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Models in the classroom

u Well formed objects
u Simple control layering
u Easy to follow control

threads
u Lifecycles in each state

model
u Intuitive, for the most part
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Models on a real project
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What’s going wrong?

u Greater complexity?
u Limits of the modeling technology?
u Lack of analyst experience?
u Schedule pressure?
u Dementia?
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Negative consequences

u Frequent recompilation of models
u Difficult to understand
u Constant debugging and simulation
u Hard to extend and maintain
u Difficult to integrate
u Impossible to schedule or control
u Inefficient code



© 1999 Model Integration, LLC 6

Build the system better and faster
easy to maintain

difficult to maintain

Extensive analysisA

Compile
Integrate

Test
System Test

Minimal analysis

OOA Model Development
Review and Test

Automated
Simulation

B
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Bad patterns lead to disaster

u Bad object model patterns lay the
foundation for complex behavior models

u Bad state model patterns lead to excessive
object communication and out-of-control
threads

u After which there’s no hope for the action
language!



Bad Object Patterns
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Lack of precision vs.

Cabin

* ID

Floor

* Number

goes to
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Precision!

Cabin

* ID

Floor

* Number

Transfer

* Cabin ID
*2  Floor number

will be
visited
by

is going
to

Floor

* Number
- Up Shaft (R1)
- Down Shaft (R2)

Shaft

* ID

R1 - calls up

is called down by - R2

is called up by
calls down
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Functions disguised as objects vs.

Laser Driver

* ID
- TimerA
- TimerB
- Laser_on_time
- Laser_off_time
- Error_count
- Sync_Event
- Sync_Mode
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…  the real objects!

Laser

* ID

Transformer

* ID

Cut

* ID
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Sloppy subtyping vs.
Radar Station

* ID

Missile Radar

* ID

Surface Radar

* ID

Doppler Radar

* ID

3D Search Radar

* ID

Phased Array Radar

* ID
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Stable Subtypes!

Radar Station

* ID

Search Volume

* ID

2D Volume

* ID

3D Volume

* ID

Receiver

* ID

Platform

* Type

Receiver

* ID

Single Dish

* ID

Phased Array

* ID
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Mixed or missing specifications

Motor

* ID
- Current Speed
- Direction
- Temperature
- Max Speed
- Max Temp
- Polarity
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Found!

Motor Specification

* Model number
- Max Speed
- Max Temp
- Polarity

Motor

* ID
- Current Speed
- Direction
- Temperature

specifies

is specified by
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Interdependent attributes

Landing Clearance

* ID
- Helo Pad
- Runway
- Aircraft Type

Landing Clearance

* ID
- Type

Horizontal Landing

* ID
- Helo Pad (R)

Vertical Landing

* ID
- Runway (R)

Runway

* ID

Helo Pad

* ID
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Hidden data structure

Wafer

* ID
- Layout
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Cut and paste relationships



Bad State Patterns
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Spider state models

IDLE
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Millipede state models
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Squish them!
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Where’s the lifecycle?
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Cyclic or born-and-die are OK
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Excessive object communication vs.
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Layered control!
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Cut and paste states
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Trouble in the action language

u Excessive if-then logic
u Use of literals
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Summary of principles

u Put the if-then logic in the object models!
uModel objects - not functions
uMinimize control threads & object

communication
uMinimize need for complicated action

language
uModel lifecycles - not random functions
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Observed results

uMost projects are able to get something
working - that’s progress!

u But on the first projects or two, they usually
only scratch the surface of what’s possible
with OOA

u A 25-50% reduction in objects and states is
usually possible


