SElI /CMM
Proposed Softwar e Evaluation
And Test KPA

Richard Bender

Bender & Associates |nc.
46 Digitd Drive, Suite 5

Novato, CA 94949

(415) 884-4380

(415) 884-4384 fax

rbender @softtest.com

April 1996

Proposed Software Evaluation & Test KPA - Bender & Associates

(Revison #4)

Copyright 1995, 1996 - Bender & Associates Inc.

Proposed Software Evaluation & Test KPA - Bender & Associates

KPA REVIEW GROUP

The following have been gracious enough to be reviewers of this proposed Testing KPA. |
want to thank them for their insghts and contributions. However, any problems or omissons
the reader may find with this document | take full responghility for. Thisisvery much awork in
progress. Please fed free to contact me with suggestions for improving it.

Boris Beizer - Independent testing consultant
Greg Daich - STSC

Dave Gdperin - SQE

Bill Hetzd - SQE

CapersJones - SPR

John Musa- ATT

William Perry - QAI

Robert Poston - IDE

The origind version of the Evauation and Testing KPA was sponsored by Xerox Corporation.
They have gracioudy alowed usto digribute it to the software community. The key contact is.

David Egerton

800 Phillips Road
Building 129
Webster, NY 14580
(716) 422-8822

Copyright 1995, 1996 - Bender & Associates Inc. 2

Proposed Software Evaluation & Test KPA - Bender & Associates

TABLE OF CONTENTS
L INTRODUCTION ...ttt bbb bbb bbb bbb bbb bbb bbb 4
2. DEFINING EVALUATION AND TEST ..ot sssss s ssssesssssssssssesessssssssesessssenes 5
3. THE JUSTIHCATION FOR A SEPARATE EVALUATION AND TEST KPA ..o 8
31 A CCELERATING GQULTURAL GHANGEoutueueiererreresesesessesesesessssesesesesssssssesessssssesessssssssssssssssssessssassssesssssnssesssssases 8
32THE ROLE OF EVALUATION AND TEST IN PROJECT TRACKING.....c.citetreeeetressiresesessessiessesssesseasssessssssessesseeas 10
3.3EVALUATION AND TEST ASA PERCENTAGE OF THE PROJECT COSTS....c.cccuerereuerrenieeereeneeseneaesnens WAl
34IMPACT OF EVALUATION AND TEST ON DEVELOPMENT SCHEDULES AND PROJECT COSTS.... A1
S5 THE COST OF DEFECTS....cutuetriteeeseseeessessssesesessestssssssessssssessssssssstssssssssssssassessssssessssesssssssssssssesssssassssessssssessssssessnns 12
4. THE PROPOSED SOFTWARE EVALUATION AND TEST KPA......coiientssesieeesseee s 15
L 0 Y I O
42COMMITMENT TO PERFORMotuttiieeriitisesisssssstasssesese sttt st sssss st sssssssssssssessssssssssesnes
43ABILITY TOPERFORM ..o
44ACTIVITIES PERFORMED........cccniunne.
4.5M EASUREMENT AND ANALYSIS
4.6VERIFYING IMPLEMENTATION w.ettieeieueretesseseseseesesese s ssesesesesssssssesesessssssesesssssssssesessssssesensasssssssssnsssssnssssensassennns
5. RECONCILINGWITH THE EXISTING CMM KPA e enennns 31
5.1LEVELING THE EVALUATION AND TESTING KPA WITHIN THE CMM ..o 31
52REPACKAGING SUGGESTIONS FOR THE EXISTING KPA . 32

Copyright 1995, 1996 - Bender & Associates Inc. 3

Proposed Software Evaluation & Test KPA - Bender & Associates

1. INTRODUCTION

The objective of this document is to present a proposa that Evaluation and Test become aKey
Process Area (KPA) in the SEI Capability Maturity Mode (CMM). The first section addresses
the scope of what is meant by evaduation and tet. The second section identifies the
judtifications for making this a separate KPA. The third section presents the proposed KPA
definition induding: definition, gods, commitment to peform, activities performed,
measurements and andyss, and verifying implementation. The find section addresses
integrating this KPA with the existing KPA . This indudes identifying which leve to assgn it
to and some repackaging suggestions for existing KPA

Copyright 1995, 1996 - Bender & Associates Inc. 4

Proposed Software Evaluation & Test KPA - Bender & Associates

2. DEFINING EVALUATION AND TEST

Evduation is the activity of verifying the various system specifications and modds produced
during the software development process. Testing is the machine based activity of executing
and vdidating tests againgt the code. Mogt software organizations define evauation and test
very narowly. They useit to refer to just the activities of executing physicd test cases againg
the code. In fact, many companies do not even assgn testers to a project until coding is well
under way. They further narrow the scope of this activity to just function testing and maybe
performance testing.

