
user requirements. CRC modeling is an effective, low-tech method for developers and users to work
closely together to identify and understand business requirements.

Class Responsibility Collaborator Cards
A CRC card (Beck & Cunningham, 1989; Ambler, 1995) is a standard index card that has been divided
into three sections, as shown below in Figure 1.

Class Name

Responsibilities Collaborators

Figure 1. CRC card layout.

A class represents a collection of similar objects. An object is a person, place, thing, event, concept,
screen, or report that is relevant to the system at hand. For example, Figure 2 shows a shipping/inventory
control system with the classes such as Inventory Item, Order, Order Item, Customer, and Surface
Address. The name of the class appears across the top of the card.

A responsibility is anything that a class knows or does. For example, customers have names, customer
numbers, and phone numbers. These are the things that a customer knows. Customers also order
products, cancel orders, and make payments. These are the things that a customer does. The things that a
class knows and does constitute its responsibilities. Responsibilities are shown on the left hand column of
a CRC card.

Sometimes a class will have a responsibility to fulfill, but will not have enough information to do it.
When this happens it has to collaborate with other classes to get the job done. For example, an Order
object has the responsibility to calculate it’s total. Although it knows about the Order Item objects that
are a part of the order, it doesn’t know how many items were ordered (Order Item knows this) nor does it
know the price of the item (Inventory Item knows this). To calculate the order total, the Order object
collaborates with each Order Item object to calculate its own total, and then adds up all the totals to
calculate the overall total. For each Order Item to calculate its individual total, it has to collaborate with
Inventory Item to determine the cost of the ordered item, multiplying it by the number ordered (which it
does know). The collaborators of a class are shown in the right-hand column of a CRC card.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

2

CRC Models
A CRC model is a collection of CRC cards that represent whole or part of an application or problem
domain. The most common use for CRC models, the one that this white paper addresses, is to gather and
define the user requirements for an object-oriented application1. Figure 2 presents an example CRC
model for a shipping/inventory control system, showing the CRC cards as they would be placed on a desk
or work table. Note the placement of the cards: Cards that collaborate with one another are close to each
other, cards that don’t collaborate are not near each other.

Figure 2. A CRC model for a simple shipping/inventory control system.

CRC models are created by groups of business domain experts, led by a CRC facilitator who is assisted by
one or two scribes. The CRC facilitator is responsible for planning and running the CRC modeling
session. In the next section we will discuss the CRC modeling process in detail.

1 Other common uses for CRC cards are to explain OO concepts to novice OO developers (Beck &
Cunningham, 1989) and to work through the design of a small portion of an OO application.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

3

CRC Modeling in a Nutshell
So how do you create a CRC model? There are six steps to CRC modeling, which are:
1. Put together the CRC modeling team.
2. Organize the modeling room.
3. Do some brainstorming.
4. Explain the CRC modeling technique.
5. Iteratively perform the steps of CRC modeling.
6. Perform use-case scenario testing.

Putting Together the CRC Modeling Team
There are four different roles taken in a CRC modeling session:

1. Business Domain Experts (BDEs). These are the real users of the system and occasionally a senior
developer with years of experience in the problem domain. However, never forget that users do the
work day in and day out – They have the business domain knowledge. There are typically four or five
BDEs involved in CRC Modeling. If you have less than four you’ll find that you won’t get a wide
enough range of knowledge and experience, but once you get beyond five or six people you’ll find that
there are too many people involved and that they’re getting in each others way. Good BDEs know the
business, think logically, can communicate well, and are willing to invest their time in the
development process.

2. Facilitator. This is the person who runs the session. The main role of the facilitator is to
communicate what CRC modeling is all about, make sure that the cards are filled out properly, ask
pertinent questions during modeling, and to recognize when prototyping needs to be done and to lead
the prototyping effort. Facilitators need good communication and technical skills. The facilitator is
often a trained meeting facilitator.

