
A First Look:
IBM Rational RobotJ

For release on March 25th, 2002 at the 2002
JavaOne Java Developers Conference.

:

Tom Arnold has been programming, managing and consulting on software test automation projects since
1991. In 1993, Tom co-founded Software Testing Laboratories (later renamed to ST Labs, and eventually
purchased by Data Dimensions/LionBridge/Veritest), one of the software industry’s first outsourced
software testing firms. While at ST Labs, Tom added training & consulting to his repertoire when he began
writing and teaching software test automation classes to Microsoft employees as he created ST Labs’
training group. Two years later, Arnold published the book, Software Testing with Visual Test 4.0.1 Shortly
after his book’s publication, Tom managed the development team for Visual Test 4.0b for Microsoft
Corporation; this version later became Rational Visual Test 4.0r. Arnold continued to run software test
automation projects, consult for companies looking to establish an approach to testing, and speak at
industry conferences about effective uses and practical approaches to automated testing. Tom continued
managing software dev teams, including the programmers and test engineers that created Rational Visual
Test 6.0 (released in November 1998). His 700-page book – Visual Test 6 Bible2 – and 10-tape (10-hour)
training video series – VT6 InDepth3 – were both published in January 1999. Tom’s current focus is on
software project management, programming, test automation and writing papers & articles about software
development. Tom plays an active role in the software industry and presents at such conferences as STAR
(Software Testing Analysis & Review), Internet World, and RUC (Rational Users Conference). His Bachelors
Degree in Computer Science comes from Purdue University.

Author Profile

A First Look: Rational RobotJ 1.0

ii

Table of Contents

Introduction ..1

Background..1

The Test ..2

Expected Results ...2

Actual Results ...3

How to Generate a Script ..5

Welcome to Rational RobotJ ...5

Getting Ready to Record ..5

Record a New RobotJ Script ...6

Adding Verification Points...8

Test Object Maps ..10

The Rest of the Code...11

Execution & Results ..12

Summary ..12

Please send comments to tom@xtenddevelopment.com

A First Look: Rational RobotJ 1.0

1

Introduction

Rational asked me to take a look at their new baby, Rational RobotJ.
There were two reasons they asked me to do this. The obvious reason is that I've
been in the test automation game for a long time and have seen a lot of ways people
have used (and misused) these testing tools. The second reason is that I've never
used Rational Robot or their Test Manager model; I would bring an automation
background with a fresh set of eyes looking at how they're approaching software test
automation solutions.

I received my Beta copy of Rational RobotJ and I was eager to get started exploring
what Rational's latest tool brings to software testing. Having written Rational
Visual Test automation scripts for years I was eager to see how this tool
would define itself in the realm of testing web-based applications.

Within minutes of installing the tool, clicking around to see what was in the interface,
and generally trying to figure out what’s what, I decided to dive in and use the
Record new RobotJ script button on the toolbar. “What the heck,” I thought to
myself, “let’s see what kind of verbose script this thing generates as it tries to not
only accurately record my actions, but keep things in sync so that the playback
actually works.” I’m a bit cynical when it comes to record-and-playback tools.

I was eager to learn more about what this tool could do even though I’m fonder of
the good old-fashioned banging-out code approach. However, using a recorder is one
of the best ways to learn about an automation tool and how that tool wants to be
used. It turned out, as you’ll soon see, that the recorder was (and is) not only a
great tool for learning more about RobotJ, it’s the way Rational expects
people to create the majority of their test scripts. It does a great job of it, too.

Background

I got wind through the test automation grapevine that Rational was about
to release a new product that would focus on testing HTML and Java-based web
applications. Furthermore, it used Java as the programming language allowing for
the typical benefits of object oriented programming. I wanted to see it as soon as
possible. A new programming-related toy to play with and I couldn’t wait to get my
hands on it.

