
1

Chapter 5

UML AND PLATFORM-BASED DESIGN

Rong Chen1, Marco Sgroi1, Luciano Lavagno2 , Grant Martin2, Alberto
Sangiovanni-Vincentelli1 , Jan Rabaey1
1University of California at Berkeley 2Cadence Design Systems

Abstract: This chapter presents a specification technique based on UML for the design
of embedded systems and platforms. It covers stereotypes and extended
notations to represent platform services and their attributes in embedded
software development. It also presents a design methodology for embedded
systems that is based on platform-based design principles.

Key words: platform-based design, embedded system design, UML

1. INTRODUCTION

The embedded system design approach currently used in the industry is
informal especially in the initial phase, where the requirements and the
functionality of the system are usually expressed in natural language. The
inherent ambiguities of an informal specification prevent a meaningful
analysis of the system and may result in misunderstandings with customers
and in incorrect or inefficient decisions at the time when the design is
partitioned and the tasks are assigned to different teams.

Hence, a key ingredient in a well defined methodology is a specification
language with formally defined semantics that allows designers to describe
the structure and the behavior of an embedded system at multiple levels of
abstraction starting from the purely conceptual level. Embedded systems
must satisfy tight performance and cost constraints. Therefore, embedded
software design, in comparison with traditional software development,
requires one not only to verify the functional correctness but also to check
the satisfaction of these constraints. Performance and cost analysis depends

2 Chapter 5

on the selected architecture and therefore requires tools and models for a
formal definition of the implementation platform resources and the quality of
the services they offer. Furthermore, early stages of the design process
would benefit from the use of graphical interface tools that visualize the
system specification and allow multiple team members to share the relevant
information.

This chapter presents a specification technique for the design of
embedded systems and platforms that addresses these issues and is based on
the Unified Modeling Language (UML).

1.1 Platform-based Design

Platform-based design has emerged recently as one promising approach
to solve the problems caused by the ever-increasing complexity and time-to-
market pressure in embedded system design. According to [1], a platform is
an abstraction layer in the design flow that facilitates a number of possible
refinements into a subsequent, lower-level abstraction layer (platform). In
other words, a platform is an abstract representation of a set of possible
implementations, which is used by the application designer as a design
target, and is implemented by the platform provider.

Figure 5-1. Platform-based Design

As shown in Figure 5-1, the basic tenets of the platform-based design

methodology are:

1. the treatment of design as a “meet-in-the-middle process”, where
successive refinements of specifications meet with abstractions of
potential implementations;

Application Space
Application Instance

Architectural Space
Platform Instance

System Platform

Platform
Mapping

Platform
Design-Space
Export

5. UML and Platform-based Design 3

2. the identification of precisely defined layers, where the refinement and

abstraction process take place. The layers then allow designs built upon
them to be isolated from lower-level details, but let enough information
be transmitted about lower levels of abstraction to allow design space
exploration with a fairly accurate prediction of the properties of the final
implementation.
Among many platforms existing in a design flow, two important

abstractions are identified at the articulation point between system definition
and implementation: the (micro-) architecture platform and the application
programming interface (API) platform. The (micro-) architecture platform
concept originates from the fact that integrated circuits used for embedded
systems are usually derived from some related micro-architectures rather
than assembled from a collection of independently developed blocks of
silicon functionality. Consequently, a (micro-) architecture platform is
defined as a specific family of micro-architectures, possibly oriented toward
a particular class of problems, which can be modified (extended or reduced)
by the system developer. Examples are the AMBA/ARM platform, the
CoreConnect platform, a family of FPGA chips. A platform instance can be
derived from a platform by choosing a set of components from the platform
library and setting parameters of configurable components. The choice of a
platform is driven by cost and time-to-market considerations and is done
after exploration of both the application and architecture design spaces. The
API platform concept results from the fact that embedded software
developers need a platform abstraction that hides architecture details and
defines the services that the platform offers. More precisely, an API platform
is the Programmer's Model for the abstraction of a multiplicity of
computational resources and available peripherals contained within the
architectural platform; it is a unique abstract representation of the
architecture platform via the software layer. This abstraction usually consists
of a software layer that wraps the essential parts of the architecture platform
and includes, among others, RTOS and device drivers. Examples are the
VxWorks platform, the OSEK platform, the software DSP task control of the
OMAP platform. On top of the API platform there is an application specific
programmable platform, which consists of commonly used functionalities in
a particular application domain. This platform usually consists of embedded
software components and directly interacts with embedded system designers.
Examples are the TCP/IP platform and the top level of the Nexperia
platform. There are other platforms such as the silicon implementation
platform (SIP), which is beyond the scope of this chapter, and the network
platform, which is discussed in section 4.4.