Thisview is underscored in the description of evaluation and test in the current CMM. It is part
of the Software Product Engineering KPA. The activities in this KPA, activities 5, 6, and 7,
only use code based testing for examples and only explicitly mention function testing. Other
types of testing are euphemistically referenced by the phrase “...ensure the software satisfies the
software requirements’.

People who build skyscrapers, on the other hand, thoroughly integrate evauation and test into
the development process long before the first brick islaid. Evauations are done via models to
verify such things as sability, water pressure, lighting layouts, power requirements, etc. The
software evauation and test gpproach used by many organizations is equivadent to an architect
waiting until a building is built before testing it and then only testing it to ensure that the plumbing
and lighting work.

The CMM further compounds the limited view of evauation and test by making a particular
evaudion technique, peer reviews, itsown KPA. Thisimplies that prior to the delivery of code
the only evaduation going on is via peer reviews and that this is sufficient. The sepsin the
evduation and test of something are: define the completion/success criteria, design cases to
cover this criteria, build the cases, perform/execute the cases, verify the results, and verify that
everything has been covered. Peer reviews provide a means of executing a paper based test.
They do not inherently provide the success criteria nor do they provide any forma means for
defining the cases, if any, to be used in the peer review. They are dso fundamentaly subjective.
Therefore, the same misconceptions that lead a programmer to introduce a defect into the
product may cause them to miss the defect in the peer review.

A robust scope for evauation and test must encompass every project deliverable a each phase
in the development life cycle. 1t dso address each desired characteristic of each ddliverable. It
must address each of the evduation/testing steps. Let ook at two examples: evauating
requirements and evauating a design.

A requirements document should be complete, consstent, correct, and unambiguous. One step
is to vaidate the requirements againg the project/product objectives (i.e., the statement of

Copyright 1995, 1996 - Bender & Associates Inc. 5

Proposed Software Evaluation & Test KPA - Bender & Associates

hy” the project is being done). This ensures that the right set of functions are being defined.
Another evauation is to walk use-case scenarios through the functiond rules, preferably aided
by screen prototypes if appropriate. A third evauation is a peer review of the document by
domain experts. A fourth is to do a forma ambiguity review by non-domain experts. (They
cannot read into the document assumed functional knowledge. It helps ensure that the rules are
defined explicitly, not implicitly.) A fifth evduation is to trandate the requirements into a
Boolean graph. This identifies issues concerning the precedence relationships between the rules
aswell asmissing cases. A sxthisalogicad congstency check with the aid of CASE tools. A
seventh is the review, by domain experts, of the test scripts derived from the requirements. This

itee5ze’ review of the rules often uncovers functionad defects missed in reviewing the
requirements as awhole.

Evauating a desgn can dso take a number of tacks. One is waking tests derived from the
requirements through the desgn documents. Another is building a modd to verify desgn
integrity (e.g., amode built of the resource dlocation scheme for an operating system to ensure
that deadlock never occurs). A third is building a model to verify performance characteristics.
A fourth is comparing the proposed design @jaingt existing systems a other companies to
ensure that the expected transaction volumes and data volumes can be handled via the
configuration proposed in the design.

Only some of the above evaluations were executed via peer reviews. None of the above were
code based. Neither of the above examples of evauation was exhaudtive. There are other
evauaions of requirements and designs that can be gpplied as necessary. The key point is that
a deliverable has been produced (e.g., a requirements document); before we can say it is now
complete and ready for use in the next development step we need to evduate it for the
desired/expected characterigtics. Doing this requires more sophistication than just doing peer
reviews.

That is the essence of evaluation and test. A pre-defined set of characterigtics, defined as
explicitly as possible, is vdidated againgt a deliverable. For example, when you were in school
and took a math test the instructor compared your answers to the expected answers. The
indructor did not just say they look reasonable or they e close enough. The answer was
supposed to be 9.87652. Either it was or it was not. Also, the instructor did not wait until the
end of the semegter to review papers handed in early in the course. They were tested as they
were produced. With the stakes so much higher in software development, can we be any less
rigorous and timdy?

