

SEI / CMM
Proposed Software Evaluation
And Test KPA

Richard Bender
Bender & Associates Inc.
46 Digital Drive, Suite 5
Novato, CA 94949
(415) 884-4380
(415) 884-4384 fax
rbender@softtest.com

April 1996

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 1

(Revision #4)

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 2

KPA REVIEW GROUP

The following have been gracious enough to be reviewers of this proposed Testing KPA. I
want to thank them for their insights and contributions. However, any problems or omissions
the reader may find with this document I take full responsibility for. This is very much a work in
progress. Please feel free to contact me with suggestions for improving it.

Boris Beizer - Independent testing consultant
Greg Daich - STSC
Dave Gelperin - SQE
Bill Hetzel - SQE
Capers Jones - SPR
John Musa - ATT
William Perry - QAI
Robert Poston - IDE

The original version of the Evaluation and Testing KPA was sponsored by Xerox Corporation.
They have graciously allowed us to distribute it to the software community. The key contact is:

David Egerton
800 Phillips Road
Building 129
Webster, NY 14580
(716) 422-8822

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 3

TABLE OF CONTENTS

1. INTRODUCTION.. 4

2. DEFINING EVALUATION AND TEST.. 5

3. THE JUSTIFICATION FOR A SEPARATE EVALUATION AND TEST KPA .. 8

3.1 A CCELERATING CULTURAL CHANGE ...8
3.2 THE ROLE OF EVALUATION AND TEST IN PROJECT TRACKING..10
3.3 EVALUATION AND TEST AS A PERCENTAGE OF THE PROJECT COSTS..11
3.4 IMPACT OF EVALUATION AND TEST ON DEVELOPMENT SCHEDULES AND PROJECT COSTS...................11
3.5 THE COST OF DEFECTS..12

4. THE PROPOSED SOFTWARE EVALUATION AND TEST KPA...15

4.1 GOALS..15
4.2 COMMITMENT TO PERFORM ..16
4.3 A BILITY TO PERFORM ...18
4.4 A CTIVITIES PERFORMED...20
4.5 M EASUREMENT AND ANALYSIS..27
4.6 VERIFYING IMPLEMENTATION ..29

5. RECONCILING WITH THE EXISTING CMM KPA抯 ..31

5.1 LEVELING THE EVALUATION AND TESTING KPA WITHIN THE CMM ...31
5.2 REPACKAGING SUGGESTIONS FOR THE EXISTING KPA抯...32

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 4

1. INTRODUCTION

The objective of this document is to present a proposal that Evaluation and Test become a Key
Process Area (KPA) in the SEI Capability Maturity Model (CMM). The first section addresses
the scope of what is meant by evaluation and test. The second section identifies the
justifications for making this a separate KPA. The third section presents the proposed KPA
definition including: definition, goals, commitment to perform, activities performed,
measurements and analysis, and verifying implementation. The final section addresses
integrating this KPA with the existing KPA抯. This includes identifying which level to assign it
to and some repackaging suggestions for existing KPA抯.

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 5

2. DEFINING EVALUATION AND TEST

Evaluation is the activity of verifying the various system specifications and models produced
during the software development process. Testing is the machine based activity of executing
and validating tests against the code. Most software organizations define evaluation and test
very narrowly. They use it to refer to just the activities of executing physical test cases against
the code. In fact, many companies do not even assign testers to a project until coding is well
under way. They further narrow the scope of this activity to just function testing and maybe
performance testing.

This view is underscored in the description of evaluation and test in the current CMM. It is part
of the Software Product Engineering KPA. The activities in this KPA, activities 5, 6, and 7,
only use code based testing for examples and only explicitly mention function testing. Other
types of testing are euphemistically referenced by the phrase “...ensure the software satisfies the
software requirements”.

People who build skyscrapers, on the other hand, thoroughly integrate evaluation and test into
the development process long before the first brick is laid. Evaluations are done via models to
verify such things as stability, water pressure, lighting layouts, power requirements, etc. The
software evaluation and test approach used by many organizations is equivalent to an architect
waiting until a building is built before testing it and then only testing it to ensure that the plumbing
and lighting work.

The CMM further compounds the limited view of evaluation and test by making a particular
evaluation technique, peer reviews, its own KPA. This implies that prior to the delivery of code
the only evaluation going on is via peer reviews and that this is sufficient. The steps in the
evaluation and test of something are: define the completion/success criteria, design cases to
cover this criteria, build the cases, perform/execute the cases, verify the results, and verify that
everything has been covered. Peer reviews provide a means of executing a paper based test.
They do not inherently provide the success criteria nor do they provide any formal means for
defining the cases, if any, to be used in the peer review. They are also fundamentally subjective.
Therefore, the same misconceptions that lead a programmer to introduce a defect into the
product may cause them to miss the defect in the peer review.

A robust scope for evaluation and test must encompass every project deliverable at each phase
in the development life cycle. It also address each desired characteristic of each deliverable. It
must address each of the evaluation/testing steps. Let抯 look at two examples: evaluating
requirements and evaluating a design.