4 Chapter 5

1.2 UML and Embedded System Design

The Unified Modeling Language (UML) is an object-oriented modeling
language introduced by Booch, Rumbaugh and Jacobson [2] to support
software development. Recent work [3][4][5][6] has shown the potential of
UML also for embedded system design. Due to its rich graphical notation
and its modeling capabilities that allow the capture and visualization of the
system structure and behavior at multiple levels of abstraction, UML has
been used in the embedded system domain mainly as a documentation aid
and a modeling language. UML includes a rich set of modeling elements that
can be used for a wide range of applications and has already built in the
capabilities to model the most relevant features of real-time embedded
systems, such as performance (using tagged attributes or OCL [7]), physical
resources (using Deployment Diagrams), and time (using classifiers and
tagged attributes), as discussed in Chapters 11, 12 and 16. However, the
following factors should also be considered.

– First, modeling specific applications would be easier using a more

specialized (domain-specific) notation representing the basic elements
and patterns of the target domain.

– Second, formally defined domain-dependent use semantics are required
to avoid multiple interpretations of the same models and to support
analysis tools.

– Third, multiple diagrams can be used to capture related aspects of a
design. The possibility of viewing and describing the same object from
different perspectives makes the system specification phase easier, but
may result in inconsistencies between diagrams, when the use of UML is
not coupled with a rigorous design discipline.

For these reasons, the use of UML for a specific application domain such

as the design of embedded system platforms requires:

– a domain specific language, called a profile, built on the basic UML

infrastructure and including domain-specific building blocks (defined
using stereotypes) to model common design elements and patterns,

– a methodology that defines how and when the profile notation should be
used.

A UML profile for embedded system platforms should include

specialized notations to represent the structure and the behavior of the
platform resources, and the services they provide, with particular emphasis
on the performance and cost aspects. It should also have the capability to

5. UML and Platform-based Design 5

visualize multiple implementation alternatives of a specification to facilitate
a quick comparison.

The rest of this chapter is organized as follows. First, we give an
overview of related work, and describe the research project Metropolis,
within which we are developing our concepts (section 2). Then, we describe
a UML profile for embedded system platforms, called UML Platform,
(section 3) and a methodology for using it (section 4). Finally we present its
practical application to the design of wireless networks platforms.

2. BACKGROUND

2.1 Related work

The UML Profile for Schedulability, Performance and Time (also
informally called the Real-Time UML Profile) [8], recently standardized by
the Object Management Group (OMG) and summarized in Chapter 11,
defines a unified framework to express the time, scheduling and performance
aspects of a system. It is based on a set of notations that can be used to build
models of real-time systems annotated with relevant Quality of Service
(QoS) parameters. External tools can perform formal analysis based on these
models and return information on performance and schedulability before the
system is built. The profile consists of the Generalized Resource Modeling
(GRM) Framework that defines a notation for modeling resources, time,
concurrency and schedulability parameters. In addition to GRM, sub-profiles
are defined with extensions to the basic notation that are specific to certain
types of analysis, e.g. schedulability. The Real-Time UML Profile
standardizes an extended UML notation to support the interoperability of
modeling and analysis tools but does not define a full methodology for the
use of this notation.