Among the items which should be evauated and tested are Requirements Specifications, Design
Specifications, Data Converson Specifications and Daa Converson code, Traning
Specifications and Training Materids, Hardware/Software Ingtdlation Specifications, Facilities
Ingdlation Specifications, Problem Management Support System Specifications, Product
Didtribution Support Systemn Specifications, User Manuds, and the application code. Again this

Copyright 1995, 1996 - Bender & Associates Inc. 6

Proposed Software Evaluation & Test KPA - Bender & Associates

isnot acompletelig. Theissueisthat every ddiverable caled for in your project life cycle must
betested.

The evduaion and test of a given ddiverable may span mulltiple phases of the project life cycle.
More and more software organizations are moving away from the waterfdl modd of the life
cycle to an iterative gpproach. For example, a Design Specification might be produced via
three iterations. The firg iteration defines the architecture - is it manua or automated, is it
centralized or distributed, isit on-line or baich, is it flat files or a relationa data base, etc. The
second iteration might push the design down to identifying dl of the modules and the inter-
module data path mechanisms. The third iteration might define the intra module pseudo-code.
Each of these iterations would be evaluated for the appropriate characteritics.

The types of evduation and tes must be robust. This includes, but is not limited to, verifying
functiondity, peformance, rdiability-avalability-servicesbility, usability, portability,
mantainebility, and extendibility.

In summary, each ddliverable a each phase in its development should be evauated/tested for
the appropriate characteridtics via formd, disciplined techniques.

Copyright 1995, 1996 - Bender & Associates Inc. 7

Proposed Software Evaluation & Test KPA - Bender & Associates

3. THE JUSTIFICATION FOR A SEPARATE EVALUATION AND
TEST KPA

There are five dgnificant reasons which jugtify having a separate Evaduation and Test KPA:
evduaion and te role in accderating the cultura change towards a disciplined software
engineering process, the role of evaluation and test in project tracking, the portion of the
development and maintenance budget spent on evaduation and te<t, the impact of evaluation and
test disciplines on the time and costs to ddiver software, and the impact of resdua defects in
software.

3.1 Accderating Cultural Change

Electricd engineers and congtruction engineers are far more disciplined than software engineers.
Electrica engineers produce large scale integrated circuits a near zero defect even though they
contain millions of trangstors. What is often logt in the widdy discussed defect in the Pentium
processor is that it was one defect in 3,100,000 transstors. When was the last time you saw
software which had only one defect in 3,200,000 lines of code? The hardware engineers do
not achieve better results because they are smarter than the software engineers. They achieve
quality levels orders of magnitude higher than software because they are more disciplined and
rigorous in their development and testing approach. They are willing to invest the time and effort
required to ensure the integrity of their products. They recognize the impact that defects have,
economic and otherwise.

Congruction engineers face smilar challenges in congtructing sky scrapers. In their world a
ystem crash” means the building collgpsed. In regions of the world which have and enforce
drict building codes that just does not happen. Again, this can be traced to the discipline of
their development and testing approach.

Software, on the other hand, is a different matter. Gerdd Weinberg datement that f

builders built buildings the way software people build software, the first woodpecker that came
aong would destroy avilization” is on the mark.

We have to recognize that the software industry is very young as compared to other engineering
professons. You might say that it is fifty years old, if you start with Grace Hopper as the firgt
programmer. (A bit older if you count Ada Lovelace as the first.) However, a more redigtic
darting date is about 1960. That isjust over thirty five years. By contrast, the IEEE celebrated
their 100th anniversary in 1984. That means that in 1884 there were enough electrical enginears
around to form a professiona society. In 1945, by contrast, Ms. Hopper would have been
very lonely at a gathering of software engineers.

Copyright 1995, 1996 - Bender & Associates Inc. 8

Proposed Software Evaluation & Test KPA - Bender & Associates

As a further contrast congtruction engineering goes back over 5000 years. The initia
moativetion for cregting nations was not sdf defense; it was the necessty to manage large
irrigation congruction projects. We even know the names of some of these engineers. For
example, in 2650 BC Imhotep is the chief engineer for the step pyramid of Djoser (eka Zoser)
in Egypt. Infact he did such agood job they made him a god.