A requirements document should be complete, consistent, correct, and unambiguous. One step
is to validate the requirements against the project/product objectives (i.e., the statement of 搘

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 6

hy” the project is being done). This ensures that the right set of functions are being defined.
Another evaluation is to walk use-case scenarios through the functional rules, preferably aided
by screen prototypes if appropriate. A third evaluation is a peer review of the document by
domain experts. A fourth is to do a formal ambiguity review by non-domain experts. (They
cannot read into the document assumed functional knowledge. It helps ensure that the rules are
defined explicitly, not implicitly.) A fifth evaluation is to translate the requirements into a
Boolean graph. This identifies issues concerning the precedence relationships between the rules
as well as missing cases. A sixth is a logical consistency check with the aid of CASE tools. A
seventh is the review, by domain experts, of the test scripts derived from the requirements. This
揵 ite-size” review of the rules often uncovers functional defects missed in reviewing the
requirements as a whole.

Evaluating a design can also take a number of tacks. One is walking tests derived from the
requirements through the design documents. Another is building a model to verify design
integrity (e.g., a model built of the resource allocation scheme for an operating system to ensure
that deadlock never occurs). A third is building a model to verify performance characteristics.
A fourth is comparing the proposed design against existing systems at other companies to
ensure that the expected transaction volumes and data volumes can be handled via the
configuration proposed in the design.

Only some of the above evaluations were executed via peer reviews. None of the above were
code based. Neither of the above examples of evaluation was exhaustive. There are other
evaluations of requirements and designs that can be applied as necessary. The key point is that
a deliverable has been produced (e.g., a requirements document); before we can say it is now
complete and ready for use in the next development step we need to evaluate it for the
desired/expected characteristics. Doing this requires more sophistication than just doing peer
reviews.

That is the essence of evaluation and test. A pre-defined set of characteristics, defined as
explicitly as possible, is validated against a deliverable. For example, when you were in school
and took a math test the instructor compared your answers to the expected answers. The
instructor did not just say they look reasonable or they抮e close enough. The answer was
supposed to be 9.87652. Either it was or it was not. Also, the instructor did not wait until the
end of the semester to review papers handed in early in the course. They were tested as they
were produced. With the stakes so much higher in software development, can we be any less
rigorous and timely?

Among the items which should be evaluated and tested are Requirements Specifications, Design
Specifications, Data Conversion Specifications and Data Conversion code, Training
Specifications and Training Materials, Hardware/Software Installation Specifications, Facilities
Installation Specifications, Problem Management Support System Specifications, Product
Distribution Support System Specifications, User Manuals, and the application code. Again this

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 7

is not a complete list. The issue is that every deliverable called for in your project life cycle must
be tested.

The evaluation and test of a given deliverable may span multiple phases of the project life cycle.
More and more software organizations are moving away from the waterfall model of the life
cycle to an iterative approach. For example, a Design Specification might be produced via
three iterations. The first iteration defines the architecture - is it manual or automated, is it
centralized or distributed, is it on-line or batch, is it flat files or a relational data base, etc. The
second iteration might push the design down to identifying all of the modules and the inter-
module data path mechanisms. The third iteration might define the intra-module pseudo-code.
Each of these iterations would be evaluated for the appropriate characteristics.

The types of evaluation and test must be robust. This includes, but is not limited to, verifying
functionality, performance, reliability-availability-serviceability, usability, portability,
maintainability, and extendibility.

In summary, each deliverable at each phase in its development should be evaluated/tested for
the appropriate characteristics via formal, disciplined techniques.

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 8

3. THE JUSTIFICATION FOR A SEPARATE EVALUATION AND
TEST KPA

There are five significant reasons which justify having a separate Evaluation and Test KPA:
evaluation and test抯 role in accelerating the cultural change towards a disciplined software
engineering process, the role of evaluation and test in project tracking, the portion of the
development and maintenance budget spent on evaluation and test, the impact of evaluation and
test disciplines on the time and costs to deliver software, and the impact of residual defects in
software.

3.1 Accelerating Cultural Change

Electrical engineers and construction engineers are far more disciplined than software engineers.
Electrical engineers produce large scale integrated circuits at near zero defect even though they
contain millions of transistors. What is often lost in the widely discussed defect in the Pentium
processor is that it was one defect in 3,100,000 transistors. When was the last time you saw
software which had only one defect in 3,100,000 lines of code? The hardware engineers do
not achieve better results because they are smarter than the software engineers. They achieve
quality levels orders of magnitude higher than software because they are more disciplined and
rigorous in their development and testing approach. They are willing to invest the time and effort
required to ensure the integrity of their products. They recognize the impact that defects have,
economic and otherwise.

Construction engineers face similar challenges in constructing sky scrapers. In their world a 搒
ystem crash” means the building collapsed. In regions of the world which have and enforce
strict building codes that just does not happen. Again, this can be traced to the discipline of
their development and testing approach.

Software, on the other hand, is a different matter. Gerald Weinberg抯 statement that 搃f
builders built buildings the way software people build software, the first woodpecker that came
along would destroy civilization” is on the mark.