Several methodologies based on UML have been proposed. They all
couple the UML notation with a formal model with precise semantics that
allows the capture of system behavior and support simulation and synthesis.
UML-RT [9] is a profile that extends UML with stereotyped active objects,
called capsules, to represent system components. The internal behavior of a
capsule is defined using statecharts; its interaction with other capsules is by
means of protocols that define the sequence of signals exchanged through
stereotyped objects called ports. Capsules have run-to-completion semantics
and their execution is defined by the sequence of actions that are taken upon
reception of messages from the input ports. The UML-RT profile defines a
model with precise execution semantics, hence it is suitable to capture

6 Chapter 5

system behavior and support simulation or synthesis tools (e.g. Rational
Rose-RT). UML-RT has limited architecture and performance modeling
capabilities and therefore should be considered complementary to the Real-
Time UML Profile standardized by OMG.

HASoC [10] is a design methodology based on UML-RT notation
described in Chapter 6. The design flow begins with a description of the
system functionality initially given in use case diagrams and then in a UML-
RT version properly extended to include annotations with mapping
information. The authors argue that UML-RT is too restrictive a model
because capsules' behavior is defined by statecharts and propose instead to
associate capsules with additional models of computation (MoC) such as
synchronous dataflow, codesign finite state machines etc. Another full
system design methodology that uses UML is presented by de Jong et al. [4].
It consists of a flow from the initial specification phase to the deployment
level that specifies the target architecture. The high-level system
specification is first built using use-case diagrams; then the system
components and their interactions are described using block diagrams and
message sequence charts, respectively. As a next step the behavior of each
module is specified using SDL that provides an executable and simulatable
specification. This approach combines the informal notation of the UML
Diagrams with the formal semantics of SDL and moves one step further the
integration between these two models.

2.2 The Metropolis design environment

Metropolis [11] is an on-going research project at UC Berkeley that
addresses embedded system design using the following novel approaches.
First, Metropolis does not commit a priori to any particular communication
semantics or firing rule. Hence, it leaves the designer free to use the
specification mechanism of choice (graphical or textual language), as long as
it has a sound semantic foundation (model of computation). Secondly, it uses
a single formalism to represent both the embedded system and some abstract
relevant characteristics of its environment and implementation platform.
Finally, it separates orthogonal aspects, such as:

1. Computation and communication. This separation is important because:
a) refinement of computation is generally done by hand, or by compilation,

or by scheduling or using other complex techniques;
b) refinement of communication is generally done by use of patterns (such

as circular buffers for FIFOs, polling or interrupts for hardware to
software data transfers, and so on).

5. UML and Platform-based Design 7

2. Function and Architecture. They are often defined independently by

different design teams (e.g. video encoding and decoding experts versus
hardware and software designers in multimedia applications). Function
(both computation and communication) is then "mapped" to architecture
in order to derive an implementation.

3. Behavior and performance parameters, such as latency, throughput,
power, energy.
All these separations result in better design re-use, because they decouple

independent aspects that would otherwise tie, for example, a given
functional specification to low-level implementation details, or to a specific
communication paradigm, or to a scheduling algorithm. It is very important
to define only as many aspects as needed at every level of abstraction, in the
interest of flexibility and rapid design space exploration. They also allow
extensive use of synthesis, system-level simulation and formal verification
techniques in order to speed up the design cycle.

In Metropolis, a system is represented as a netlist, and a netlist can be
further decomposed into subnetlists or components. Components of a netlist
or a subnetlist include processes, media, ports, interfaces, constraints, and
quantities. Processes are active objects (running on their own threads) used
for modeling computation; media are passive objects used for modeling
communication. Ports, specified as interface types, reside in processes and
are the only places through which communication can take place. Interfaces
declare all and only the methods that can be called through ports; constraints
deal with coordination and performance specifications; quantities annotate
behaviors so that constraints can be specified precisely.

3. UML PLATFORM PROFILE

3.1 Modeling Platforms Using UML

The UML Platform profile is a graphical language for specification of
embedded system platforms. It includes domain-specific classifiers and
relationships specialized with stereotypes, in addition to the notation defined
in the standard UML [2] and in the UML Profile for Schedulability,
Performance and Time Specification [12], to model the structure and the
behavior of embedded systems and to represent the relationship between
platforms at different levels of abstraction. The profile has been derived
from the model and design of several wireless protocols and therefore is
especially suited for this application domain.

