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1. INTRODUCTION 

The embedded system design approach currently used in the industry is 
informal especially in the initial phase, where the requirements and the 
functionality of the system are usually expressed in natural language. The 
inherent ambiguities of an informal specification prevent a meaningful 
analysis of the system and may result in misunderstandings with customers 
and in incorrect or inefficient decisions at the time when the design is 
partitioned and the tasks are assigned to different teams. 

Hence, a key ingredient in a well defined methodology is a specification 
language with formally defined semantics that allows designers to describe 
the structure and the behavior of an embedded system at multiple levels of 
abstraction starting from the purely conceptual level. Embedded systems 
must satisfy tight performance and cost constraints. Therefore, embedded 
software design, in comparison with traditional software development, 
requires one not only to verify the functional correctness but also to check 
the satisfaction of these constraints. Performance and cost analysis depends 
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on the selected architecture and therefore requires tools and models for a 
formal definition of the implementation platform resources and the quality of 
the services they offer. Furthermore, early stages of the design process 
would benefit from the use of graphical interface tools that visualize the 
system specification and allow multiple team members to share the relevant 
information. 

This chapter presents a specification technique for the design of 
embedded systems and platforms that addresses these issues and is based on 
the Unified Modeling Language (UML). 

1.1 Platform-based Design 

Platform-based design has emerged recently as one promising approach 
to solve the problems caused by the ever-increasing complexity and time-to-
market pressure in embedded system design. According to [1], a platform is 
an abstraction layer in the design flow that facilitates a number of possible 
refinements into a subsequent, lower-level abstraction layer (platform). In 
other words, a platform is an abstract representation of a set of possible 
implementations, which is used by the application designer as a design 
target, and is implemented by the platform provider.  

Figure 5-1. Platform-based Design 

 
As shown in Figure 5-1, the basic tenets of the platform-based design 

methodology are: 
 

1. the treatment of design as a “meet-in-the-middle process”, where 
successive refinements of specifications meet with abstractions of 
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2. the identification of precisely defined layers, where the refinement and 

abstraction process take place. The layers then allow designs built upon 
them to be isolated from lower-level details, but let enough information 
be transmitted about lower levels of abstraction to allow design space 
exploration with a fairly accurate prediction of the properties of the final 
implementation.  
Among many platforms existing in a design flow, two important 

abstractions are identified at the articulation point between system definition 
and implementation: the (micro-) architecture platform and the application 
programming interface (API) platform. The (micro-) architecture platform 
concept originates from the fact that integrated circuits used for embedded 
systems are usually derived from some related micro-architectures rather 
than assembled from a collection of independently developed blocks of 
silicon functionality. Consequently, a (micro-) architecture platform is 
defined as a specific family of micro-architectures, possibly oriented toward 
a particular class of problems, which can be modified (extended or reduced) 
by the system developer. Examples are the AMBA/ARM platform, the 
CoreConnect platform, a family of FPGA chips. A platform instance can be 
derived from a platform by choosing a set of components from the platform 
library and setting parameters of configurable  components. The choice of a 
platform is driven by cost and time-to-market considerations and is done 
after exploration of both the application and architecture design spaces. The 
API platform concept results from the fact that embedded software 
developers need a platform abstraction that hides architecture details and 
defines the services that the platform offers. More precisely, an API platform 
is the Programmer's Model for the abstraction of a multiplicity of 
computational resources and available peripherals contained within the 
architectural platform; it is a unique abstract representation of the 
architecture platform via the software layer. This abstraction usually consists 
of a software layer that wraps the essential parts of the architecture platform 
and includes, among others, RTOS and device drivers. Examples are the 
VxWorks platform, the OSEK platform, the software DSP task control of the 
OMAP platform. On top of the API platform there is an application specific 
programmable platform, which consists of commonly used functionalities in 
a particular application domain. This platform usually consists of embedded 
software components and directly interacts with embedded system designers. 
Examples are the TCP/IP platform and the top level of the Nexperia 
platform. There are other platforms such as the silicon implementation 
platform (SIP), which is beyond the scope of this chapter, and the network 
platform, which is discussed in section 4.4. 
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1.2 UML and Embedded System Design 