We have to recognize that the software industry is very young as compared to other engineering
professions. You might say that it is fifty years old, if you start with Grace Hopper as the first
programmer. (A bit older if you count Ada Lovelace as the first.) However, a more realistic
starting date is about 1960. That is just over thirty five years. By contrast, the IEEE celebrated
their 100th anniversary in 1984. That means that in 1884 there were enough electrical engineers
around to form a professional society. In 1945, by contrast, Ms. Hopper would have been
very lonely at a gathering of software engineers.

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 9

As a further contrast construction engineering goes back over 5,000 years. The initial
motivation for creating nations was not self defense; it was the necessity to manage large
irrigation construction projects. We even know the names of some of these engineers. For
example, in 2650 BC Imhotep is the chief engineer for the step pyramid of Djoser (aka Zoser)
in Egypt. In fact he did such a good job they made him a god.

The electrical engineers and construction engineers did not start out with inherently disciplined
approaches to their jobs. The discipline evolved over many years. It evolved as they came to
understand the need for discipline and the implications of defects in their work products.
Unfortunately, we do not have thousands of years or even a hundred years to evolve the
software profession. We are already building business critical and safety critical software
systems. Failures in this software is causing major business disruptions and even deaths at an
alarmingly increasing rate. (See 揜isk To The Public” by Peter Neumann.)

Moving the software industry from a craftsman approach to a true engineering level of discipline
is a major cultural shift. The objective of the CMM is, first and foremost, a mechanism for
inducing this cultural change for software engineers. However, a culture does not change
voluntarily unless it understands the necessity for change. It must fully understand the problems
being solved by evolving to the new cultural paradigm.1 This, finally, brings us to the role of
testing in accelerating the cultural change to a disciplined approach (I know you were beginning
to wonder when I would tie this together).

In the late 1960抯, IBM was one of the first major organizations to begin installing formal
software engineering techniques. This began with the use of the techniques espoused by Edsger
Dijkstra and others. Ironically, it was not the software developers who initiated this effort. It
was the software testers. The initial efforts were started in the Poughkeepsie labs under a
project called 揇esign for Testability” headed by Philip Carol.

Phil was a system tester in the Software Test Technology Group. This group was responsible
for defining the software testing techniques and tools to be used across the entire corporation.
Nearly thirty years ago they began to realize that you could not test quality into the code. You
needed to address the analysis, design, and coding processes as well as the testing process.
They achieved this insight because as testers they thoroughly understood the problem since
testing touches all aspects of software development. Testers inherently look for what is wrong
and try to understand why.

It was this understanding of the problem and the ability to articulate the problem to developers
that allowed for a rapid change in the culture. As improved development and test techniques

1 My degree is in mathematics, however, my minors were archaeology and anthropology. I have always
found these far more useful than math in helping organizations install software engineering disciplines and
tools.

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 10

and tools were installed, the defect rate in IBM抯 OS operating system dropped by a factor of
ten in just one release. This is a major cultural shift occurring in a very short time, especially
given that it involved thousands of developers in multiple locations.

The rapidity of the change was aided by another factor related to testing in addition to the
problem recognition. This was the focused feedback loop inherent in integrating the testing
process with the development process. As the development process was refined, the evaluation
and test process was concurrently refined to reflect the new success criteria. As developers
tried new techniques they got immediate feedback from testers as to how well they did because
the testers were specifically validating the deliverables against the new yardstick.

A specific example is the installation of improved techniques for writing requirements which are
unambiguous, deterministic, logically consistent, complete, and correct. Analysts are taught how
to write better requirements in courses on Structured Analysis and courses in Object-Oriented
Analysis. If ambiguity reviews are done immediately after they write up their first functional
descriptions, the next function they write is much clearer out of the box. The tight feedback
loop of write a function, evaluate the function, accelerates their learning curve. Fairly quickly the
process moves from defect detection to defect prevention - they are writing clear, unambiguous
specifications.

Contrast this to the experience of the software industry as a whole. The structured techniques
and the object oriented techniques have been available for over twenty-five years (yes, O-O is
that old). Yet the state of the practice is far behind the state of the art. The issue is an
organization does not fully accept nor understand a solution (e.g., the software engineering tools
and techniques) unless it understands the problem being solved. Integrated evaluation and test
is the key to problem comprehension. 揑ntegrated evaluation and test” is defined here as
integrating testing into every step in the software development process. It is thus the key to the
necessary feedback loops required to master a technique. Any process without tight feedback
loops is a fatally flawed process. Evaluation and test is then the key to accelerating the cultural
change.

3.2 The Role Of Evaluation And Test In Project Tracking

A project plan consists of tasks, dependencies, resources, schedules, budgets, and
assumptions. Each task should result in a well defined deliverable. That deliverable needs to be
verified that it is truly complete. If you do not evaluate/test the task deliverables for
completeness you cannot accurately track the true status of the project.

For example, Requirements Specifications always seem to be 揹one” on schedule. This is
because many organizations do not formally evaluate the Requirements Specification. Later in
the project they find themselves completing the definition of the requirements during design,

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 11

coding, testing, and even production. What, therefore, did it really mean to say that the task of
writing the requirements was completed?