For years I’ve been using and writing about software test automation with Rational
Visual Test as my tool of choice. Its Visual Basic-like language made programming
straightforward, and its advanced capabilities of working with pointers for complex
data structures made it a “real” language. Visual Test even had functionality for
testing web pages that was added in version 6.0. It worked, and still works, but it’s a
capability added to a testing tool that was originally designed for testing Microsoft
Windows programs. Visual Test was trying to be the end-all, be-all tool for software
test automation, and, to be sure, it has held its own over the years.

I still use VT today, even for non-testing solutions. But when a new tool focusing
solely on web application testing was about to be announced, I really wanted to see
what it could do, and I was really excited about Java being used as its scripting
language.

A First Look: Rational RobotJ 1.0

2

I’ve always tried to teach good programming practices to my students and clients, as
well as approaches to create object-oriented-like scripts, complete with data hiding,
encapsulation and a simple form of inheritance, in a not-so object-oriented language.
The methods worked well, but using an object oriented language enforces these
practices instead of simply encouraging them. That’s why I’m happy that RobotJ is
making use of Java as its language.

The Test

I figured I would start off with something simple: Click around on some links to see
how well it handled the scrolling of the browser window to reach links that were off-
screen and lag-time between page loads. But then I thought about it another way:
when test-driving a new car that promises to have a big engine and racing
suspension, would I sit there and verify the turn signals work and that I can find NPR
on the radio? Well, yes, actually. But in addition, I’d definitely want to take it out
and find lots of curves to play in, even while listening to NPR’s Talk of the Nation.

Admittedly, I didn’t take it through too many curves on the first run because I didn’t
want to put it into the wall. I wanted to have the script I recorded actually work; I
was slightly skeptical about a recorded script and whether or not it would work
straight out of the gate. So I clicked the record button and went through the
following steps:

1. I ran my browser-of-choice (Microsoft Internet Explorer 6.0)
2. Titled my test “First_one” (You’ll see it referenced in the code)
3. Ran my application with associated URL (www.xtenddev.com)
4. Clicked a link to reach Xtend Development’s search engine
5. Typed in the text I was looking for (Rational)
6. Navigated to the product I wanted (VT6 InDepth Videos)
7. Added an item to my shopping cart (“buy.gif” graphic)
8. Clicked the “Check Out” button to complete my transaction
9. Filled in my customer and billing information
10. Submitted the product order to our transaction server
11. Exited my browser

Expected Results
As a test automation programmer I had a number of preconceived notions of what to
expect when using the RobotJ recorder. These notions are based on working with
Visual Test and other test automation tools. I expected a number of issues,
specifically:

Compatibility: At first I was concerned about its compatibility with Microsoft
Internet Explorer 6.0. Microsoft keeps pumping out updates of its browser at
a fast pace and I was wondering if RobotJ was keeping up. Rational must be
using the internal object model provided by the IE APIs, but so did the Visual
Test team, and Microsoft’s internal bits don’t always work as expected and
required a number of work-arounds by the dev team. I imagined the same
was true for the RobotJ developers.

Script Length: I was concerned that a very long script would be generated
with a number of delay or “sleep” statements attempting to emulate my
actual delays in typing and clicking. I was also expecting a number of
commands verifying the size and position of my browser window, screen

A First Look: Rational RobotJ 1.0

3

resolution, and other things that can sometimes be overkill and create a long
script.

Latency Issues: I expected the script to run only under perfect conditions
where the server response was equal to or faster than when the recording
was generated. In the event the server lagged, I fully expected the need to
fine-tune the script with additional code to pause at specific points, such as
when a link was clicked that navigated off the current page.

Actual Results
What I received, however, was a pleasant surprise:

Compatibility: Clicking on links, typing into multiple <input type=text> box
controls, <textarea> controls, <select><option> drop-down boxes, <input
type=submit> buttons, submitting forms with post and get methods, and
more, all seemed to work without a problem. I’ve not yet tried it on other
browsers, but I was pleased that it correctly recognized and – more
importantly – successfully found on playback, the many varied controls on the
web page under test.