The Unified Modeling Language (UML) is an object-oriented modeling 
language introduced by Booch, Rumbaugh and Jacobson [2] to support 
software development. Recent work [3][4][5][6] has shown the potential of 
UML also for embedded system design. Due to its rich graphical notation 
and its modeling capabilities that allow the capture and visualization of the 
system structure and behavior at multiple levels of abstraction, UML has 
been used in the embedded system domain mainly as a documentation aid 
and a modeling language. UML includes a rich set of modeling elements that 
can be used for a wide range of applications and has already built in the 
capabilities to model the most relevant features of real-time embedded 
systems, such as performance (using tagged attributes or OCL [7]), physical 
resources (using Deployment Diagrams), and time (using classifiers and 
tagged attributes), as discussed in Chapters 11, 12 and 16. However, the 
following factors should also be considered. 

  
– First, modeling specific applications would be easier using a more 

specialized (domain-specific) notation representing the basic elements 
and patterns of the target domain. 

– Second, formally defined domain-dependent use semantics are required 
to avoid multiple interpretations of the same models and to support 
analysis tools. 

– Third, multiple diagrams can be used to capture related aspects of a 
design. The possibility of viewing and describing the same object from 
different perspectives makes the system specification phase easier, but 
may result in inconsistencies between diagrams, when the use of UML is 
not coupled with a rigorous design discipline. 
 
For these reasons, the use of UML for a specific application domain such 

as the design of embedded system platforms requires: 
 
– a domain specific language, called a profile, built on the basic UML 

infrastructure and including domain-specific building blocks (defined 
using stereotypes) to model common design elements and patterns, 

– a methodology that defines how and when the profile notation should be 
used. 
 
A UML profile for embedded system platforms should include 

specialized notations to represent the structure and the behavior of the 
platform resources, and the services they provide, with particular emphasis 
on the performance and cost aspects. It should also have the capability to 
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visualize multiple implementation alternatives of a specification to facilitate 
a quick comparison. 

The rest of this chapter is organized as follows. First, we give an 
overview of related work, and describe the research project Metropolis, 
within which we are developing our concepts (section 2). Then, we describe 
a UML profile for embedded system platforms, called UML Platform, 
(section 3) and a methodology for using it (section 4). Finally we present its 
practical application to the design of wireless networks platforms. 

2. BACKGROUND 

2.1 Related work 

The UML Profile for Schedulability, Performance and Time (also 
informally called the Real-Time UML Profile) [8], recently standardized by 
the Object Management Group (OMG) and summarized in Chapter 11, 
defines a unified framework to express the time, scheduling and performance 
aspects of a system. It is based on a set of notations that can be used to build 
models of real-time systems annotated with relevant Quality of Service 
(QoS) parameters. External tools can perform formal analysis based on these 
models and return information on performance and schedulability before the 
system is built. The profile consists of the Generalized Resource Modeling 
(GRM) Framework that defines a notation for modeling resources, time, 
concurrency and schedulability parameters. In addition to GRM, sub-profiles 
are defined with extensions to the basic notation that are specific to certain 
types of analysis, e.g. schedulability. The Real-Time UML Profile 
standardizes an extended UML notation to support the interoperability of 
modeling and analysis tools but does not define a full methodology for the 
use of this notation. 