Incomplete 揷 ompleted” tasks can also have a ripple effect on the completion status of
subsequent tasks. In the above scenario, what is the impact of finding a requirements deficiency
during code based testing? The 揷ompleted” Requirements Specification must be revised. The
揷ompleted” Design Specification must be revised. The 揷ompleted” code must be revised.
The 揷ompleted” User Manuals must be revised. The 揷ompleted” Training Materials must be
revised. The 揷ompleted” test cases must be revised.

The objective of project tracking is to give management and the project team a clear
understanding of where the project stands. Without evaluation/testing integrated into every step
in the project you can never be sure of what is and is not really completed. Given that Software
Project Tracking and Oversight is a KPA and it depends on evaluation and test to perform the
tracking, then evaluation and test as a KPA is a necessary preceding activity.

3.3 Evaluation and Test As A Percentage Of The Project Costs

A major pragmatic factor in determining what should and should not be a separate KPA is what
portion of the software development budget and staff are involved in the activity. The more
significant the activity is in these terms the more focus it should receive.

There have been numerous studies documenting how project costs are allocated across the
various activities. In these studies just the code based testing accounts for 35% to 50% of the
project costs. This is true for both software development and for software maintenance.
Factor in the effort to perform evaluations and this number is higher.

Organizations using any level of discipline in their testing have a tester to developer ratio of at
least 1:3. More and more software vendors are moving to a 1:1 ratio. At times the NASA
Space Shuttle project has had a ratio of 3:1 and even 5:1!

Simply put, any activity which consumes a third to a half of the budget and a fourth to a half of
the resources should definitely be addressed by its own KPA.

3.4 Impact Of Evaluation and Test On Development Schedules And Project Costs

Numerous studies show that the majority of defects have their root cause in problems with the
requirements definition. In one study quoted by James Martin, over 50% of all software defects

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 12

are caused by incomplete, incorrect, inaccurate, and/or ambiguous requirements. Even more
telling is that over 80% of the costs of defects have their roots in requirements based errors.

Other studies show that the earlier you find a defect the cheaper it is to fix. A defect found in
production can cost 2,000 times more than the same defect found in an evaluation of the
requirements.

The issue is scrap and rework. This is the primary cause of cost and schedule overruns on
projects. The plan may have identified the initial set of tasks to be done. However, due to
defects found later, 揷ompleted” tasks must now be redone. The 搑e-do” task was not in the
original plan. As the number of tasks requiring rework grows, the cost and schedule overruns
accumulate. Integrating evaluation and test throughout the project life cycle minimizes scrap and
rework, bringing the costs and schedules back under control.

Integrated evaluation and test can further shorten schedules by allowing for more concurrent
activities. When Requirements Specifications are not formally evaluated, the design and coding
activities often result in numerous changes to the scope and definition of the functions being
delivered. For this reason, work does not start on the User Manuals and Training Materials
until code based testing is well underway. Until then no one is confident enough in the system
definition.

Similarly, poorly defined requirements do not provide sufficient information from which to design
test scripts. The design and building of test cases often does not start until coding is well
underway.

These two scenarios force the development process to be linear: requirements, then design, then
code, then test, then write manuals. If the Requirements Specification is written at a
deterministic level of detail (i.e., given a set of inputs and an initial system state you should be
able to determine the exact outputs and the new system state by following the rules in the
specification), then test case design and the writing of the manuals can go on concurrently with
the system design. This in turn shortens the elapsed time required to deliver the system.
However, creating deterministic specifications requires formal evaluation of that specification.

In summary, integrated evaluation and test reduces schedules and project costs by minimizing
scrap and rework and allowing more activities to be performed concurrently. These types of
gains can not be accomplished without integrated evaluation and test. Since time to market and
cost to market are key issues for any software organization and testing is the key to achieving
improvements in this area, then evaluation and test should be a KPA.

3.5 The Cost Of Defects

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 13

The cost of defects is rising at an exponential rate. This has two causes. The first is that our
dependence on software is greater than ever. When it fails its impact is proportionate to that
dependence. The second cause is litigation. There is a significant increase in the number of
lawsuits concerning software quality. These are usually multi-million dollar exercises.

The support costs for software vendors is a growing concern. Microsoft receives almost
25,000 calls per day at an average cost per call somewhere between $50 to $100. This
number is pre-Windows 95 which was expected to increase the volume by 4X. Sending out
incremental bug fix releases also costs millions of dollars for some vendors. You also have to
factor in the costs for developers to fix the defects and the opportunity loss caused by efforts
going into fixing defects instead of creating new functionality.

Quality and the lack thereof also moves market share. Ashton-Tate went from being the
industry leader in PC based data base software to being out of business due to large numbers of
defects in one release of their main product. Market share for dBase went from 90%+ to less
than 45%. Their acquisition by Borland did not stop the slide. Furthermore, only one year after
their acquisition only 2% of all the people who had worked for Ashton-Tate still had jobs at
Borland.

The direct costs of defects can be staggering for the end users of the software. Both United
Airlines and American Airlines estimate that they lose $20,000 a minute in unrecoverable
income when their reservation system goes down. A large manufacturer estimates they lose
$50,000 a minute when their assembly line goes down. A large credit card company estimates
they lose over a $160,000 a minute when their credit authorization system goes down. Million
dollar defects are now common place. For example, if GM has a defect in the firmware that
requires reloading the control program in an EPROM it could effect 2.5 million automobiles at
an average cost to GM of $100 per car. There has even been an instance of a BILLION dollar
loss due to a single defect. It was caused by a round off error.