8 Chapter 5

UML Platform structural models capture the components of a system and
their relationships using stereotyped modeling elements. The model of a
platform, especially when it relates to another platform at a different
abstraction level, often requires modeling elements of different types (e.g.
classes to represent the logical functions, components for the software
implementation and deployment nodes for the physical resources running
them) and therefore is not identifiable with a specific UML Diagram.

The behavior of an embedded system can be captured at different levels
of abstraction using Use Case, Interaction, State Machine and Activity
Diagrams. Use Case Diagrams provide an abstract representation of the
services that the system as a whole provides to the environment, Interaction
Diagrams define just the interaction among system components, State
Machine and Activity Diagrams allow the specification of the detailed
action-level behavior of individual components. Specifying the behavior of a
system requires to choose a model of computation that formally defines the
semantics of the execution and the interaction among the system components
and to describe the behavior of the components. As discussed in Section 2.2,
the specification mechanism should not commit a priori to a specific MoC
but should be flexible enough to let the designer choose the most appropriate
MoC for the application. The UML Platform profile defines stereotypes
representing standard MoCs (such as Kahn Process Networks, Synchronous
Dataflow etc.) and elementary building blocks, such as buffers, protocols
etc., that can be used to specify a MoC. The behavior of individual
components is specified using graphical (State Machine or Activity
Diagrams) or textual notation.

The syntax of the UML Platform profile is defined by the set of standard
and stereotyped UML modeling elements and by the rules for using and
composing them. UML Platform follows the rules of UML for standard
classifiers and relationships and explicitly defines composition rules for the
newly introduced notation. The semantics of UML Platform is defined in
terms of the Metropolis Metamodel [11] by establishing a direct
correspondence between modeling elements of UML Platform and elements
of the Metamodel.

3.2 Stereotypes

The UML Platform profile includes the following stereotypes:

– <<Netlist>> is a top-level class that identifies the overall system
structure as a set of connected components

– <<Resource>> specializes classes, components or deployment nodes
and is used to represent platform components. Resource attributes (for

5. UML and Platform-based Design 9

example, bus attributes such as width, number of masters/slaves,
arbitration policy...) are specified by annotating tags or as attributes of
the corresponding class. <<Bus>>, <<Memory>>, <<Processor>>...
further specialize the <<Resource>> stereotype for deployment nodes
and are used to model physical resources

– <<Process>> is an active class [2] modeling logical objects performing
computation

– <<Medium>> is a class modeling logical or physical objects that
implement a communication function

– <<Scheduler>> is a class modeling objects and algorithms that perform
coordination and arbitration of access to shared resources

– <<Port>> represents a part of a resource that allows its interaction with
its environment. A port has an aggregate relationship with the resource to
which it belongs and is associated with the services it provides access to.

Figure 5-2. Stereotyped Relationships

The following stereotypes specialize the UML relationships:

<<Communicate>> specializes the association relationship and is used

to relate classes of objects that interact and exchange messages. The
<<Communicate>> relationship can be further specialized with stereotypes
indicating a particular communication mechanism (e.g. Synchronous,

10 Chapter 5

Asynchronous, Buffered, Unbuffered) or a MoC (e.g. SDF, Kahn Process
Networks, Synchronous FSMs, CFSMs...).

<<Use>> is a type of association that relates a service with a user of the
service. <<Need>> is similar to <<Use>> and indicates that a user needs a
service that is not currently available. Thus, it represents a request for future
service extensions. An object may use multiple services and the same service
may be used by multiple objects. A stereotyped relationship called
<<Share>> can be used to relate the users of a service provided by the same
resource. <<Stack>> and <<Peer>> specialize the relationship between a
service user and a service provider (a resource): <<Stack>> is used if the
service user and service provider belong to different layers of abstraction,
<<Peer>> if they belong to the same layer. <<Transparent Stack>> is
used when the service user uses a service provided by a resource that is not
in the adjacent lower layer.