Several methodologies based on UML have been proposed. They all 
couple the UML notation with a formal model with precise semantics that 
allows the capture of system behavior and support simulation and synthesis. 
UML-RT [9] is a profile that extends UML with stereotyped active objects, 
called capsules, to represent system components. The internal behavior of a 
capsule is defined using statecharts; its interaction with other capsules is by 
means of protocols that define the sequence of signals exchanged through 
stereotyped objects called ports. Capsules have run-to-completion semantics 
and their execution is defined by the sequence of actions that are taken upon 
reception of messages from the input ports. The UML-RT profile defines a 
model with precise execution semantics, hence it is suitable to capture 
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system behavior and support simulation or synthesis tools (e.g. Rational 
Rose-RT). UML-RT has limited architecture and performance modeling 
capabilities and therefore should be considered complementary to the Real-
Time UML Profile standardized by OMG. 

HASoC [10] is a design methodology based on UML-RT notation 
described in Chapter 6. The design flow begins with a description of the 
system functionality initially given in use case diagrams and then in a UML-
RT version properly extended to include annotations with mapping 
information. The authors argue that UML-RT is too restrictive a model 
because capsules' behavior is defined by statecharts and propose instead to 
associate capsules with additional models of computation (MoC) such as 
synchronous dataflow, codesign finite state machines etc. Another full 
system design methodology that uses UML is presented by de Jong et al. [4]. 
It consists of a flow from the initial specification phase to the deployment 
level that specifies the target architecture. The high-level system 
specification is first built using use-case diagrams; then the system 
components and their interactions are described using block diagrams and 
message sequence charts, respectively. As a next step the behavior of each 
module is specified using SDL that provides an executable and simulatable 
specification. This approach combines the informal notation of the UML 
Diagrams with the formal semantics of SDL and moves one step further the 
integration between these two models. 

2.2 The Metropolis design environment 

Metropolis [11] is an on-going research project at UC Berkeley that 
addresses embedded system design using the following novel approaches. 
First, Metropolis does not commit a priori to any particular communication 
semantics or firing rule. Hence, it leaves the designer free to use the 
specification mechanism of choice (graphical or textual language), as long as 
it has a sound semantic foundation (model of computation). Secondly, it uses 
a single formalism to represent both the embedded system and some abstract 
relevant characteristics of its environment and implementation platform. 
Finally, it separates orthogonal aspects, such as: 
 
1. Computation and communication. This separation is important because: 
a) refinement of computation is generally done by hand, or by compilation, 

or by scheduling or using other complex techniques; 
b) refinement of communication is generally done by use of patterns (such 

as circular buffers for FIFOs, polling or interrupts for hardware to 
software data transfers, and so on). 
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2. Function and Architecture. They are often defined independently by 

different design teams (e.g. video encoding and decoding experts versus 
hardware and software designers in multimedia applications). Function 
(both computation and communication) is then "mapped" to architecture 
in order to derive an implementation. 

3. Behavior and performance parameters, such as latency, throughput, 
power, energy.  
All these separations result in better design re-use, because they decouple 

independent aspects that would otherwise tie, for example, a given 
functional specification to low-level implementation details, or to a specific 
communication paradigm, or to a scheduling algorithm. It is very important 
to define only as many aspects as needed at every level of abstraction, in the 
interest of flexibility and rapid design space exploration. They also allow 
extensive use of synthesis, system-level simulation and formal verification 
techniques in order to speed up the design cycle. 

In Metropolis, a system is represented as a netlist, and a netlist can be 
further decomposed into subnetlists or components. Components of a netlist 
or a subnetlist include processes, media, ports, interfaces, constraints, and 
quantities. Processes are active objects (running on their own threads) used 
for modeling computation; media are passive objects used for modeling 
communication. Ports, specified as interface types, reside in processes and 
are the only places through which communication can take place. Interfaces 
declare all and only the methods that can be called through ports; constraints 
deal with coordination and performance specifications; quantities annotate 
behaviors so that constraints can be specified precisely. 