Some estimates place the average cost of a severity one defect in production in the tens of
thousands and even the hundreds of thousands on some applications. You can do a lot of
evaluation and test for a $100,000. You could add an additional senior tester to the
organization and, counting their salary and overhead costs, the break even point occurs when
they find one or two defects that would have slipped through to production.

When you are dealing with safety critical systems how do you cost out the value of a human life?
There have been hundreds and hundreds of deaths due to software defects. With software
playing a bigger role in transportation and in the medical profession, the risk of deaths is rapidly
increasing.2

2 At the extreme, we came within moments of a full thermonuclear exchange with the Soviet Union because
of a software defect. The death toll would have been in the hundreds of millions.

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 14

The legal profession is beginning to take note of these costs. Many feel we should be held to
the same standards as other engineering professions. This leads to the exposure of software
product liability and professional malpractice. The financial exposure in such suits is enormous.
To date the issue of setting legal precedents in this area is still in a state of flux. However, the
trend is clear. Software professionals and their products will be held to the same standards of
care and professionals as other engineers and their products.

Currently, most of the lawsuits related to software quality are being brought to court on the
grounds of breach of contract. We (Bender & Associates) have been involved in a number of
these as expert witnesses. We have never lost a case. This is because in each instance we have
been on the side of the user of the software, not the producer.

Few software vendors can demonstrate that they have applied a reasonable level of due
diligence in the evaluation and test of their software. The emphasis in most vendors is on dates
and functionality, not quality. The result is that in half of the cases we have testified in the
vendor has gone out of business as a direct result of the cost of litigation and the cost of the
award to the customer.

If the CMM was addressing the medical profession, there is no doubt that the avoidance of
malpractice suits would be a KPA. Well this issue is now on our doorsteps as software
professionals. It requires a disciplined approach to evaluation and test to minimize this
exposure.

The net is that the direct and indirect cost of defects is already huge and rising dramatically.
Defect detection and defect avoidance require fully integrated evaluation and test. This alone is
sufficient to justify an evaluation and test KPA.

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 15

4. THE PROPOSED SOFTWARE EVALUATION AND TEST KPA

Evaluation is the activity of ensuring the integrity of the various system specifications and models
produced during the software development process. Testing is the machine based activity of
executing tests against the code. The purpose of Software Evaluation and Test is to validate
(i.e., is this what we want) and verify (i.e., is this correct) each of the software project
deliverables, identifying any defects in those deliverable in a timely manner.

Software Evaluation and Test involves identifying the deliverables to be evaluated/tested;
determining the types of evaluations/tests to be performed; defining the success criteria for each
evaluation/test; designing, building, and executing the necessary evaluations/tests; verifying the
evaluation/test results; verifying that the set of tests fully cover the defined evaluation/test criteria;
creating and executing regression libraries to re-verify deliverables that have been modified; and
logging, reporting, and tracking defects identified.

The initial deliverable to be evaluated is the software requirements. Subsequently, the majority
of the evaluation and test is based on the validated software requirements.

The software evaluation and test may be performed by the software engineering group and/or
an independent test organization(s), plus the end user and/or their representatives.

4.1 Goals
__

Goal 1 Quantitative and qualitative evaluation/test criteria are established
 for each of the software project deliverables.

Goal 2 Evaluations/tests are executed in a timely manner to verify that the
 success criteria has been met.

Goal 3 Evaluation/testing is sufficiently effective to minimize the impact
 of defects such as scrap and rework during development and
 operational disruptions after implementation.

Goal 4 Defects and other variances identified are logged and tracked

through to their successful closure.

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 16

4.2 Commitment To Perform
__

Commitment 1 The project follows a written organizational policy for
 evaluating/testing the software project deliverables.

This policy typically specifies:

1. The organization identifies a standard set of software project
deliverables to be evaluated/tested, the characteristics to be
evaluated/tested, and the levels of verification criteria to be considered.

__
| |
 Examples of deliverables to be evaluated and tested include:

- requirements specifications,
- design specifications,
- user manuals,
- training materials,
- data conversion specifications and support systems, and
- code.

|___|

__
| |

Examples of characteristics to evaluate/test for are:
- functional integrity,
- performance, and
- usability.

|___|

__
| |

Examples of levels of verification criteria are (using code based
testing as the example):
- 100% of all statements and branch vectors;
- 100% of all predicate conditions;
- 100% of all first order simple set-use data flows; and
- 100% of all first order compound set-use data flows.

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 17

Examples of levels of verification criteria are (using requirements
based testing as the example):
- 100% of all equivalence classes;
- 100% of all functional variations; and
- 100% of all functional variations, sensitized to guarantee the
observability of defects.

|___|

2. The organization has a standard set of methods and tools for use in
evaluation/testing and defect tracking.

3. Each project identifies the deliverables to be evaluated/tested, the
phase(s) in which they will be evaluated/tested, and how they will be
evaluated/tested in each phase.