<<Implement>> is a type of realization relationship between a service
and a resource (or set of resources) implementing it. In figure 5-2, the
channel resource is an implementation of a communication service.
<<Refine>> is a type of realization relationship between an object (or set of
objects) and an object or set of objects that describe it at a greater levels of
details.

4. UML PLATFORM DESIGN METHODOLOGY

The design methodology, based on the UML Platform profile and
Metropolis [11], is shown in Figure 5-3. In the first step the design problem
is formulated, i.e. the functionality of the system as a whole is specified
using Use Case Diagrams and the constraints are annotated to the model.
Then, the functionality is decomposed into components and captured using
the UML Platform stereotypes within the Class (structure), State Machine,
Activity and Sequence Diagrams (behavior). Constraints are propagated and
budgeted to the components.

As a next step, the UML Platform specification is compiled into a
Metropolis Metamodel specification to conjugate the convenience of using
the graphical UML Platform interface for specification with the possibility to
use the analysis and synthesis tools available in the Metropolis framework.
The Metamodel functional specification can be validated using the
Metropolis simulator [11].

Then, Communication Refinement and Mapping take place. Platforms
that implement the functional components are specified in UML Platform as
a netlist of resources providing services. The UML Platform model is

5. UML and Platform-based Design 11

compiled into a mapped Metamodel specification, and performance analysis
and validation take place in the Metropolis simulation environment.

Communication Refinement
Mapping

Simulation Metropolis
Metamodel

HW/SW
Synthesis

Platform Specification
(Class, Component,

Deployment Diagram)

Functional Specification
(Class, State Machine, Activity,

Sequence Diagram)

Design Problem
Formulation

(Use Case Diagram)

Figure 5-3. UML Platform Design Flow

4.1 Design Problem Formulation

Figure 5-4. Intercom Use Case Diagram

The system requirements and the overall functiona lity are expressed
using Use Case Diagrams. The system as a whole is described in terms of the
services (modeled as use cases) it provides to the environment users
(modeled as actors). Requirements are annotated to the model. Figure 5-4

12 Chapter 5

shows the Use Case Diagram model of the Intercom Network [13]: use cases
model the services provided by the network (subscription, conferences,
query user status), actors represent the mobile users of the Intercom network
services.

4.2 Functional Specification

Specifying the functionality of a system usually requires to identify a
number of functional components (functional decomposition), select a MoC
that defines the semantics of their interaction, and specify the behavior of
each component.

In UML Platform the functionality of a system is specified in two steps.

– First, a netlist of stereotyped classes and relationships is defined to
capture the structural decomposition into interacting components.
Computation objects are modeled as stereotyped <<Process>> classes,
while their connectivity is expressed using <<Communicate>>
relationships or explicitly using stereotyped <<Medium>> classes.
When a stereotyped class is instantiated, its attributes, such as name of
the process, number and type of its ports, internal variables, are set.

– Second, the system behavior is specified refining the <<Process>>
classes and the <<Communicate>> relationships to specific MoC types
and describing the behavior of each process using State Machine
Diagrams, Activity Diagrams or textual languages depending on what
mechanism is more convenient for the target specification.

In UML Platform an MoC can be specified either using the stereotyped

classes and relationships (e.g. <<Kahn Process Networks Process>>,
<<Kahn Process Networks Communicate>>...) if it is a standard MoC or by
composing finer granularity modeling elements such as types of channels
(e.g. FIFO, shared memory...), interface functions (e.g. blocking/non-
blocking read/write...) and coordination expressions (e.g. to specify
synchronization or coordination of reads and writes...). A UML Platform
model can be translated into a Metamodel description using the Metropolis
Metamodel libraries, and instantiating the library elements that correspond to
the stereotypes in the UML Platform model. The stereotyped classes of type
process and medium have a corresponding Metamodel element. Ports and
interfaces, which may be explicitly visualized in a UML Platform model, are
part of the specification of processes and media in the Metamodel. The
MoC’s stereotyped relationship has a corresponding element in the library
that includes a Metamodel description of the interface functions of the
medium and the execution policy of the processes.