Compact Code: The code was compact and readable. By taking advantage of
a “Helper” base class, all of the extraneous code was hidden from view
leaving only the meat of the source that was of interest to me. As expected,
comments were added to help guide the automation programmer through
what was happening at each line in the code. Additional information that I
didn’t expect, however, was included as comments, specifically the
information that was posted when the Place Order Now button was pressed.
(Nice touch.)

Synchronicity: Because no sleeps or delays were explicitly added in the code,
and the “Helper” base class handled all control recognition, action was only
taken upon a control when it could be located. If it were there the script
would fly through filling in the form and clicking the appropriate controls. It
waited patiently, however, if the page was still loading or if it was still building
an understanding of what controls and links existed on the page.

For you code junkies I’ve tried to create a sample script within the first few pages of
this document. The generated code is shown on the next page in Listing 1. (Note:
Some minimal formatting was necessary to have it fit readably into this document,
including removal of some of the auto-generated comments). I will spend the next
few pages showing you what it looked like using RobotJ to generate this script,
discuss some of the key aspects of the generated script, and then explore the results
from running the script.

A First Look: Rational RobotJ 1.0

4

import resources.First_oneHelper;
import com.rational.test.ft.*;
import com.rational.test.ft.object.interfaces.*;
import com.rational.test.ft.script.*;
import com.rational.test.ft.value.*;
import com.rational.test.ft.vp.*;

public class First_one extends First_oneHelper
{
 /**
 * Script Name : First_one
 * Generated : Mar 18, 2002 9:44:40 PM
 * Description : RobotJ Script
 * Original Host : Windows 2000 x86 5.0
 * Original Host : WinNT Version 5.0 Build 2195 (Service Pack 2)
 */

 public void testMain (Object[] args)
 {
 startApp("Xtend Development, Inc.");
 consultingsmjpg_textVP().performTest();

 // Document: Xtend Development, Inc.: http://www.xtenddev.com/
 Link_SiteMap().click();
 Link_SearchEngine().click();
 Text_query().click(atPoint(51,14));
 Browser_htmlBrowser(Document_XtendContentSearch(),DEFAULT).inputKeys("rational");
 Button_Submit().click();
 Link_XtendOnDemandVideoLibrary().click();
 Document_XtendOnDemandVideoLib().drag(atPoint(754,247),atPoint(753,450));
 Link_VisualTest6Indepth().click();
 Document_VT6InDepthVideos().drag(atPoint(755,137),atPoint(754,203));
 Image_buygif().click();
 Button_CheckOutsubmit().click();
 Text_name().click(atPoint(29,13));
 name_textVP().performTest();
 Text_name().click(atPoint(35,10));
 Browser_htmlBrowser(Document_OrderConfirmationForm(),DEFAULT).inputKeys(

"Thomas Arnold");
 Browser_htmlBrowser(Document_OrderConfirmationForm(),DEFAULT).inputKeys(

"{Tab}Xtend Development, Inc.{Tab}206-938-2370{Tab}206-932-8797");
 Browser_htmlBrowser(Document_OrderConfirmationForm(),DEFAULT).inputKeys(

"{Tab}206-938-1191{Tab}tom@xtenddev.com{Tab}tom@xtenddev.com{Tab}");
 Browser_htmlBrowser(Document_OrderConfirmationForm(),DEFAULT).inputKeys(

"4742 42nd Avenue SW{Tab}#621{Tab}Seayt{BKSP}{BKSP}ttle{Tab}WA");
 Browser_htmlBrowser(Document_OrderConfirmationForm(),DEFAULT).inputKeys(

"{Tab}98116{Tab}{Tab}{Tab}{Tab}{Tab}");
 Document_OrderConfirmationForm().drag(atPoint(754,178),atPoint(731,301));
 Text_CCNum().click(atPoint(14,9));
 Browser_htmlBrowser(Document_OrderConfirmationForm(),DEFAULT).inputKeys(