3. UML PLATFORM PROFILE 

3.1 Modeling Platforms Using UML 

The UML Platform profile is a graphical language for specification of 
embedded system platforms. It includes domain-specific classifiers and 
relationships specialized with stereotypes, in addition to the notation defined 
in the standard UML [2] and in the UML Profile for Schedulability, 
Performance and Time Specification [12], to model the structure and the 
behavior of embedded systems and to represent the relationship between 
platforms at different levels of abstraction. The profile has been derived 
from the model and design of several wireless protocols and therefore is 
especially suited for this application domain.  
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UML Platform structural models capture the components of a system and 
their relationships using stereotyped modeling elements. The model of a 
platform, especially when it relates to another platform at a different 
abstraction level, often requires modeling elements of different types (e.g. 
classes to represent the logical functions, components for the software 
implementation and deployment nodes for the physical resources running 
them) and therefore is not identifiable with a specific UML Diagram. 

The behavior of an embedded system can be captured at different levels 
of abstraction using Use Case, Interaction, State Machine and Activity 
Diagrams. Use Case Diagrams provide an abstract representation of the 
services that the system as a whole provides to the environment, Interaction 
Diagrams define just the interaction among system components, State 
Machine and Activity Diagrams allow the specification of the detailed 
action-level behavior of individual components. Specifying the behavior of a 
system requires to choose a model of computation that formally defines the 
semantics of the execution and the interaction among the system components 
and to describe the behavior of the components. As discussed in Section 2.2, 
the specification mechanism should not commit a priori to a specific MoC 
but should be flexible enough to let the designer choose the most appropriate 
MoC for the application. The UML Platform profile defines stereotypes 
representing standard MoCs (such as Kahn Process Networks, Synchronous 
Dataflow etc.) and elementary building blocks, such as buffers, protocols 
etc., that can be used to specify a MoC. The behavior of individual 
components is specified using graphical (State Machine or Activity 
Diagrams) or textual notation. 

The syntax of the UML Platform profile is defined by the set of standard 
and stereotyped UML modeling elements and by the rules for using and 
composing them. UML Platform follows the rules of UML for standard 
classifiers and relationships and explicitly defines composition rules for the 
newly introduced notation. The semantics of UML Platform is defined in 
terms of the Metropolis Metamodel [11] by establishing a direct 
correspondence between modeling elements of UML Platform and elements 
of the Metamodel. 

3.2 Stereotypes 

The UML Platform profile includes the following stereotypes: 
 

– <<Netlist>> is a top-level class that identifies the overall system 
structure as a set of connected components 

– <<Resource>> specializes classes, components or deployment nodes 
and is used to represent platform components. Resource attributes (for 
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example, bus attributes such as width, number of masters/slaves, 
arbitration policy...) are specified by annotating tags or as attributes of 
the corresponding class. <<Bus>>, <<Memory>>, <<Processor>>... 
further specialize the <<Resource>> stereotype for deployment nodes 
and are used to model physical resources 

– <<Process>> is an active class [2] modeling logical objects performing 
computation 

– <<Medium>> is a class modeling logical or physical objects that 
implement a communication function 

– <<Scheduler>> is a class modeling objects and algorithms that perform 
coordination and arbitration of access to shared resources 

– <<Port>> represents a part of a resource that allows its interaction with 
its environment. A port has an aggregate relationship with the resource to 
which it belongs and is associated with the services it provides access to. 
  
 

 

Figure 5-2. Stereotyped Relationships 

The following stereotypes specialize the UML relationships: 
 
<<Communicate>> specializes the association relationship and is used 

to relate classes of objects that interact and exchange messages. The 
<<Communicate>> relationship can be further specialized with stereotypes 
indicating a particular communication mechanism (e.g. Synchronous, 
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Asynchronous, Buffered, Unbuffered) or a MoC (e.g. SDF, Kahn Process 
Networks, Synchronous FSMs, CFSMs...).  