5. UML and Platform-based Design 13

Let us consider the specification of the filter o(n) = k2 * i(n) + k1 * o(n-
1).The UML Platform model of the filter is shown in Figure 5-5. First, the
computation components are described as stereotyped <<Process>> classes
and are connected by <<Communicate>> relationships. The filter performs
pure data processing functions, therefore the most suited MoC is
Synchronous Dataflow (SDF) [14]. SDF is a MoC that represent the system
as a network of actors that communicate over single -reader single -writer
blocking read non-blocking write channels with infinite FIFOs holding
tokens. The execution of an SDF model is based on a sequence of actor
firings, each producing and consuming a fixed number of tokens.

Figure 5-5. IIR Filter Model

The UML Platform model is refined using the corresponding SDF
stereotypes, as shown in the lower part of Figure 5-5, so that the firing rules
and the communication semantics of the specification are the ones of the
SDF MoC. Parameters are set in the model for each class: the number of
input and output ports, the data type and the number of the tokens produced
or consumed at each port. The core function of each process in this case is
conveniently specified with a fragment of code that describes the

14 Chapter 5

corresponding function (e.g. o_adder = in1_adder + in2_adder). The token
class represents the one tap delay on one of the channels.

The information visualized in the UML Platform model is compiled

together with the Metamodel description of SDF in the Metropolis library
(built by H.Hsieh and L.Jin [15]). The SDF library defines:

1. the SDF medium, i.e. the interface functions read, write and n (that

returns the token count) and the memory buffer (array list) storing the
data,

2. the SDF process, i.e. the constructor, the declaration of the number and
type of ports, and the functions readport, writeport defining the fir ing
rules (e.g. SDF process executed when all the expected input tokens are
present).

Figure 5-6 shows the Metamodel specification of the Adder process and a

fragment of the netlist that corresponds to the UML Platform Class Diagram.

process Adder extends sdfprocess{
 Adder(String name){
 super(name,2,2);
 inports_token = new int[2];
 outports_token = new int[2];
 inports_token[0] = 1;
 inports_token[1] = 1;
 outports_token[0] = 1;
 outports_token[1] = 1;
 }
 void execute(){
 double vo0;
 double vi0;
 double vi1;

 vi0 = i_buffer[0].get(0);
 vi1 = i_buffer[1].get(0);
 vo0 = vi0 + vi1;
 o_buffer[0].set(0,(Object)vo0);
 o_buffer[1].set(0,(Object)vo0);
 }
}

public netlist IIRFilter{

5. UML and Platform-based Design 15

 public IIRFilter(String name){
 ClassAdder Adder_instance = new ClassAdder("sdfadder");
 sdfchannel M0_instance = new sdfchannel("sdfchannel0");
 sdfchannel M1_instance = new sdfchannel("sdfchannel1");
 addcomponent(Adder_instance, this,"adder");
 addcomponent(M0_instance, this, "channel0");
 addcomponent(M1_instance, this, "channel1");
 ...
 connect(Adder_instance, inports[0], M0_instance);
 connect(Adder_instance, outports[0], M1_instance);
 }
}

Figure 5-6. Metamodel Filter Specification

4.3 Platform Specifi cation

Figure 5-7. Key Elements of a Platform Model

The following components are usually part of a platform specification
(Figure 5-7):
– the (physical or logical) resources modeled using the stereotyped

classifiers defined in the UML Real-Time [5] and in the UML Platform
profiles

– the services offered by individual or groups of resources modeled using
standard UML interfaces.(an interface does not have attributes, but may
have operations to specify the service primitives [2])

– the QoS performance expressed using tags that annotate the interface
modeling the corresponding service

16 Chapter 5

– the QoS constraints specified annotating OCL [7] or expressions to the

modeling elements to which they are applied
– the relationships between resources, services and service users captured

using the stereotypes defined in the UML Real-Time and UML Platform
profiles
Packages are useful modeling elements. A package is ``a general purpose

mechanism for organizing elements into groups in order to manipulate them
as a set'' [2]. Hence, packages are used to provide abstractions and improve
the readability of the models, as they group together modeling elements that
are closely related.