"{Num4}{Num3}{Num8}{Num8}{Num5}{Num4}{Num3}{Num0}{Num2}{Num3}");
 Browser_htmlBrowser(Document_OrderConfirmationForm(),DEFAULT).inputKeys(

"{Num7}{Num2}{Num0}{Num3}{Num5}{Num7}");
 List_Expiremonth().click();
 List_Expiremonth().click(atText("05"));
 Document_OrderConfirmationForm().drag(atPoint(752,364),atPoint(752,444));
 List_shippingid().click();
 List_shippingid().click(atText("United States (lower 48 states) (Overnight) $36.00"));
 Text_Comments().click(atPoint(154,58));
 Browser_htmlBrowser(Document_OrderConfirmationForm(),DEFAULT).inputKeys(

"This is a test order. Delete it!{Enter}");
 Document_OrderConfirmationForm().drag(atPoint(752,356),atPoint(753,478));
 Button__PLACEORDERNOWsubmit().click();
 CloseWindow_textVP().performTest();

 // Document: Xtend / Purchase Completed:
 //http://www.xtenddev.com/purchase_completed.asp?name=Thomas+Arnold
 //&company=Xtend+Development%2C+Inc%2E&email1=tom%40xtenddev%2Ecom
 //&address1=4742+42nd+Avenue+SW&address2=%23621&city=Seattle&state=WA […some deleted…]
 Link_CloseWindow2().click();
 Dialog_HtmlDialogButtonYes().click();
 }
}

Listing 1

A First Look: Rational RobotJ 1.0

5

How to Generate a Script

Now that you’ve seen what a script looks like that goes through all of the steps I
listed earlier (see Listing 1), I’m going spend the rest of this document explaining
how I generated the script as well as identify points-of-interest along the way.

Welcome to Rational RobotJ

As I’ve already mentioned, RobotJ is Rational's newest solution to testing
Java or Web application environments on Microsoft Windows and Unix platforms.4
RobotJ plugs into IBM’s open-sourced Integrated Development Environment (IDE)
known as Eclipse. By embracing IBM’s IDE, shown in Figure 1, RobotJ will sit along
side other development tools created by Rational and other vendors
allowing easy tool integration into a common interface.

Figure 1: RobotJ utilizes IBM’s open-sourced IDE known as Eclipse.

To begin creating a RobotJ test script it is necessary to first create a container where
those scripts can be stored. This is referred to as a Data Store. Such a project file
must be created before any headway can be made. In Figure 1, you can see that
I’ve created a data store called tomsrobotjdatastore (creative, eh?). Within that data
store is my first recorded script, First_one, shown in Listing 1. I’ve skipped writing a
description of the steps for creating a data store because I want to get right into the
meat of RobotJ.

Getting Ready to Record

The first thing I did in creating my automated script was to enter the Configuration
Editor, shown in Figure 2 on the next page. Selecting the Configure Applications for
Testing menu item found under the Configure menu in RobotJ accesses this dialog
box. Once in the dialog, I clicked the Add button and was given the option of
creating an entry for a Java application, HTML application or Windows executable.

4 Java applications developed with Sun JDK/JRE 1.2.2 and greater, and IBM JRE 1.2.2 and greater are
supported. GUI-based Java applications using or extending the AWT, Swing and SWT libraries are
supported. There is HTML support for Microsoft Internet Explorer 4.0, 5.0, 5.5, 6.0 as well as Netscape
Navigator 6.1.

A First Look: Rational RobotJ 1.0

6

For this example I created an entry for my website – www.xtenddev.com. This would
allow me to select my application from a list of applications maintained by the
Configuration Editor once the recording interface was displayed.

Figure 2: It is necessary to enter start-up information about the application that will be tested
by RobotJ. This is used by the Recorder and allows you to specify which application to test.

Record a New RobotJ Script

With some of the initial settings out
of the way, I was ready to begin
automating a test on my website.
The goals, mentioned earlier, were
to navigate to my website, search for
product information, add an item to
the e-commerce shopping cart,
advance to check-out where
customer shipping & billing
information can be entered, submit
the order and shut down the
browser.