<<Use>> is a type of association that relates a service with a user of the 
service. <<Need>> is similar to <<Use>> and indicates that a user needs a 
service that is not currently available. Thus, it represents a request for future 
service extensions. An object may use multiple services and the same service 
may be used by multiple objects. A stereotyped relationship called 
<<Share>> can be used to relate the users of a service provided by the same 
resource. <<Stack>> and <<Peer>> specialize the relationship between a 
service user and a service provider (a resource): <<Stack>> is used if the 
service user and service provider belong to different layers of abstraction, 
<<Peer>> if they belong to the same layer. <<Transparent Stack>> is 
used when the service user uses a service provided by a resource that is not 
in the adjacent lower layer.  

<<Implement>> is a type of realization relationship between a service 
and a resource (or set of resources) implementing it. In figure 5-2, the 
channel resource is an implementation of a communication service. 
<<Refine>> is a type of realization relationship between an object (or set of 
objects) and an object or set of objects that describe it at a greater levels of 
details. 

4. UML PLATFORM DESIGN METHODOLOGY 

The design methodology, based on the UML Platform profile and 
Metropolis [11], is shown in Figure 5-3. In the first step the design problem 
is formulated, i.e. the functionality of the system as a whole is specified 
using Use Case Diagrams and the constraints are annotated to the model. 
Then, the functionality is decomposed into components and captured using 
the UML Platform stereotypes within the Class (structure), State Machine, 
Activity and Sequence Diagrams (behavior). Constraints are propagated and 
budgeted to the components. 

As a next step, the UML Platform specification is compiled into a 
Metropolis Metamodel specification to conjugate the convenience of using 
the graphical UML Platform interface for specification with the possibility to 
use the analysis and synthesis tools available in the Metropolis framework. 
The Metamodel functional specification can be validated using the 
Metropolis simulator [11]. 

Then, Communication Refinement and Mapping take place. Platforms 
that implement the functional components are specified in UML Platform as 
a netlist of resources providing services. The UML Platform model is 
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compiled into a mapped Metamodel specification, and performance analysis 
and validation take place in the Metropolis simulation environment. 
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Figure 5-3. UML Platform Design Flow  

4.1 Design Problem Formulation 

 

Figure 5-4. Intercom Use Case Diagram 

The system requirements and the overall functiona lity are expressed 
using Use Case Diagrams. The system as a whole is described in terms of the 
services (modeled as use cases) it provides to the environment users 
(modeled as actors). Requirements are annotated to the model. Figure 5-4 
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shows the Use Case Diagram model of the Intercom Network [13]: use cases 
model the services provided by the network (subscription, conferences, 
query user status), actors represent the mobile users of the Intercom network 
services. 

4.2 Functional Specification 

Specifying the functionality of a system usually requires to identify a 
number of functional components (functional decomposition), select a MoC 
that defines the semantics of their interaction, and specify the behavior of 
each component. 

In UML Platform the functionality of a system is specified in two steps. 
 

– First, a netlist of stereotyped classes and relationships is defined to 
capture the structural decomposition into interacting components. 
Computation objects are modeled as stereotyped <<Process>> classes, 
while their connectivity is expressed using <<Communicate>> 
relationships or explicitly using stereotyped <<Medium>> classes. 
When a stereotyped class is instantiated, its attributes, such as name of 
the process, number and type of its ports, internal variables, are set. 

– Second, the system behavior is specified refining the <<Process>> 
classes and the <<Communicate>> relationships to specific MoC types 
and describing the behavior of each process using State Machine 
Diagrams, Activity Diagrams or textual languages depending on what 
mechanism is more convenient for the target specification. 
 