 4. Evaluations and tests are performed by trained testers.

5. Evaluations and testing focuses on the software project deliverables
and not on the producer.

Commitment 2 Senior Management supports and enforces that projects must meet

their pre-defined success criteria before installation into production in
the users/customers environment.

1. Senior management reviews and approves the overall evaluation and
testing objectives for the software system.

2. Senior management reviews and approves that the system has met
that criteria prior to installation.

__
| |

Author抯 note: One of the biggest enemies of quality is
unreasonable schedules. If the team is going to measured solely
on just meeting dates, then the test plan will be bypassed.
Management must measure functionality, resources, schedules,
and quality in determining a project抯 success, not just dates.

|___|

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 18

4.3 Ability To Perform
__

Ability 1 Adequate resources and funding are provided for planning and

executing the evaluation and testing tasks.

1. Sufficient numbers of skilled individuals are available for performing
the evaluation and testing activities, including:

- overall evaluation/test planning,
- evaluation/test coordination,
- evaluation/test case design,
- evaluation/test case implementation,
- evaluation/test execution,
- evaluation/test results verification,
- evaluation/test coverage analysis, and
- defect logging and tracking.

2. Tools to support the testing effort are made available, including:

- test case design tools,
- test data generators,
- test drivers, and
- test coverage monitors.

3. A test environment configuration is made available, including:

- hardware and software, dedicated to the testers, which
mirrors the intended production configuration.

Ability 2 Members of the software testing staff receive required training to

perform their technical assignments.

__
| |

Examples of training for evaluation and test include:
- evaluation and test planning;
- criteria for evaluation/test readiness and completion;
- use of the evaluation/testing methods and tools; and
- performing peer reviews.

|___|

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 19

Ability 3 Members of the software engineering staff whose deliverables will

be evaluated and tested receive training on how to produce testable
deliverables and orientation on the overall evaluation and testing
disciplines to be applied to the project.

__
| |

Refer to Ability 5 for an example of a testable deliverable.
|___|

Ability 4 The project manager and all of the software managers receive

orientation in the technical aspects of the evaluation/testing criteria and
disciplines to be applied to the project.

__
| |

Examples of orientation include:
- the evaluation/testing methods and tools to be used;
- the entry and exit criteria for the various levels of
evaluation/testing; and
- the defect resolution process.

|___|

Ability 5 The software engineers produce testable deliverables.

__
| |

An example of a testable deliverable would be a requirements
specification that had the following characteristics:
- the functional rules are written at a deterministic level of detail
(i.e., given a set of inputs and an initial system state you should
be able to follows the rules in the specification and determine
the outputs and the final system state);
- the specification is non-redundant;
- the specification is unambiguous; and
- the various requirements follow a consistent standard (e.g.,
standards for user interface definitions are followed which
define function keys, intra-screen navigation, inter-screen
navigation).

|___|

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 20

4.4 Activities Performed
__

Activity 1 The overall evaluation and testing effort is planned and the plans
 are documented.

These plans:

1. Identify the risks and exposures if defects propagate through the
various project phases and into production. This information is used to
determine how much evaluation and testing needs to be done.

__
| |

Examples of risks to be evaluated are:
- the potential scrap and rework and resulting cost and schedule
overruns which might be caused by defects in the requirements
specifications;
- the potential cost per unit of time for system down time in
production;
- the potential cost to customers and end users of inaccurate
processing; and
- the potential risk to human lives in safety critical applications.

Note: The premise here is that testing is essentially an insurance
policy. The overall evaluation and test strategy and its
associated costs should be proportional to the potential bottom
line risks which defects could cause.

|___|

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 21

2. Identify the software project deliverables to be evaluated/tested.

__
| |

Examples of software project deliverables to be
evaluated/tested are:
- requirements specifications;
- design specifications;
- code;
- user manuals and built in help facilities;
- training manuals, courseware, and training support systems;
- data conversion procedures and data conversion support
systems;
- hardware/software installation procedures and support
systems;
- production cutover procedures and support systems (e.g.,
code that creates a temporary bridge between an existing
system and its replacement, allowing some sites to run on the
old and some on the new until full cutover is complete).
- production problem management procedures and support
systems (e.g., the production help desk).
- product distribution procedures and support systems (i.e., the
mechanisms for distributing updates and new releases,
especially to widely distributed end users).
- publications procedures and support systems (e.g., the
mechanisms for physically publishing all of the copies of the
manuals needed to support the system in production).

|___|

3. For each deliverable to be evaluated/tested determine the
characteristics to be tested.

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 22

__
| |

Examples of characteristics to be evaluated/tested are:
- functional integrity;
- performance;
- usability;
- reliability, availability, serviceability;
- portability (i.e., can this one code line be easily ported from
one platform to another);
- maintainability (i.e., can fixes and minor incremental
improvements be easily made); and
- extendibility (i.e., can major additions be made to the system
without causing a major rewrite).

|___|

4. Determine the qualitative and quantitative success criteria for each
deliverable and each characteristic evaluated and tested for the
deliverable.