3. Scribe(s). You should have one or two scribes in the room. Scribes take down the detailed business
logic that isn’t captured on the CRC cards. For example, on the Order card we might indicate that it
knows how to apply a discount, but what we haven’t recorded is the logic to do so. This is the type of
information that scribes record. Scribes do not actively participate in the session, although may ask
questions to confirm the business rules or processing logic that they are recording. Scribes must be
able to listen well, have good oral and written communication skills, and should have a good ear for
business logic.

4. Observers. For training purposes, you may wish to have one or more people sit in on the CRC
modeling session as observers. These people sit at the back of the room and do not participate in the
session.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

4

Organize the Room
There are several things that need to be done to organize a CRC modeling room:
1. Reserve a meeting room that has something write on. You need a flip chart and/or a whiteboard to
write on to do brainstorming and prototyping. Flip charts are great because you can tape your sketches on
the wall. Whiteboards are great for drawing quick pictures that you might have to edit.
2. Bring CRC modeling supplies. You’ll need a couple of packages of index cards and some whiteboard
markers. If you’re going to do use-case scenario testing you’ll also need a soft, spongy ball.
3. Have a modeling table. There should be a large table for people to work on.
4. Have chairs and desks for the scribe(s). Put them to the back or sides of the room where they are out
of the way but can still see what is going on.
5. Have chairs for the BDEs. People will want to sit down during the session, so make sure you have
enough chairs.
6. Have chairs for the observers. If there are observers, put them in the back of the room. Observers
aren’t there to participate, so it is valid to put them towards the back of the room.

Brainstorm
Brainstorming is an idea-generation technique, not an idea-evaluation technique, which your modeling
team will use to identify and understand the requirements for the application they are building. It’s ok,
and even encouraged, to build on the ideas of others. Potential questions that can be used to generate
ideas during brainstorming include:
• Who is this system for?
• What will they do with the system?
• Why do we do this?
• Why do we do this the way that we do?
• What business needs does this system support?
• What do/will our customers want/demand from us?
• How is the business changing?
• What is our competition doing? Why? How can we do it better?
• Do we even need to do this?
• If we were starting from scratch, how would we do this?
• Just because we were successful in the past doing this, will we be successful in the future?
• Can we combine several jobs into one? Do we want to?
• How will people’s jobs be affected? Are we empowering or disempowering them?
• What information will people need to do their jobs?
• Is work being performed where it makes the most sense?
• Are there any trivial tasks that we can automate?
• Are people performing only the complex tasks that the system can’t handle?
• Will the system pay for itself?
• Does the system support teamwork, or does it hinder it?
• Do our users have the skills/education necessary to use this system? What training will they need?
• What are our organization’s strategic goals and objectives? Does this system support them?
• How can we do this faster?
• How can we do this cheaper?
• How can we do this better?

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

5

 Explain the CRC Modeling Technique
 Once brainstorming is finished the facilitator should describe the CRC modeling process. This usually
takes between ten and fifteen minutes and will often include the creation of several example CRC cards.
Because people learn best by doing it is a very good idea for the facilitator to lead the BDEs through the
creation of the example CRC cards.

 Perform The Iterative Steps of CRC Modeling
 The group of BDEs stand and/or sit around a large table and fill out the CRC cards. While they’ll spend
most of their time sitting and discussing the system, BDEs will often stand up to get a bird’s eye view of
their model, allowing them to get a better feel for the overall application. The steps of CRC modeling
are:
• Find classes
• Find responsibilities
• Define collaborators
• Define use-cases
• Arrange the cards on the table

 Finding Classes
• Look for anything that interacts with the system, or is part of the system
• Ask yourself “Is there a customer?”
• Follow the money
• Look for reports generated by the system
• Look for any screens used in the system
• Immediately prototype interface and report classes
• Look for the three to five main classes right away
• Create a new card for a class immediately
• Use one or two words to describe the class
• Class names are singular

 Finding Responsibilities
• Ask yourself what the class knows
• Ask yourself what the class does
• If you’ve identified a responsibility, ask yourself what class it "belongs" to
• Sometimes get responsibilities that we won’t implement, and that’s OK
• Classes will collaborate to fulfil many of their responsibilities