In UML Platform an MoC can be specified either using the stereotyped 

classes and relationships (e.g. <<Kahn Process Networks Process>>, 
<<Kahn Process Networks Communicate>>...) if it is a standard MoC or by 
composing finer granularity modeling elements such as types of channels 
(e.g. FIFO, shared memory...), interface functions (e.g. blocking/non-
blocking read/write...) and coordination expressions (e.g. to specify 
synchronization or coordination of reads and writes...). A UML Platform 
model can be translated into a Metamodel description using the Metropolis 
Metamodel libraries, and instantiating the library elements that correspond to 
the stereotypes in the UML Platform model. The stereotyped classes of type 
process and medium have a corresponding Metamodel element. Ports and 
interfaces, which may be explicitly visualized in a UML Platform model, are 
part of the specification of processes and media in the Metamodel. The 
MoC’s stereotyped relationship has a corresponding element in the library 
that includes a Metamodel description of the interface functions of the 
medium and the execution policy of the processes. 
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Let us consider the specification of the filter o(n) = k2 * i(n) + k1 * o(n-
1).The UML Platform model of the filter is shown in Figure 5-5. First, the 
computation components are described as stereotyped <<Process>> classes 
and are connected by <<Communicate>> relationships. The filter performs 
pure data processing functions, therefore the most suited MoC is 
Synchronous Dataflow (SDF) [14]. SDF is a MoC that represent the system 
as a network of actors that communicate over single -reader single -writer 
blocking read non-blocking write channels with infinite FIFOs holding 
tokens. The execution of an SDF model is based on a sequence of actor 
firings, each producing and consuming a fixed number of tokens.  

 

Figure 5-5. IIR Filter Model 

The UML Platform model is refined using the corresponding SDF 
stereotypes, as shown in the lower part of Figure 5-5, so that the firing rules 
and the communication semantics of the specification are the ones of the 
SDF MoC. Parameters are set in the model for each class: the number of 
input and output ports, the data type and the number of the tokens produced 
or consumed at each port. The core function of each process in this case is 
conveniently specified with a fragment of code that describes the 
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corresponding function (e.g. o_adder = in1_adder + in2_adder). The token 
class represents the one tap delay on one of the channels. 

 
The information visualized in the UML Platform model is compiled 

together with the Metamodel description of SDF in the Metropolis library 
(built by H.Hsieh and L.Jin [15]). The SDF library defines: 

 
1. the SDF medium, i.e. the interface functions read, write and n (that 

returns the token count) and the memory buffer (array list) storing the 
data,  

2. the SDF process, i.e. the constructor, the declaration of the number and 
type of ports, and the functions readport, writeport defining the fir ing 
rules (e.g. SDF process executed when all the expected input tokens are 
present). 
 
Figure 5-6 shows the Metamodel specification of the Adder process and a 

fragment of the netlist that corresponds to the UML Platform Class Diagram. 
 
process Adder extends sdfprocess{ 
 Adder(String name){ 
       super(name,2,2); 
       inports_token = new int[2]; 
     outports_token = new int[2]; 
     inports_token[0] = 1; 
     inports_token[1] = 1; 
     outports_token[0] = 1; 
     outports_token[1] = 1; 
 } 
 void execute(){ 
  double vo0; 
  double vi0; 
  double vi1; 
 
  vi0 = i_buffer[0].get(0); 
  vi1 = i_buffer[1].get(0); 
        vo0 = vi0 + vi1; 
  o_buffer[0].set(0,(Object)vo0); 
  o_buffer[1].set(0,(Object)vo0); 
 } 
} 
 
public netlist IIRFilter{ 
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 public IIRFilter(String name){ 
  ClassAdder Adder_instance = new ClassAdder("sdfadder"); 
  sdfchannel M0_instance = new sdfchannel("sdfchannel0");  
  sdfchannel M1_instance = new sdfchannel("sdfchannel1"); 
  addcomponent(Adder_instance, this,"adder"); 
       addcomponent(M0_instance, this, "channel0"); 
  addcomponent(M1_instance, this, "channel1"); 
                ... 
  connect(Adder_instance, inports[0], M0_instance); 
  connect(Adder_instance, outports[0], M1_instance); 
 } 
} 

Figure 5-6. Metamodel Filter Specification 

4.3 Platform Specifi cation 

 