__
| |

An example of the functional test criteria for code could be:
- the code is tested to verify that 100% of all functional
variations derived from the requirements, fully sensitized for the
observability of defects, have been run successfully; and
- 100% of the code抯 statements and branch vectors have
been executed.

|___|

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 23

5. Determine the methods and tools required to evaluate/test each
deliverable for each of its desired characteristics.

__
| |

An example of evaluating a requirements specifications might
involve:
- performing an ambiguity review;
- walking use-case scenarios through the requirements to
validate completeness;
- building screen prototypes to validate the completeness;
- creating cause-effect graphs from the functional requirements
to validate that the precedence rules are clear;
- doing a peer review with domain experts to validate
completeness and accuracy;
- doing a logical consistency check of the rules via a CASE
tool; and
- reviewing the test cases designed from the functional
requirements with developers and end user / customers to
validate the completeness and accuracy of the specifications
from which they were derived.

|___|

__
| |

Examples of testing tools include:
- test case design tools,
- test data generators,
- capture/playback tools,
- test drivers,
- test coverage monitors,
- test results compare utilities,
- memory leak detection tools,
- debuggers, and
- defect tracking tools.

|___|

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 24

6. Determine the stages (sometimes called levels) of testing and refine
the quantitative and qualitative test criteria into entry and exit criteria for
each phase of testing.

__
| |

Examples of stages of code based testing include:
- unit testing with primary emphasis on white box structural
testing, usually done by the coder;
- component testing with primary emphasis on black box
functional testing and inter-unit interface testing, with some initial
performance testing and initial usability testing;
- system testing with primary emphasis on inter-component
interface testing, full thread functional testing, full performance
testing, full usability testing, and full reliability/recoverability
testing;
- inter-system integration testing with primary emphasis on inter-
application interface testing and inter-application performance
testing; and
- acceptance testing (a.k.a. beta testing) with emphasis on final
validation of functional robustness, usability, and configuration
testing.

|___|

__
| |

An example of refining the success criteria by test stage is:
- the entry criteria into unit testing is a peer review of the code;
- the exit criteria from unit test is correct execution of 100% of
the code statements and branch vectors;
- the entry criteria into component test is 100% execution of the
揼o right” statements and branches,
- the exit criteria from component test is 100% execution of all
functional variations derived from the requirements specification.

Note that the entry criteria into component test is less stringent
than the exit criteria from unit test. This allows these activities to
overlap in a controlled manner.

|___|

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 25

7. For each deliverable, decompose it into units for evaluation and test
and determine the optimal sequence for evaluating/testing the units.

__
| |

For example, the unit testing of the code might be done in a
sequence which minimizes the need for building scaffolding code
to emulate interfaces to code not yet tested.

|___|

8. Define the methods and procedures for defect reporting and tracking
to be used by the project.

Activity 2 Reconcile the evaluation/test plan with the overall development
 plan.

1. Verify the evaluation and test resources and schedules against the
project schedules and constraints.

2. Reconcile the desired sequencing of units for evaluation and test
against the availability of those units as defined in the development plan.

3. Get concurrence on the defect reporting and tracking mechanism
from the developers.

Activity 3 Install the evaluation and testing infrastructure.

1. Acquire and install the testing tools needed for this project.

2. Acquire and install the test hardware and software configuration
required to create and execute the tests.

3. Train management and staff on the evaluation and testing methods
and tools to used.

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 26

Activity 4 Perform the evaluation/testing for each deliverable, for each
 characteristic, at the designated test stages.

1. Design the evaluation/test cases using the identified methods and
tools.

2. Physically implement the cases in their final 揺xecutable” form.

3. Perform the evaluation / Execute the test cases.

4. Verify the evaluation/test results against the expected results.

5. Verify that the evaluation/tests fully covered their target objectives.

6. Provide periodic reports as to the status of the evaluation/testing
effort against the test plan.

Activity 5 Defects detected are reported, tracked till closure, and analyzed for

trends according to the project抯 defined software process.

__
| |

Examples of the kinds of data to be collected include:
- defect description,
- defect category,
- severity of defect,
- units causing/containing the defect,
- units affected by the defect,
- activity where the defect was introduced (i.e., root cause),
- evaluation/test that identified the defect,
- description of the scenario being run that identified the defects,
and
- expected results and actual results that identified the defect.

|___|

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 27

Activity 6 Perform regression testing as needed.

1. Create regression test procedures and test libraries for use in
revalidating changes to deliverables.

2. Execute the regression test procedures and test libraries anytime
modifications are made to already tested deliverables.

Activity 7 Revise the evaluation and test plan as needed.

1. Review the effectiveness and efficiency of the evaluations and testing
to date and the defects reported to refine the evaluation and test plan as
needed.

4.5 Measurement And Analysis
__

Measurement 1 Measurements are made to determine the effectiveness of the

evaluations and testing.
__
| |

An example of the measurements include:
- the defect removal rate by phase (i.e., the portion of defects
removed in an evaluation/testing phase that were introduced in
the corresponding development phase).

|___|

Measurement 2 Measurements are made to determine the completeness of the
software evaluations and testing.
__
| |

Examples of the measurements include:
- using a functional coverage analyzer to determine what
percentage of the requirements have been validated;

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 28

- using code coverage monitors to determine what percentage
of the software statements and branches were executed by the
test cases.