 Defining Collaborators
• Collaboration occurs when a class needs information that it doesn’t have
• Collaboration occurs when a class needs to modify information that it doesn’t have
• There will always be at least one initiator of any given collaboration
• Sometimes the collaborator does the bulk of the work
• Don’t pass the buck
• New responsibilities may be created to fulfill the collaboration

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

6

 Defining Use-Cases
• The BDEs will identify them as responsibilities of actor classes
• Do some brainstorming
• Transcribe the scenarios onto cards

 Moving the Cards Around
• Cards that collaborate with each other should be close to one another on the desk
• The more that two cards collaborate, the closer that they should be on the desk
• Expect to be moving the cards around a lot at the beginning
• Put "busy" cards towards the center of the table
• Actually move them around
• People will identify relationships/associations between classes as they move them around

Perform Use-Case Scenario Testing
Use-case scenario testing (Ambler, 1995; Ambler, 1998a; Ambler, 1998b) is a task process pattern,
depicted in Figure 3, in which users are actively involved with ensuring that user requirements are
accurate. The basic idea is that a group of business domain experts (BDEs), with the aid of a facilitator,
step through a series of defined use cases to verify that CRC model accurately reflects their requirements.
The facilitator distributes the cards to the BDEs, trying to ensure that two cards that collaborate are given
to two different people (sometimes this is easier said than done). The facilitator then leads the group
through acting out each scenario one at a time. There are six steps to acting out scenarios:
1. Call out a new scenario. Both the description of the scenario and the action(s) to be taken are called

out by the facilitator. Once this is complete, the group must decide if this scenario is reasonable
(remember, the system can’t handle some scenarios) and if it is which card is initially responsible for
handling the scenario. The facilitator starts out with the ball, and throws it to the person holding that
card. When the scenario is completely acted out the ball will be thrown back to the facilitator.

2. Determine which card should handle the responsibility. When a scenario has been described, or
when the need for collaboration has been identified, the group should decide what CRC card should
handle the responsibility. Very often there will already be a card that has the responsibility identified.
If this isn’t the case, update the cards. Once the update is complete (if need be), whoever has the ball
should throw it to the person with the card that has the responsibility.

3. Update the cards whenever necessary. If a card needs to be updated, one of two situations has
arisen: The responsibility needs to be added to an existing card, or a new card needs to be created
with that responsibility. If a responsibility needs to be added to an existing card, then ask yourself
which card should logically have it, and then have the BDE with that card update it. If a new card
needs to be created, the facilitator should hand a blank CRC card to one of the BDEs and ask them to
fill it out. At the same time, you may also find that you need to update your prototype drawings as
well (if an interface or report class changes, then the prototype may need to change as well).

4. Describe the processing logic. When the ball is thrown to someone, they should describe the
business logic for the responsibility step-by-step. Think of it like this: The BDEs are effectively
describing pseudo-code (high level program code) for the responsibility. This is often the most
difficult part of use-case scenario testing, as some of your BDEs might not be used to documenting
processes step-by-step. If this is the case with some of your BDEs, then the facilitator needs to help
them through the logic. You’ll find that after running through the first few scenarios the BDEs will
quickly get the hang of describing processing logic. As the BDE describes the processing logic, the
scribe should be writing it down (remember, the job of the scribe is to record the business logic/rules
for the system, which is exactly what the BDE is currently describing!)

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

7

5. Collaborate if necessary. As the BDE describes the business logic of the responsibility, they will
often describe a step where they need to collaborate with another card to complete. That’s great --
That’s what use-case scenario testing is all about! If this is the case, go back to Step 2.

6. Pass the ball back when done. Eventually the BDE will finish describing the responsibility. When
this happens, they should throw the ball back to whoever it was that originally threw it to them. This
will be another BDE (remember, every time you need to collaborate you throw the ball to the person
holding the card that you need to collaborate with) or to the facilitator (remember, the facilitator starts
with the ball and throws it to the person holding the card that initially handles the scenario).

Choose the next
use case

Create a new
class

Add the
responsibility to

the class

Describe the
processing logic

Determine the
class that is
responsible

Use case is in
scope?

The class
exists?