I began the process by clicking the Record New RobotJ toolbar button found just
below the Script menu, as shown in Figure 3. This resulted in a dialog box being
displayed prompting for the name of the script. For my example I typed in
“First_one” (no spaces or non-alphanumeric characters are allowed) and clicked the
Finish button to begin the recording session.

An always-on-top window with
Recording as its caption, along with a
toolbar chock-full of fun-looking
buttons was displayed, as shown in
Figure 4. This window allowed me to

Figure 3: The (red) button on the toolbar just
below the Script menu activates the recorder.

Figure 4: The Recording window is displayed
while the RobotJ recorder is active.

A First Look: Rational RobotJ 1.0

7

control key aspects of how my script
was recorded.

I clicked the fourth button from the
left in the Recording window shown
in Figure 4. This was the Start
Application button that displayed the
(no surprise here) Start Application
dialog box. This dialog box listed the
application I had configured earlier
using the Configuration Editor. As
shown in Figure 5, I selected the
application I wanted to test and
clicked the Ok button.

If I stopped the recorder at this point
the generated script would be what
is shown in Listing 2:

The first six lines make RobotJ’s secret sauce available to us in the form of Java
packages, which are groupings of related APIs (Application Programmers Interface).
Each package and what it provides is listed below in Table 1.

Rational RobotJ Package Description
Resources.First_oneHelper Auto-generated class based on test app’s UI

Com.rational.test.ft Base exception classes used by RobotJ

Com.rational.test.ft.object.interfaces Classes that interact w/ software under test

Com.rational.test.ft.script Classes the manage the test script

Com.rational.test.ft.value Interfaces to access and manage values

Com.rational.test.ft.vp Interfaces that represent Verification Points

Table 1: Core packages included in scripts generated by the Recorder functionality.

Figure 5: The Start Application dialog can
be displayed using the Start Application
button on the Recording window’s toolbar.

import resources.First_oneHelper;
import com.rational.test.ft.*;
import com.rational.test.ft.object.interfaces.*;
import com.rational.test.ft.script.*;
import com.rational.test.ft.value.*;
import com.rational.test.ft.vp.*;

public class First_one extends First_oneHelper
{
 public void testMain (Object[] args)
 {
 startApp("Xtend Development, Inc.");

Listing 2

A First Look: Rational RobotJ 1.0

8

The very first item is the Resources.First_oneHelper class. This class is created
when the recorder analyzes the application being tested. For each control that exists
in the user interface, a method is created using the name of that control. This
method can then be used to interact with the control. Because RobotJ is using
object-oriented programming the way it was meant to be used, each control
becomes a black box and any changes made to the class has little or no effect on the
method being used. The other packages can be found in the extensive on-line help
provided with RobotJ.

Referring again to Listing 2, just beyond the import statements, are the lines:

public class First_one extends First_oneHelper
{
 public void testMain (Object[] args)
 {

 startApp("Xtend Development, Inc.");

The first line derives a new class (First_one) based on the auto-generated
First_oneHelper class. The First_oneHelper class was created when RobotJ
analyzed the application being tested and created a number of methods to provide
easy access to the application’s controls. (First_oneHelper is, itself, derived from
RobotJ’s Helper base class). Within this new First_one class a method called
testMain() is created. The first command in the testMain() function is a call to
startApp() with a parameter that matches the entry I created in the Configuration
Editor (“Xtend Development, Inc.”). Now if I go and change where the application
is located (if the URL changes, for example), I need only change the values in the
Configuration Editor and my script continues to run, unaffected.

The next line in the script finds the browser that was created when startApp() was
called. (I clicked on the window to verify it had focus):

Browser_htmlBrowser(Document_XtendDevelopmentInc(),DEFAULT).click(
 atPoint(382,11));

With the application up and
running, I needed to verify I
was where I expected to be.