Figure 5-7. Key Elements of a Platform Model 

The following components are usually part of a platform specification 
(Figure 5-7): 
– the (physical or logical) resources modeled using the stereotyped 

classifiers defined in the UML Real-Time [5] and in the UML Platform 
profiles 

– the services offered by individual or groups of resources modeled using 
standard UML interfaces.(an interface does not have attributes, but may 
have operations to specify the service primitives [2]) 

– the QoS performance expressed using tags that annotate the interface 
modeling the corresponding service 
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– the QoS constraints specified annotating OCL [7] or expressions to the 

modeling elements to which they are applied 
– the relationships between resources, services and service users captured 

using the stereotypes defined in the UML Real-Time and UML Platform 
profiles 
Packages are useful modeling elements. A package is ``a general purpose 

mechanism for organizing elements into groups in order to manipulate them 
as a set'' [2]. Hence, packages are used to provide abstractions and improve 
the readability of the models, as they group together modeling elements that 
are closely related.  

4.4 Communication Refinement 

Communication refinement is the procedure that defines, through a 
sequence of steps, how to implement the interaction among objects. A 
Network Platform (NP) is a library of resources that can be selected and 
composed together to form Network Platform Instances (NPIs) and to 
support the communication among a group of interacting objects, called NPI 
users. An NP library includes logical resources (e.g. protocols, virtual 
channels...) that are defined only in terms of their functionality and physical 
resources such as memory, processor, physical medium. 

During communication refinement, UML Platform is used to model NPIs 
and their relationships. In the model of an NPI the platform users are the 
components in the upper platform layers and are represented as stereotyped 
classes, the services are of communication type (send and receive primitives) 
and are modeled as interfaces, the resources are protocols and channels and 
are represented as stereotyped classes of type <<Process>> and 
<<Medium>> respectively. These elements of the model are annotated with 
QoS requirements and may be related by the stereotypes <<Use>>, 
<<Communicate>>, <<Implement>> and <<Refine>>. 

Figure 5-8 shows the UML Platform model of an Application Layer (AL) 
protocol and its refinement into a Network Layer (NL). The UML Platform 
model of the AL includes two Process classes representing a Controller and 
a Sensor, a (one-directional) <<Communicate>> relationship, a description 
of the communication services and a Medium modeling the AL network 
platform that provides the services. To communicate the Sensor and 
Controller <<Use>> a communication service, whose primitives, send() and 
receive(), are accessible through the PortSensor and PortController ports.  
The service is implemented by a platform that consists of a medium with 
buffer size equal to 1. The platform is refined into a NL platform that 
includes a protocol entity at each node and a FIFO interconnecting them. 
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Figure 5-8. Network Platform example  
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4.5 Mapping 
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Figure 5-9. Platform Layers 

Mapping a functional specification onto an architecture requires the 
definition of a model of the implementation platform and the establishment 
of the relationships of the platform resources and services with the 
application-level functional components. The components assigned to the 
HW partition are mapped directly onto a HW resource. The components in 
the SW partition are implemented as SW tasks that use the services provided 
by an intermediate SW layer. Hence, the elements of embedded system 
platform models can be conveniently grouped within the three layers shown 
in Figure 5-9: Architecture (ARC), Application Programming Interface 
(API) and Application Software (AS) Platforms, where the ARC layer 
includes a family of micro-architecture HW resources such as 
microprocessors, memories, ASICs, FPGAs, I/O devices and inter-
connectors that in UML are typically modeled as deployment nodes; the API 
layer is a software abstraction layer and includes RTOS, device-driver, and 
network communication subsystem that in UML are represented as 
components; the AS layer includes the software tasks that implement 
application-level functional components. 