The
responsibility

exists?

Need to
collaborate?

Finished?

No

No No

No

No

Yes

Yes Yes

Yes

Yes

.

Start

Figure 3. The Use-Case Scenario Testing process pattern (Ambler, 1998b).

The main point that needs to be made is that you need to verify that your model accurately reflects the
problem domain. If it doesn’t, then your project is in serious jeopardy. I would prefer to find this out
early on in the project when I’m still in a position to do something about it rather than later when I
probably can’t. Wouldn’t you?

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

8

How CRC Modeling Fits In
Although I argue in my second book, Building Object Applications That Work (Ambler, 1998a) that the
four techniques shown in Figure 4 are completely interconnected, in general the definition of use cases
and prototypes generally come before a CRC model, which in turn generally comes before a class
diagram. The reason for this is simple: Use cases and user interface prototypes are less detailed than
CRC models, which in turn are less detailed than class diagrams. Yes, while you are CRC modeling you
will draw sketches, or prototypes of screens. Yes, while you are CRC modeling you will identify new use
cases and/or update existing ones. In general, however, you will find that it is better to start out “simple”
with use cases and prototypes, get a little more complicated with CRC cards, and then get even more
complicated with class diagrams.

Use Case
Model

User Interface
Prototype

CRC
Model

Class
Model

Figure 4. How CRC modeling fits in.

As you know, there is more to OO modeling than just the models shown in Figure 4. Figure 5 depicts the
Detailed Modeling process pattern (Ambler, 1998b) in which the boxes represent the main
techniques/diagrams of OO modeling and the arrows show the relationships between them, with the arrow
heads indicating an “input into” relationship. For example, we see that an activity diagram is an input
into a class diagram. In the bottom right-hand corner of each box are letters which indicate who is
typically involved in working on that technique/diagram. The key is straightforward: U=User,
A=Analyst, D=Designer, and P=Programmer. The letter that is underlined indicates the group that
performs the majority of the work for that diagram. For example, we see that users form the majority of
the people involved in developing a CRC model and designers form the majority of those creating
statechart diagrams.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

9

Interface-Flow
Diagram

A,D

User Interface
Prototype

U,A

CRC
Model

U,A

Use Cases

U,A

Activity
Diagram

A,D

Sequence
Diagram

D,P

Class
Diagram

A,D,P

Statechart
Diagram

D,P

Collaboration
Diagram

D,P

Use-Case
Diagram

A

Key:
 U = User
 A = Analyst
 D = Designer
 P= Programmer

Deployment
Diagram

A,D

Physical
Data Model

D

Component
Diagram

A,D

Technical
Prototype

D, P

.

Figure 5. The Detailed Modeling process pattern.

An interesting feature of Figure 5 is that it illustrates that the object-oriented modeling process is both
serial in the large and iterative in the small. The serial nature is exemplified when you look from the top-
left corner to the bottom right corner: the techniques move from requirements gathering to analysis to
design. You see the iterative nature of OO modeling from the fact that each technique drives, and is
driven by, other techniques. In other words you iterate back and forth between models.

From a serial perspective, Figure 6 depicts the Deliverables Drive Deliverables approach process pattern
(Ambler, 1998b), indicating the general order in which you will work on deliverables during the
Construct Phase. It is important to point out that the views in Figure 5 and Figure 6 are complementary,
not contradictory. In Figure 5 we see that we generally start modeling with techniques, such as use cases
and CRC models, that focus on user requirements, moving into analysis-oriented techniques such as
sequence and component diagrams, then into design techniques and finally to code. The arrows in Figure
6 represent a documents relationship. For example a use-case diagram is documented by use cases, which
in turn are documented by sequence diagrams. Component diagrams are interesting in that a component
within a component diagram is often documented by either another component diagram, a class diagram,
and/or a use-case diagram.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

10

User requirements Analysis Design Code

Use-Case Diagram

Use Cases
Sequence
Diagram

CRC Model

Interface-Flow
Diagram

User Interface
Prototype

Component
Diagram

Class
Diagram

Statechart
Diagram

Collaboration
Diagram

Data
Diagram

Deployment
Diagram

Technical
Prototype

Source
Code

Process
Diagram

.