Adding Verification Points

To verify a script is still
synchronized, a Verification
Point (VP) can be added. This
is done using the Recording
window from Figure 4 (fifth
button from the left). The VP
button displays the dialog in
Figure 6.

On this dialog box there are
three tabs. The first tab allows
for clicking and dragging a

Figure 6: Verification Points help you ensure you are
where you think you are.

A First Look: Rational RobotJ 1.0

9

pointer to an object to be used in the verification process.
The second tab, in Figure 6, displays each object hierarchically as RobotJ has
mapped them in the browser. To verify that I reached the Xtend Development home
page, I selected the consultingsm.jpg graphic, which is unique to that web page. If
RobotJ sees that graphic at this point in the script, it’s a good bet things are on
track.

The third tab – a pointing finger with a stopwatch – allows a delay to be added to the
script. This delay can be configured to wait until a specific control appears. If the
control does not appear, and the specified period of time goes by, an exception is
“thrown” resulting in a failure logged by RobotJ.

Clicking the Next button on the dialog box shown in Figure 6 displays a final dialog
allowing fine-tuning of the VP, shown in Figure 7.

Figure 7: Final step in adding a Verification Point (VP) to the recorded script.

Tweaking the values and clicking the Finish button inserts a VP call into the script
and resumes recording:

 consultingsmjpg_textVP().performTest();

A First Look: Rational RobotJ 1.0

10

(Notice that the name of the object used in the verification is used to create an
object consultingsmjpg_textVP() with an inherited method performTest().)
There is neither a right nor a wrong place to add a VP. They are typically added when
a key navigation takes place so that execution can be stopped the minute it becomes
apparent the train has gone off the tracks.

Test Object Maps

RobotJ’s Recorder keeps a running tally of all objects acted upon during a recording
session. Most of these objects are placed into a group known as a Test Object Map.

Other items – such as those created
through the process of defining a
Verification Point – are added to the
Verification Points section.

The Test Object Map tracks all aspects
of an object, including its name, type,
parent, siblings, and other properties.
The name of the item is also used to
create functions or methods that are
used by the script to interact with the
object.

Because RobotJ does not pay attention
to any one attribute of an object, if a
property changes through the course
of development, the script will likely
continue to run without error.
However, warnings will be logged
allowing the automation engineer to
re-map and object and return RobotJ’s
match to 100%.

Figure 8 shows the object map that
was created as a result of the script
that I generated. Note that although
there were hundreds of objects on the
pages that I stepped through when
creating the script, only those objects
that I acted upon were included in the
mapping.

Not shown here is the ability to control
the weights applied to the different
properties of a control when RobotJ is
searching for a match. These weights
allow the scriptwriter to specify what
RobotJ must pay attention to, and
what is less important when searching
for a matching control during the
script’s playback. This is very cool:
scripts break less often.

Figure 8: All objects on an application being
tested are mapped to a function or method
called within the automated script.

A First Look: Rational RobotJ 1.0

11

The Rest of the Code

The rest of the source code generated by the Recorder is fairly straight forward, now
that you understand where the function names come from. The recorded script is
essentially self-documenting, even though RobotJ is kind enough to include helpful
comments throughout. See Listing 3 for the final lines (some comments have been
removed to save space).

Link_SiteMap().click();
Link_SearchEngine().click();
Text_query().click(atPoint(51,14));