The dectricd enginears and congtruction engineers did not start out with inherently disciplined
approaches to their jobs. The discipline evolved over many years. It evolved asthey cameto
understand the need for discipline and the implications of defects in their work products.
Unfortunatdly, we do not have thousands of years or even a hundred years to evolve the
software professon. We are dready building business critica and safety criticd software
sysems. Failures in this software is causng mgor business disruptions and even deaths a an
darmingly increesing rate. (See isk To The Public’ by Peter Neumann.)

Moving the software industry from a craftsman approach to a true engineering level of discipline
is a mgor culturd shift. The objective of the CMM s firs and foremost, a mechanism for
inducing this cultural change for software engineers. However, a culture does not change
voluntarily unlessit understands the necessity for change. 1t must fully understand the problems
being solved by evolving to the new culturd paradigm.! This, findly, brings us to the role of
testing in accelerating the cultura change to a disciplined gpproach (I know you were beginning
to wonder when | would tie this together).

In the late 1960 , IBM was one of the fird mgor organizaions to begin indaling forma
software engineering techniques. This began with the use of the techniques espoused by Edsger
Dijkstra and others. Ironically, it was not the software developers who initiated this effort. It
was the software testers. The initid efforts were started in the Poughkeepsie labs under a
project cdled esgnfor Testability” headed by Philip Carol.

Phil was a system tester in the Software Test Technology Group. This group was responsible
for defining the software testing techniques and tools to be used across the entire corporation.
Nearly thirty years ago they began to redlize that you could not test qudity into the code. You
needed to address the anadyss, design, and coding processes as well as the testing process.
They achieved this ingght because as testers they thoroughly understood the problem since
testing touches dl aspects of software development. Testers inherently look for what is wrong
and try to understand why.

It was this understanding of the problem and the ability to articulate the problem to developers
that alowed for a rapid change in the culture. As improved development and test techniques

! My degree is in mathematics, however, my minors were archaeology and anthropology. | have always
found these far more useful than math in helping organizations install software engineering disciplines and
tools.

Copyright 1995, 1996 - Bender & Associates Inc. 9

Proposed Software Evaluation & Test KPA - Bender & Associates

and toolswere ingtaled, the defect ratein IBM OS operating system dropped by a factor of
ten in just one rdease. Thisis a mgor culturd shift occurring in a very short time, especidly
given that it involved thousands of developersin multiple locations.

The rapidity of the change was aided by another factor related to testing in addition to the
problem recognition. This was the focused feedback loop inherent in integrating the testing
process with the development process. As the development process was refined, the evauation
and test process was concurrently refined to reflect the new success criteria. As developers
tried new techniques they got immediate feedback from testers as to how well they did because
the testers were specificaly validating the deliverables againg the new yardstick.

A specific example is the ingdlation of improved techniques for writing requirements which are
unambiguous, determinidtic, logicaly consstent, complete, and correct. Andysts are taught how
to write better requirements in courses on Structured Analysis and courses in Object-Oriented
Andyss. If ambiguity reviews are done immediately after they write up their firg functiond

descriptions, the next function they write is much clearer out of the box. The tight feedback
loop of write afunction, evauate the function, accderates their learning curve. Fairly quickly the
process moves from defect detection to defect prevention - they are writing clear, unambiguous
specifications.

Contrast this to the experience of the software industry as a whole. The structured techniques
and the object oriented techniques have been available for over twenty-five years (yes, O-O is
that old). Yet the dtate of the practice is far behind the state of the at. The issue is an

organization does not fully accept nor understand a solution (e.g., the software engineering tools
and techniques) unless it understands the problem being solved. Integrated evaluation and test
is the key to problem comprehension. ntegrated evauation and test” & defined here as
integrating testing into every step in the software development process. It is thus the key to the
necessary feedback loops required to master a technique. Any process without tight feedback
loopsis afadly flawed process. Evauation and test is then the key to accderating the cultura

change.

3.2 TheRole Of Evaluation And Test In Project Tracking

A project plan consgs of tasks, dependencies, resources, schedules, budgets, and
assumptions. Each task should result in awell defined deliverable. That deliverable needsto be
verified that it is truly complete. If you do not evauateltest the task deliverables for
completeness you cannot accurately track the true status of the project.