Figure 6. The Deliverables Document Deliverables process pattern.

As an aside, in the UML (Rational, 1997) the traces stereotype is used to connect related pieces of
information in separate models to maintain traceability throughout your work. Traceability is an
important concept for testing.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

11

In Conclusion…

CRC Modeling Tips and Techniques
The following tips and techniques (Ambler, 1995) will help you to improve the effectiveness of your CRC
modeling efforts:
1. Send ahead an agenda a few days before the modeling session. The agenda should indicate when

and where the modeling session is to be held, who will attend and their roles, the purpose of the
session, and how to prepare for it. Agendas help people to prepare themselves for a modeling session
and are an easy way to increase the productivity of the session.

2. Prominently display the CRC definitions. I like to tape a large picture of a CRC card along with
descriptions of what classes, responsibilities, and collaborators are, at the front of the room where
everyone can see it. This gives BDEs something to refer to while modeling and acts as a reminder as
to how to layout a card.

3. Use their terminology. You should always try to use the terminology of the problem domain
wherever possible, avoiding the introduction of unfamiliar or artificial terminology. This makes it
easier for the BDEs to understand what it is that’s being modeled.

4. Keep it low tech. In the early 1990s there was a push to automate the CRC modeling process,
however, I just don’t see how that makes sense. CRC cards are very effective just the way that they
are. Use CASE (computer aided system engineering) tools for class diagrams where you need the
extra modeling capabilities, not for CRC cards where you don’t. Use the right tool for the job.

5. Expect to prototype. You will always find that you need to sketch a few screens or reports while
CRC modeling. This helps people to visualize what they’re talking about and provides valuable input
into the development process.

6. Expect to take a few days. For large systems you will likely need to hold several CRC modeling
sessions. Don’t worry, this is normal. The larger the system, the more effort you will need to take to
understand and identify the requirements for it.

7. Get management support. Your organization must recognize the benefits of understanding the
problem domain and of modeling a solution for that problem domain before writing code. Many
organizations give lip service to “doing it right” but when push comes to shove they’ll often forsake
requirements gathering and modeling in favor of writing code.

8. Include CRC modeling in your system development life cycle. CRC modeling is an effective
technique for identifying and validating user requirements. Do it!

9. Do CRC modeling with front-line staff only. My experience has been that CRC modeling is very
effective with front-line staff because it allows you to get down into the details easily. It doesn’t work
as well with executives who are geared towards the “big picture.” Use cases are a more effective
mechanism for these types of people. Once again, use the right tool for the job.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

12

The Advantages of CRC Modeling
There are many advantages to CRC modeling (Ambler, 1995), which include:
1. The experts do the analysis. The people who understand the problem domain, the business domain

experts (BDEs) are the people who create the model. What better way exists to ensure that you get
the right information?

2. User participation increased. Because users are actively involved in defining the model their
satisfaction with the work will be much greater. CRC modeling increases user buy-in to the project.

3. Breaks down communication barriers. Users and developers work togther side-by-side to create the
CRC model.

4. It’s simple and straightforward. You get a group of people together in a room and fill out a bunch
of index cards. Because of its simplicity you can explain CRC modeling to a group of people in 10 or
15 minutes.

5. It’s non-threatening to users. Many people are afraid, and rightly so, of losing their jobs to
automation. Few people, if any, are afraid of losing their jobs to a stack of index cards.

6. It’s inexpensive and portable. You can buy 100 index cards for two or three dollars and throw them
into your briefcase.

7. It goes hand-in-hand with prototyping. CRC modeling and prototyping are both iterative processes
in which users are greatly involved. It is very common to draw rough sketches of screens and reports
during CRC modeling sessions.

8. It leads directly into class diagramming. CRC models and class diagrams show many of the same
concepts. In many ways class diagrams are simply supersets of CRC models.

The Disadvantages of CRC Modeling
There are several, albeit minor, disadvantages to CRC modeling:
1. It’s threatening to some developers. Too many developers do not recognize the need for working

closely with users, thinking that because they know the technology they also understand the business
domain. This belief is obviously false, the users who do the job day in and day out almost always
know more about it than the developers.