Browser_htmlBrowser(Document_XtendContentSearch(),DEFAULT).inputKeys("rational");
Button_Submit().click();
Link_XtendOnDemandVideoLibrary().click();
Document_XtendOnDemandVideoLib().drag(atPoint(754,247), atPoint(753,450));
Link_VisualTest6Indepth().click();
Document_VT6InDepthVideos().drag(atPoint(755,137),atPoint(754,203));
Image_buygif().click();
Button_CheckOutsubmit().click();
Text_name().click(atPoint(29,13));
name_textVP().performTest();
Text_name().click(atPoint(35,10));
Browser_htmlBrowser(Document_OrderConfirmationForm(),DEFAULT).inputKeys("Thomas
Arnold");
Browser_htmlBrowser(Document_OrderConfirmationForm(),DEFAULT).inputKeys("{Tab}Xtend
Development, Inc.{Tab}206-938-2370{Tab}206-932-8797");
Browser_htmlBrowser(Document_OrderConfirmationForm(),DEFAULT).inputKeys("{Tab}206-938-
1191{Tab}tom@xtenddev.com{Tab}tom@xtenddev.com{Tab}");
Browser_htmlBrowser(Document_OrderConfirmationForm(),DEFAULT).inputKeys("4742 42nd
Avenue SW{Tab}#621{Tab}Seayt{BKSP}{BKSP}ttle{Tab}WA");
Browser_htmlBrowser(Document_OrderConfirmationForm(),DEFAULT).inputKeys("{Tab}98116{Ta
b}{Tab}{Tab}{Tab}{Tab}");
Document_OrderConfirmationForm().drag(atPoint(754,178),atPoint(731,301));
Text_CCNum().click(atPoint(14,9));
Browser_htmlBrowser(Document_OrderConfirmationForm(),DEFAULT).inputKeys("{Num4}{Num3}{
Num8}{Num8}{Num5}{Num4}{Num3}{Num0}{Num2}{Num3}");
Browser_htmlBrowser(Document_OrderConfirmationForm(),DEFAULT).inputKeys("{Num7}{Num7}{
Num0}{Num3}{Num5}{Num7}");
List_Expiremonth().click();
List_Expiremonth().click(atText("05"));
Document_OrderConfirmationForm().drag(atPoint(752,364),atPoint(752,444));
List_shippingid().click();
List_shippingid().click(atText("United States (lower 48 states) (Overnight) $36.00"));
Text_Comments().click(atPoint(154,58));
Browser_htmlBrowser(Document_OrderConfirmationForm(),DEFAULT).inputKeys("This is a
test order. Delete it!{Enter}");
Document_OrderConfirmationForm().drag(atPoint(752,356),atPoint(753,478));
Button__PLACEORDERNOWsubmit().click();
CloseWindow_textVP().performTest();
// Document: Xtend / Purchase Completed:
http://www.xtenddev.com/purchase_completed.asp?name=Thomas+Arnold&company=Xtend+Develo
pment%2C+Inc%2E&email1=tom%40xtenddev%2Ecom&address1=4742+42nd+Avenue+SW&address2=%236
21&city=Seattle&state=WA&zip=98116&country=United+States&fax=206%2D938%2D1191&homePhon
e=206%2D932%2D8797&workPhone=206%2D938%2D2370&orderID=615514&cardType=&shipname=Thomas
+Arnold&shipaddress1=4742+42nd+Avenue+SW&shipaddress2=%23621&shipcity=Seattle&shipstat
e=WA&shipzip=98116&shipcountry=United+States&sku1=BDL%2DVT6%2DSET&product1=Videos+%2D+
Bundle+%2D+VT6+Videos+%2B+Book+%26+CD&quantity1=1&option1=&optionA1=&optionB1=&price1=
749%2E00&total=749%2E00&tax=65%2E91&shippingMethod=United+States+%28lower+48+states%29
+%28Overnight%29&shippingAmount=36%2E00&gst=0%2E00&grandTotal=850%2E91
Link_CloseWindow2().click();

Dialog_HtmlDialogButtonYes().click();

Listing 3

A First Look: Rational RobotJ 1.0

12

I did leave one line of comments in place in Listing 3 to show you that RobotJ’s
Recorder keeps track of the HTML headers returned after a form is submitted. The
large comment block shows the information returned back to my scripted page (in
this case an .ASP page, but this would work for a .JSP page as well). This type of
comment would be very helpful during testing to understand values being returned
that don’t appear on the URL line (and are hidden in the HTTP headers). (Note: The
comment block at the end of Listing 3 is one long line that wrapped in my word
processor. That is why the // comment marks are used instead of /* and */.)