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 29

Measurement 3 Measurements are made to determine the quality of the software

products.
__
| |

Examples of the measurements include:
- an analysis of the mean time to failure and the mean time to fix
by severity of defect;
- an analysis of the distribution of defects by unit;
- an analysis of the number and severity of the unresolved
defects; and
- an analysis of the closure rate for defects versus the rate new
ones are being reported.

|___|

4.6 Verifying Implementation
__

Verification 1 The activities for software testing are reviewed with senior

management on a periodic basis.
__
| |

Refer to Verification 1 of the Software Project Tracking and
Oversight key process area for practices covering the typical
content of senior management oversight reviews.

|___|

Verification 2 The activities for software testing are reviewed with the project
manager on both a periodic and event-driven basis.
__
| |

Refer to Verification 2 of the Software Project Tracking and
Oversight key process area for practices covering the typical
content of project management oversight reviews.

|___|

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 30

Verification 3 The software quality assurance group reviews and/or audits the

activities and work products for software evaluation and testing and
reports the results.
__
| |

Refer to the Software Quality Assurance key process area.
|___|

At minimum, the reviews and/or audits verify that:

1. All parties are involved in the definition of the software evaluation and
test approach and are committed to implementing it.

2. The test criteria and test methods are appropriate in light of the
defect impact risk assessment.

3. The software project deliverables are testable as defined by the
project抯 standards.

4. The entry and exit criteria for each stage of evaluation and test is
being adhered to.

5. The evaluation/testing of all of the software project deliverables is
performed according to documented plans and procedures.

6. Evaluations and tests are satisfactorily completed and recorded.

7. Problems and defects detected are documented, tracked, and
addressed.

8. The test cases are traceable to the software products they test.

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 31

5. RECONCILING WITH THE EXISTING CMM KPA抯

The CMM has been in use for a number of years now in a growing number of organizations.
This makes modifying it problematic. If it changes too drastically, what does that do to all of the
organizations which have achieved certain certification levels based on the prior version? How
do modifications to the CMM affect process improvement efforts already underway? In this
section we will deal with two topics. The first is leveling the Software Evaluation and Test KPA
into the overall CMM. The second is some repackaging suggestions to ease adding the
additional KPA without passing a pain threshold of having too many KPA抯.

5.1 Leveling The Evaluation And Testing KPA Within The CMM

Currently, testing is part of the Software Product Engineering KPA which is at Level 3.
However, many of the Level 2 KPA抯 are dependent on having a disciplined approach to
evaluation and test in place. As stated in the justification section it is difficult to solve problems
until those problems are well understood. Evaluation and test helps provide this insight. It is, in
fact, one of the key drivers of cultural change that positions an organization to aggressively
address many of the other KPA抯.

The CMM recognizes the criticality of good requirements to the whole process. The
Requirements Management KPA is appropriately KPA number 1. However, experience over
the last two decades has shown it is difficult to get really good requirements without
concurrently installing requirements based evaluation and testing. This provides the necessary
tight feedback loop on the quality of the requirements as they are being written.

The Software Project Tracking and Oversight KPA, another Level 2 item, also requires the
Evaluation and Testing KPA. Tracking involves determining what tasks are actually completed
versus what was planned to be completed. However, without verifying that the tasks have met
their completion criteria you really do not know that the tasks are truly completed.

The Software Subcontract Management KPA, a Level 2 KPA, also requires the Software
Evaluation and Testing KPA to unambiguously define the success criteria contractually and to
verify that that criteria has been met. All of the legal disputes that I have testified in as an expert
witness were the result of not having formal evaluation and test defined and executed.

Given the above, the recommendation is made that the Software Evaluation and Test KPA be
made a Level 2 KPA.

Proposed Software Evaluation & Test KPA - Bender & Associates

Copyright 1995, 1996 - Bender & Associates Inc. 32

5.2 Repackaging Suggestions For The Existing KPA抯

The most obvious re-packaging is splitting the Software Product Engineering KPA into two
KPA抯 : Software Evaluation and Test and Software Product Engineering with a reduced
scope. The name of the latter should probably stay the same unless the new scope causes
confusion.

The Peer Reviews KPA should be subsumed into the Evaluation and Testing KPA. As
discussed, peer reviews are just one means of performing an evaluation. Separating out a single
evaluation technique and making it a full KPA is a bit disproportionate. However, as an
admitted testing bigot, I would not argue very hard against keeping it. It adds emphasis to the
overall importance of evaluation and test.

Some have suggested that the Software Evaluation and Test KPA itself could be split into an
Evaluation KPA and a Testing KPA. My own feeling is the process loses some continuity if
that is done. However, it is not something I would argue too vehemently about.

In order to keep the number of KPA抯 down, I would suggest that the Software Project
Planning and Software Project Tracking and Oversight KPA抯 be merged into one KPA.
These are very tightly coupled activities. Xerox, for example, is treating them as essentially one
item to install in their CMM activities. I cannot believe they are alone in this view. While this
does not have anything directly to do with testing, it does help make room for a Software
Testing KPA.