Figure 5-10 shows the model of the embedded system platform 
implementing the Intercom Protocol Stack [13]. The Intercom protocol 
layers are visualized on the top part of the figure: they are modeled as 
classes and are annotated with QoS constraints on parameters like error rate 
(error-free transport layer connection) and throughput (the Mu-law 
Quantization block must process voice samples at 64 kbps, while the 
required throughput at the Physical Layer, due to the TDMA policy and the 
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CRC redundancy, is higher than 1.5 Mbps). Two layers, UI and Transport, 
are implemented as SW tasks and define the AS Layer; all other protocols 
are mapped onto HW resources (ASICs or FPGAs). The API Layer includes 
the RTOS and the Device Drivers. The RTOS implements the 
communication, arbitration and execution services used by the software 
tasks. Some of its parameters are the scheduling policy and the context 
switch overhead. It uses the services offered by the device drivers. The ARC 
layer includes the Tensilica Xtensa processor, the I/O devices, the Sonics 
Silicon backplane, ASICs and FPGA blocks that are implemented as 
deployment nodes. The processor provides to the upper layers ISA execution 
services, the I/O devices provide HW interface services 
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Figure 5-10. Mapping Intercom Protocol onto an embedded system platform. 
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5. CONCLUSIONS 

This chapter has discussed the issues of using UML in the context of 
platform-based design. A new UML profile, UML Platform, has been 
proposed by introducing new building blocks (e.g. new stereotypes) to 
represent platform resources and services. Further, an embedded system 
design methodology that uses UML Platform and follows the platform-based 
design principles was presented.   We believe that industry convergence on a 
standard platform profile in UML will be vital for the development of a 
variety of tools and methods that will better support embedded system 
design and help automate the flow from specification to platform-based 
implementation. 

REFERENCES 

[1] A. Sangiovanni-Vincentelli, “Defining Platform-based Design”, EEDesign, 
February 2002. 
[2] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language User 
Guide, Addison-Wesley, 1998 
[3] G. Martin, L. Lavagno, J. Louis -Guerin, “Embedded UML: a merger of real-time 
UML and co-design”, Proceedings of CODES 2001, Copenhagen, April 2001, 
pp.23-28. 
[4] G. de Jong, “A UML-Based Design Methodology for Real-Time and Embedded 
Systems”, Proceedings of DATE 2002, Paris, March 2002. 
[5] B. Selic, “Complete High-Performance Code Generation from UML Models”, 
Proceedings of Embedded System Conference, San Francisco, CA, USA, March 
2002. 
[6] C. Raistrick, “Executable UML for Embedded System Development”, 
Proceedings of Embedded System Conference, San Francisco, CA, USA, March 
2002. 
[7] J. Warmer, A. Kleppe, The Object Constraint Language: Precise Modeling with 
UML, Object Technology Series, Addison-Wesley, 1999. 
[8] B. Selic, “A Generic Framework for Modeling Resources with UML”, IEEE 
Computer, June 2000, pp.64-9 
[9] B. Selic, J. Rumbaugh, “Using UML for Modeling Complex Real-Time 
Systems”, White paper, Rational (Object Time), March 1998. 
[10] P. N. Green, M. D. Edwards, “The Modeling of Embedded Systems Using 
HASoC”, Proceedings of DATE 2002, Paris, March 2002. 
[11] F. Balarin, L. Lavagno, C. Passerone, Y. Watanabe, “Processes, interfaces and 
platforms. Embedded software modeling in Metropolis”, Proceedings of EMSOFT 
2002, Grenoble, France, October, 2002 
[12] ARTISAN Software Tools, Inc. et al., “Response to the OMG RFP for 
Schedulability, Performance, and Time”, OMG document number: ad/2001-06-14, 
June, 2001  



5. UML and Platform-based Design 21
 
[13] J. da Silva Jr., M. Sgroi, F. De Bernardinis, S.F Li, A. Sangiovanni-Vincentelli 
and J. Rabaey, “Wireless Protocols Design: Challenges and Opportunities”, 
Proceedings of CODES 2000, SanDiego, CA, USA, May 2000.  
[14] E. Lee, D. Messerschmitt, “Synchronous Data Flow”, Proceedings of the IEEE, 
September, 1987. 
[15] H. Hsieh, J. Lin. Modeling  SDF in Metropolis, Private Communication 
 