For example, Requirements Specifications aways seem to be on€’ on schedule. Thisis

because many organizations do not formaly evaduate the Requirements Specification. Later in
the project they find themselves completing the definition of the requirements during design,

Copyright 1995, 1996 - Bender & Associates Inc. 10

Proposed Software Evaluation & Test KPA - Bender & Associates

coding, tegting, and even production. What, therefore, did it really mean to say that the task of
writing the requirements was completed?

Incomplete ompleted” tasks can dso have a ripple effect on the completion status of
subsequent tasks. I the above scenario, what is the impact of finding a requirements deficiency
during code based testing? The ompleted” Requirements Specification must be revised. The

ompleted” Design Specification must be revised. The ompleted” code must be revised.
The ompleted” User Manuds must berevised. The ompleted” Training Materias must be
revised. The ompleted” test cases must be revised.

The objective of project tracking is to give management and the project team a clear
understanding of where the project stands. Without eva uation/testing integrated into every step
in the project you can never be sure of what isand is not redly completed. Given that Software
Project Tracking and Oversight is a KPA and it depends on evauation and test to perform the
tracking, then evauation and test asaKPA is a necessary preceding activity.

3.3 Evaluation and Test As A Percentage Of The Project Costs

A mgor pragmatic factor in determining what should and should not be a separate KPA iswhat
portion of the software development budget and staff are involved in the activity. The more
sgnificant the activity is in these terms the more focus it should receive.

There have been numerous studies documenting how project codts are dlocated across the
various activities. In these sudies just the code based testing accounts for 35% to 50% of the
project costs. This is true for both software development and for software maintenance.
Factor in the effort to perform evauations and this number is higher.

Organizations using any leve of discipline in their testing have a tester to developer ratio of a
leest 1:3. More and more software vendors are moving to a 1.1 ratio. At times the NASA
Space Shuttle project has had aratio of 3:1 and even 5:1!

Smply put, any activity which consumes a third to a haf of the budget and a fourth to a haf of
the resources should definitely be addressed by its own KPA.

3.4 Impact Of Evaluation and Test On Development Schedules And Project Costs

Numerous studies show that the mgority of defects have their root cause in problems with the
requirements definition. In one study quoted by James Martin, over 50% of dl software defects

Copyright 1995, 1996 - Bender & Associates Inc. 11

Proposed Software Evaluation & Test KPA - Bender & Associates

are caused by incomplete, incorrect, inaccurate, and/or ambiguous requirements. Even more
telling isthat over 80% of the costs of defects have their rootsin requirements based errors.

Other studies show that the earlier you find a defect the cheaper it isto fix. A defect found in
production can cost 2,000 times more than the same defect found in an evaduation of the
requirements.

The issue is scrap and rework. This is the primary cause of cost and schedule overruns on
projects. The plan may have identified the initial set of tasks to be done. However, due to
defectsfound later, ompleted” tasks must now be redone. The e-do” task was not in the
origind plan. As the number of tasks requiring rework grows, the cost and schedule overruns
accumulate. Integrating evaluation and test throughout the project life cycle minimizes scrap and
rework, bringing the costs and schedules back under control.

Integrated evaluation and test can further shorten schedules by alowing for more concurrent
activities. When Requirements Specifications are not formaly evauated, the design and coding
activities often result in numerous dianges to the scope and definition of the functions being
delivered. For this reason, work does not start on the User Manuds and Training Materids
until code based testing is well underway. Until then no one is confident enough in the system
definition.

Smilarly, poorly defined requirements do not provide sufficient information from which to design
test scripts. The design and building of test cases often does not gart until coding is well
underway.

These two scenarios force the development process to be linear: requirements, then design, then
code, then test, then write manuads. If the Requirements Specification is written a a
determinigtic level of detall (i.e, given a st of inputs and an initid system state you should be
able to determine the exact outputs and the new system date by following the rules in the
specification), then test case design and the writing of the manuds can go on concurrently with
the system design. This in turn shortens the elgpsed time required to ddiver the system.
However, cresting deterministic specifications requires formal evauation of that specification.

In summary, integrated evaluation and test reduces schedules and project costs by minimizing
scrap and rework and alowing more activities to be performed concurrently. These types of
gains can not be accomplished without integrated evauation and test. Since time to market and
cost to market are key issues for any software organization and testing is the key to achieving
improvements in this area, then evauation and test should be aKPA.