2. It’s hard to get users together. Scheduling people for meetings is always hard to do. Try to keep
the number of people in the room to just a few key people and try to plan at least a week in advance.

3. CRC cards are limited. CRC models are just part of the definition of user requirements for an OO
application, you should also consider use cases, prototypes, and formal requirements documents.
Furthermore, in most organizations it isn’t acceptable to simply submit a collection of index cards as
your analysis deliverable.

And a Few Closing Words
CRC modeling is a very effective technique for identifying and validating user requirements. It works
hand in hand with use cases and prototypes, and leads directly into class modeling. The goal of
application development is to solve business problems, not to satisfy the intellectual curiosity of developers
who only want to play with new toys. Work with your users, not against them.

I welcome any comments or questions that you may have about the material
presented in this white paper, so please feel free to email me at scott@ambysoft.com.

Let’s learn together.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

13

References and Recommended Reading

Ambler, S. (1995). The Object Primer: The Application Developer’s Guide to Object Orientation. New
York: SIGS Books/Cambridge University Press.

Ambler, S.W. (1998a). Building Object Applications That Work: A Step-By-Step Handbook for
Developing Systems Using Object Technology. New York: SIGS Books/Cambridge University Press.

Ambler, S.W. (1998b). Process Patterns: Building Large-Scale Systems Using Object Technology. New
York: SIGS Books/Cambridge University Press.

Ambler, S.W. (1999). More Process Patterns: Delivering Large-Scale Systems Using Object Technology.
New York: SIGS Books/Cambridge University Press.

Beck, K. & Cunningham, W. (1989). A Laboratory for Teaching Object-Oriented Thinking. OOPSLA’89
Conference Proceedings, pp. 1-6.

Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G. (1992). Object-Oriented Software Engineering –
A Use Case Driven Approach. ACM Press.

Rational (1997). The Unified Modeling Language v1.1 Documentation Set. Rational Software
Corporation, Monterey California.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

14

Glossary of Terms

Business Domain Expert (BDE) – People with intimate knowledge of the problem domain, typically
users who do the job day in and day out.

Class – A class represents a collection of similar objects. An object is a person, place, thing, event, or
concept that is relevant to the system at hand.

Collaborator – A class will often have a responsibility to fulfill, but will not have enough information to
do it. Therefore it needs to work with, collaborate with, other classes that do have the information that it
needs. Collaboration will take on one of two forms: A request for information or a request to do
something.

CRC card – A standard index card representing one of the classes that make up an application. CRC
cards are divided into three sections: The name of the class, the responsibilities of the class, and the
collaborators (if any) of the class.

CRC model – A collection of CRC cards which represent whole or part of an application.

Facilitator – The person who plans, with the aid of the project manager, and who runs the modeling
session. The main role of the facilitator is to communicate what CRC modeling is all about, make sure
that the cards are filled out properly, ask pertinent questions during modeling, and to recognize when
prototyping needs to be done and to lead the prototyping effort.

Observer – A person who attends a CRC modeling session for training or informational purposes.
Observers typically sit at the back of the room and do not participate in the session at all.

Pattern – The description of a general solution to a common problem or issue from which a detailed
solution to a specific problem may be determined. Software development patterns come in many flavors,
including but not limited to analysis patterns, design patterns, and process patterns.

Process pattern – A pattern which describes a proven, successful approach and/or series of actions for
developing software.

Responsibility – Anything that a class knows or does, or in other words its attributes and its behaviors.

Scribe – The person(s) who record the detailed business logic that isn’t captured on the cards. Scribes do
not actively participate in the session, although may ask questions to confirm the business rules or
processing logic that they are recording.

