
How to Avoid Bad Behavior

Model Integration, LLC
www.modelint.com

© 1999 Model Integration, LLC 2

Models in the classroom

u Well formed objects
u Simple control layering
u Easy to follow control

threads
u Lifecycles in each state

model
u Intuitive, for the most part

© 1999 Model Integration, LLC 3

Models on a real project

© 1999 Model Integration, LLC 4

What’s going wrong?

u Greater complexity?
u Limits of the modeling technology?
u Lack of analyst experience?
u Schedule pressure?
u Dementia?

© 1999 Model Integration, LLC 5

Negative consequences

u Frequent recompilation of models
u Difficult to understand
u Constant debugging and simulation
u Hard to extend and maintain
u Difficult to integrate
u Impossible to schedule or control
u Inefficient code

© 1999 Model Integration, LLC 6

Build the system better and faster
easy to maintain

difficult to maintain

Extensive analysisA

Compile
Integrate

Test
System Test

Minimal analysis

OOA Model Development
Review and Test

Automated
Simulation

B

© 1999 Model Integration, LLC 7

Bad patterns lead to disaster

u Bad object model patterns lay the
foundation for complex behavior models

u Bad state model patterns lead to excessive
object communication and out-of-control
threads

u After which there’s no hope for the action
language!

Bad Object Patterns

© 1999 Model Integration, LLC 9

Lack of precision vs.

Cabin

* ID

Floor

* Number

goes to

© 1999 Model Integration, LLC 10

Precision!

Cabin

* ID

Floor

* Number

Transfer

* Cabin ID
*2 Floor number

will be
visited
by

is going
to

Floor

* Number
- Up Shaft (R1)
- Down Shaft (R2)

Shaft

* ID

R1 - calls up

is called down by - R2

is called up by
calls down

© 1999 Model Integration, LLC 11

Functions disguised as objects vs.

Laser Driver

* ID
- TimerA
- TimerB
- Laser_on_time
- Laser_off_time
- Error_count
- Sync_Event
- Sync_Mode

© 1999 Model Integration, LLC 12

… the real objects!

Laser

* ID

Transformer

* ID

Cut

* ID

© 1999 Model Integration, LLC 13

Sloppy subtyping vs.
Radar Station

* ID

Missile Radar

* ID

Surface Radar

* ID

Doppler Radar

* ID

3D Search Radar

* ID

Phased Array Radar

* ID

© 1999 Model Integration, LLC 14

Stable Subtypes!

Radar Station

* ID

Search Volume

* ID

2D Volume

* ID

3D Volume

* ID

Receiver

* ID

Platform

* Type

Receiver

* ID

Single Dish

* ID

Phased Array

* ID

© 1999 Model Integration, LLC 15

Mixed or missing specifications

Motor

* ID
- Current Speed
- Direction
- Temperature
- Max Speed
- Max Temp
- Polarity

© 1999 Model Integration, LLC 16

Found!

Motor Specification

* Model number
- Max Speed
- Max Temp
- Polarity

Motor

* ID
- Current Speed
- Direction
- Temperature

specifies

is specified by

© 1999 Model Integration, LLC 17

Interdependent attributes

Landing Clearance

* ID
- Helo Pad
- Runway
- Aircraft Type

Landing Clearance

* ID
- Type

Horizontal Landing

* ID
- Helo Pad (R)

Vertical Landing

* ID
- Runway (R)

Runway

* ID

Helo Pad

* ID

© 1999 Model Integration, LLC 18

Hidden data structure

Wafer

* ID
- Layout

© 1999 Model Integration, LLC 19

Cut and paste relationships

Bad State Patterns

© 1999 Model Integration, LLC 21

Spider state models

IDLE

© 1999 Model Integration, LLC 22

Millipede state models

© 1999 Model Integration, LLC 23

Squish them!

© 1999 Model Integration, LLC 24

Where’s the lifecycle?

?

© 1999 Model Integration, LLC 25

Cyclic or born-and-die are OK

© 1999 Model Integration, LLC 26

Excessive object communication vs.

© 1999 Model Integration, LLC 27

Layered control!

© 1999 Model Integration, LLC 28

Cut and paste states

© 1999 Model Integration, LLC 29

Trouble in the action language

u Excessive if-then logic
u Use of literals

© 1999 Model Integration, LLC 30

Summary of principles

u Put the if-then logic in the object models!
uModel objects - not functions
uMinimize control threads & object

communication
uMinimize need for complicated action

language
uModel lifecycles - not random functions

© 1999 Model Integration, LLC 31

Observed results

uMost projects are able to get something
working - that’s progress!

u But on the first projects or two, they usually
only scratch the surface of what’s possible
with OOA

u A 25-50% reduction in objects and states is
usually possible