4.4 Communication Refinement

Communication refinement is the procedure that defines, through a
sequence of steps, how to implement the interaction among objects. A
Network Platform (NP) is a library of resources that can be selected and
composed together to form Network Platform Instances (NPIs) and to
support the communication among a group of interacting objects, called NPI
users. An NP library includes logical resources (e.g. protocols, virtual
channels...) that are defined only in terms of their functionality and physical
resources such as memory, processor, physical medium.

During communication refinement, UML Platform is used to model NPIs
and their relationships. In the model of an NPI the platform users are the
components in the upper platform layers and are represented as stereotyped
classes, the services are of communication type (send and receive primitives)
and are modeled as interfaces, the resources are protocols and channels and
are represented as stereotyped classes of type <<Process>> and
<<Medium>> respectively. These elements of the model are annotated with
QoS requirements and may be related by the stereotypes <<Use>>,
<<Communicate>>, <<Implement>> and <<Refine>>.

Figure 5-8 shows the UML Platform model of an Application Layer (AL)
protocol and its refinement into a Network Layer (NL). The UML Platform
model of the AL includes two Process classes representing a Controller and
a Sensor, a (one-directional) <<Communicate>> relationship, a description
of the communication services and a Medium modeling the AL network
platform that provides the services. To communicate the Sensor and
Controller <<Use>> a communication service, whose primitives, send() and
receive(), are accessible through the PortSensor and PortController ports.
The service is implemented by a platform that consists of a medium with
buffer size equal to 1. The platform is refined into a NL platform that
includes a protocol entity at each node and a FIFO interconnecting them.

5. UML and Platform-based Design 17

Figure 5-8. Network Platform example

18 Chapter 5

4.5 Mapping

Application domain-specific services
(functions, user interfaces)

Device
Driver

Network
Communication

Subsystem
RTOS

Microprocessor
Memory

I/O
Devices Interconnections ab

st
ra

ct
io

n
le

ve
l

high

low

Figure 5-9. Platform Layers

Mapping a functional specification onto an architecture requires the
definition of a model of the implementation platform and the establishment
of the relationships of the platform resources and services with the
application-level functional components. The components assigned to the
HW partition are mapped directly onto a HW resource. The components in
the SW partition are implemented as SW tasks that use the services provided
by an intermediate SW layer. Hence, the elements of embedded system
platform models can be conveniently grouped within the three layers shown
in Figure 5-9: Architecture (ARC), Application Programming Interface
(API) and Application Software (AS) Platforms, where the ARC layer
includes a family of micro-architecture HW resources such as
microprocessors, memories, ASICs, FPGAs, I/O devices and inter-
connectors that in UML are typically modeled as deployment nodes; the API
layer is a software abstraction layer and includes RTOS, device-driver, and
network communication subsystem that in UML are represented as
components; the AS layer includes the software tasks that implement
application-level functional components.

Figure 5-10 shows the model of the embedded system platform
implementing the Intercom Protocol Stack [13]. The Intercom protocol
layers are visualized on the top part of the figure: they are modeled as
classes and are annotated with QoS constraints on parameters like error rate
(error-free transport layer connection) and throughput (the Mu-law
Quantization block must process voice samples at 64 kbps, while the
required throughput at the Physical Layer, due to the TDMA policy and the

5. UML and Platform-based Design 19

CRC redundancy, is higher than 1.5 Mbps). Two layers, UI and Transport,
are implemented as SW tasks and define the AS Layer; all other protocols
are mapped onto HW resources (ASICs or FPGAs). The API Layer includes
the RTOS and the Device Drivers. The RTOS implements the
communication, arbitration and execution services used by the software
tasks. Some of its parameters are the scheduling policy and the context
switch overhead. It uses the services offered by the device drivers. The ARC
layer includes the Tensilica Xtensa processor, the I/O devices, the Sonics
Silicon backplane, ASICs and FPGA blocks that are implemented as
deployment nodes. The processor provides to the upper layers ISA execution
services, the I/O devices provide HW interface services

UI

Voice Q.