Task process pattern – A process pattern that depicts the detailed steps to perform a specific task, such
as detailed modeling or performing a technical review.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

15

About the Author
Scott W. Ambler is an object development consultant living in Newmarket, Ontario, which is 45 km north
of Toronto, Canada. Scott is the author of The Object Primer (1995), Building Object Applications That
Work (1998), Process Patterns (1998) and More Process Patterns (1999) all published by SIGS
Books/Cambridge University Press. He has worked with OO technology since 1990 in various roles:
Process Mentor, Business Architect, System Analyst, System Designer, Project Manager, Smalltalk
Programmer, Java Programmer, and C++ Programmer. He has also been active in education and training
as both a formal trainer and as an object mentor. Scott is a contributing editor with Software
Development (http://www.sdmagazine.com) and writes feature articles for Component Strategies
(http://www.sigs.com) and Computing Canada (http://www.plesman.com). He can be reached via e-mail
at scott@ambysoft.com and you can visit his personal web site http://www.ambysoft.com.

About The Object Primer
The Object Primer is a straightforward, easy to understand introduction to object-oriented analysis and
design techniques. Object-orientation is the most important change to system development since the
advent of structured methods. While OO is often used to develop complex systems, OO itself does not
need to be complicated. This book is different than any other book ever written about object-orientation
(OO) – It’s written from the point of view of a real-world developer, somebody who has lived through the
difficulty of learning this exciting new approach. Readers of The Object Primer have found it to be one of
the easiest introductory books in OO development on the market today, many of whom have shared their
comments and kudos with me. Topics include CRC modeling, use cases, use-case scenario testing, and
class diagramming. Visit http://www.ambysoft.com/theObjectPrimer.html for more details.

About Building Object Applications That Work
Building Object Applications That Work is about: architecting your applications so that
they’re maintainable and extensible; analysis and design techniques using the Unified
Modeling Language (UML); creating applications for stand-alone, client/server, and
distributed environments; using both relational and object-oriented (OO) databases for
persistence; OO metrics; applying OO patterns to improve the quality of your
applications; OO testing (it’s harder, not easier); user interface design so your users can
actually work with the systems that you build; and coding applications in a way that
makes them maintainable and extensible. Visit
http://www.ambysoft.com/buildingObjectApplications.html for more details.

Uses the

Unified
Modeling
Language

About Process Patterns and More Process Patterns
Process Patterns and More Process Patterns are ground-breaking texts, describing
proven, reusable techniques for developing large-scale, mission-critical object-oriented
software that is robust and extensible. The focus of the book is The Object-Oriented
Software Process (OOSP), presented as a collection of process patterns that are geared
toward medium to large-size organizations that need to develop software that support
their main line of business. Process patterns are the reusable building blocks from
which your organization will develop a tailored software process that meets its exact
needs, and have been shown to be ideal for enhancing the industry-standard Unified
Process. Visit http://www.ambysoft.com/processPatterns.html and
http://www.ambysoft.com/moreProcessPatterns.html for more details.

Uses the

Unified
Modeling
Language

About The AmbySoft Inc. Coding Standards for Java
The AmbySoft Inc. Coding Standards for Java summarizes in one place the common coding standards for
Java, as well as presents several guidelines for improving the quality of your code. It is in Adobe PDF
format and can be downloaded from http://www.ambysoft.com/javaCodingStandards.html.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

16

Index

Advantages .. 12
Agenda .. 11
Author

contacting .. 15
Brainstorming..4
Business domain expert (BDE).........................3
Class ..1
Class diagrams...8
Collaborator ...1
Communication barriers................................. 12
CRC card ...1
CRC model ..2
CRC modeling steps...3
Defining collaborators......................................5
Defining use cases..6
Disadvantages .. 12
Facilitator ..3
Finding classes...5
Iterative in the small ..9
Management support...................................... 11
Modeling rooms ...4
Moving CRC cards...6

Observers ...3
Pattern..14
Process pattern ...14

deliverables document deliverables9
detailed modeling ...8

Prototypes...8
Responsibility...1
Scott Ambler

contacting...15
Scribes..3
Serial development ...9
Serial in the large ...9
Task process pattern14

deliverables document deliverables9
Terminology...11
Tips and techniques..11
Traces stereotype ..10
Unified Modeling Language (UML)10
Use cases ..8
Use-case scenario testing6
User participation ...12