Execution & Results

Now that the script has been generated, the only thing left to
do is run it and look at the results. Script execution starts
when the Running Man icon is clicked (this button is found on
the application’s toolbar). This causes RobotJ’s IDE to
minimize itself and display a separate window that shows the
status of the executing script.

When the script completes its run, a separate application is
launched that displays the results log and any errors it has encountered. Figure 10
shows a typical results file after successfully running the test script.

Figure 10: Rational Test Manager displays the results of RobotJ’s test execution.

Summary

In this document I showed you a scenario to be automated, displayed the final script
first to show you want could be generated in only minutes, then stepped through the
configuration, recording, and execution of that script.

Although there is much, much more to cover in using Rational's latest
automation tool, I hope this document gives you a good introduction to what it has
to offer. The robustness of the Recorder makes script generation a breeze, provides
excellent examples for those who like to bang out code and avoid recorders, and
uses a model that proves flexible as a test application evolves.

Thank you for giving me the sneak peek!

Figure 9: The Running
Man icon on the toolbar
is clicked to start execu-
tion of the RobotJ test
script.

IBM software integrated solutions
IBM Rational supports a wealth of other offerings from IBM software. IBM
software solutions can give you the power to achieve your priority business
and IT goals.

• DB2® software helps you leverage information with solutions for data
enablement, data management, and data distribution.

• Lotus® software helps your staff be productive with solutions for
authoring, managing, communicating, and sharing knowledge.

• Tivoli® software helps you manage the technology that runs your e-
business infrastructure.

• WebSphere® software helps you extend your existing business-critical
processes to the Web.

• Rational® software helps you improve your software development
capability with tools, services, and best practices.

Rational software from IBM
Rational software from IBM helps organizations create business value by
improving their software development capability. The Rational software
development platform integrates software engineering best practices, tools,
and services. With it, organizations thrive in an on demand world by being
more responsive, resilient, and focused. Rational's standards-based, cross-
platform solution helps software development teams create and extend
business applications, embedded systems and software products. Ninety-
eight of the Fortune 100 rely on Rational tools to build better software,
faster. Additional information is available at www.rational.com and
www.therationaledge.com, the monthly e-zine for the Rational community.

Rational is a wholly owned subsidiary of
IBM Corp. (c) Copyright Rational
Software Corporation, 2003. All rights
reserved.

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Printed in the United States of America
01-03 All Rights Reserved.
Made in the U.S.A.

IBM the IBM logo, DB2, Lotus, Tivoli
and WebSphere are trademarks of
International Business Machines
Corporation in the United States, other
countries, or both.

Rational, and the Rational Logo are
trademarks or registered trademarks of
Rational Software Corporation in the
United States, other countries or both.

Microsoft and Windows NT are
registered trademarks of Microsoft
Corporationin the United States, other
countries, or both.

Java and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in
the United States, other countries, or
both.

ActionMedia, LANDesk, MMX, Pentium
and ProShare are trademarks of Intel
Corporation in the United States, other
countries, or both.

UNIX is a trademark of The Open Group
in the United States, other countries or
both.

Other company, product or service
names may be trademarks or service
marks of others.

The IBM home page on the Internet can
be found at ibm.com

Copyright 2002, Thomas R. Arnold II & Xtend Development, Inc. All rights reserved.
Some content Copyright 2002, Rational Software Corporation. All rights reserved.

1 “Software Testing with Visual Test 4.0,” ISBN 0-7645-8000-0, IDG Books Worldwide, Developers Press
Division, 500 pages, 3 ½” floppy disk.
2 “Visual Test 6 Bible,” ISBN 0-7645-3255-3, Hungry Minds, Developers Press Division,
700 pages, CD-ROM. http://www.amazon.com/exec/obidos/ASIN/0764532553
3 “VT6 InDepth,” produced and distributed by Xtend Development, Inc.
(formerly InDepth Productions). http://www.visualtest.com/