Transport FIFOs

Disp.

MAC

T_CRC

R_CRC

Phy L.

RTOS
 {Context Switch,

 Sched. policy}
Device
Drivers

{1.6 Mbps}

{64 kbps}

{BER = 0}

Processor
Xtensa

{Frequency}

I/O
devices

<<task>>
Transport

<<task>>
UI

<<mapping>><<mapping>>

<<use>>

<<mapping>>

<<use>>
<<implement>>

<<implement>>

<<use>>

<<mapping>>
<<mapping>>

<<mapping>>

ASIC

AS Layer

API Layer

ARC Layer

FPGA

Sonics
µnetwork

ISA execution services HW interface services

communication,
scheduling services

Figure 5-10. Mapping Intercom Protocol onto an embedded system platform.

20 Chapter 5

5. CONCLUSIONS

This chapter has discussed the issues of using UML in the context of
platform-based design. A new UML profile, UML Platform, has been
proposed by introducing new building blocks (e.g. new stereotypes) to
represent platform resources and services. Further, an embedded system
design methodology that uses UML Platform and follows the platform-based
design principles was presented. We believe that industry convergence on a
standard platform profile in UML will be vital for the development of a
variety of tools and methods that will better support embedded system
design and help automate the flow from specification to platform-based
implementation.

REFERENCES

[1] A. Sangiovanni-Vincentelli, “Defining Platform-based Design”, EEDesign,
February 2002.
[2] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language User
Guide, Addison-Wesley, 1998
[3] G. Martin, L. Lavagno, J. Louis -Guerin, “Embedded UML: a merger of real-time
UML and co-design”, Proceedings of CODES 2001, Copenhagen, April 2001,
pp.23-28.
[4] G. de Jong, “A UML-Based Design Methodology for Real-Time and Embedded
Systems”, Proceedings of DATE 2002, Paris, March 2002.
[5] B. Selic, “Complete High-Performance Code Generation from UML Models”,
Proceedings of Embedded System Conference, San Francisco, CA, USA, March
2002.
[6] C. Raistrick, “Executable UML for Embedded System Development”,
Proceedings of Embedded System Conference, San Francisco, CA, USA, March
2002.
[7] J. Warmer, A. Kleppe, The Object Constraint Language: Precise Modeling with
UML, Object Technology Series, Addison-Wesley, 1999.
[8] B. Selic, “A Generic Framework for Modeling Resources with UML”, IEEE
Computer, June 2000, pp.64-9
[9] B. Selic, J. Rumbaugh, “Using UML for Modeling Complex Real-Time
Systems”, White paper, Rational (Object Time), March 1998.
[10] P. N. Green, M. D. Edwards, “The Modeling of Embedded Systems Using
HASoC”, Proceedings of DATE 2002, Paris, March 2002.
[11] F. Balarin, L. Lavagno, C. Passerone, Y. Watanabe, “Processes, interfaces and
platforms. Embedded software modeling in Metropolis”, Proceedings of EMSOFT
2002, Grenoble, France, October, 2002
[12] ARTISAN Software Tools, Inc. et al., “Response to the OMG RFP for
Schedulability, Performance, and Time”, OMG document number: ad/2001-06-14,
June, 2001

5. UML and Platform-based Design 21

[13] J. da Silva Jr., M. Sgroi, F. De Bernardinis, S.F Li, A. Sangiovanni-Vincentelli
and J. Rabaey, “Wireless Protocols Design: Challenges and Opportunities”,
Proceedings of CODES 2000, SanDiego, CA, USA, May 2000.
[14] E. Lee, D. Messerschmitt, “Synchronous Data Flow”, Proceedings of the IEEE,
September, 1987.
[15] H. Hsieh, J. Lin. Modeling SDF in Metropolis, Private Communication