3.5 TheCost Of Defects

Copyright 1995, 1996 - Bender & Associates Inc. 12

Proposed Software Evaluation & Test KPA - Bender & Associates

The cogt of defects is risng a an exponentid rate. This has two causes. The fird is that our
dependence on software is greater than ever. When it fails its impact is proportionate to that
dependence. The second cause is litigation. There is a Sgnificant increase in the number of
lawsuits concerning software quality. These are usudly multi-million dollar exercises

The support costs for software vendors is a growing concern. Microsoft ieceives amost
25,000 calls per day at an average cost per call somewhere between $50 to $100. This
number is pre-Windows 95 which was expected to increase the volume by 4X. Sending out
incrementa bug fix releases dso cogts millions of dollars for some vendors. You aso have to
factor in the costs for developers to fix the defects and the opportunity loss caused by efforts
going into fixing defects instead of creating new functiondity.

Quality and the lack thereof dso moves market share. Ashton Tate went from being the
industry leader in PC based data base software to being out of business due to large numbers of
defects in one release of their main product. Market share for dBase went from 90%+ to less
than 45%. Their acquisition by Borland did not stop the dide. Furthermore, only one year after
thelr acquistion only 2% of dl the people who had worked for Ashton-Tate till had jobs at
Borland.

The direct cogts of defects can be staggering for the end users of the software. Both United
Airlines and American Airlines esimate that they lose $20,000 a minute in unrecoverable
income when their reservation system goes down. A large manufacturer estimates they lose
$50,000 a minute when their assembly line goes down. A large credit card company estimates
they lose over a $160,000 a minute when their credit authorization systlem goes down. Million
dollar defects are now common place. For example, if GM has a defect in the firmware that
requires reloading the control program in an EPROM it could effect 2.5 million automobiles at
an average cost to GM of $100 per car. There has even been an instance of aBILLION dollar
loss due to asingle defect. It was caused by around off error.

Some estimates place the average cost of a severity one defect in production in the tens of
thousands and even the hundreds of thousands on some applications. You can do a lot of
evauation and test for a $100,000. You could add an additiond senior tester to the
organization and, counting their salary and overhead codts, the break even point occurs when
they find one or two defects that would have dipped through to production.

When you are dedling with safety critica systems how do you cost out the vaue of a human life?
There have been hundreds and hundreds of deaths due to software defects. With software
playing a bigger role in transportation and in the medica professon, the risk of degthsis rapidly
increesing.?

2 At the extreme, we came within moments of a full thermonuclear exchange with the Soviet Union because
of asoftware defect. The death toll would have been in the hundreds of millions.

Copyright 1995, 1996 - Bender & Associates Inc. 13

Proposed Software Evaluation & Test KPA - Bender & Associates

The legd professon is beginning to take note of these costs. Many fed we should be held to
the same standards as other engineering professions. This leads to the exposure of software
product liability and professona mapractice. The financia exposure in such suits is enormous.
To date the issue of setting legd precedents in this areais il in a gate of flux. However, the
trend is clear. Software professonas and their products will be held to the same standards of
care and professionals as other engineers and their products.

Currently, most of the lawsuits related to software qudity are being brought to court on the
grounds of breach of contract. We (Bender & Associates) have been involved in a number of
these as expert witnesses. We have never lost acase. Thisis because in each instance we have
been on the sde of the user of the software, not the producer.

Few software vendors can demondrate that they have applied a reasonable level of due
diligence in the evauation and tes of their software. The emphasisin most vendors is on dates
and functiondity, not qudity. The result is that in haf of the cases we have tedtified in the
vendor has gone out of business as a direct result of the cost of litigation and the cost of the
award to the customer.

If the CMM was addressing the medica profession, there is no doubt that the avoidance of
malpractice suits would be a KPA. Wil this issue is now on our doorsteps as software
professonds. It requires a disciplined gpproach to evduation and tes to minimize this

exposure.

The net is that the direct and indirect cost of defects is aready huge and risng dramaticaly.
Defect detection and defect avoidance require fully integrated evaluation and test. Thisadoneis
aufficient to justify an evaluation and test KPA.

Copyright 1995, 1996 - Bender & Associates Inc. 14

Proposed Software Evaluation & Test KPA - Bender & Associates

4. THE PROPOSED SOFTWARE EVALUATION AND TEST KPA

Evduation isthe activity of ensuring the integrity of the various system specifications and modds
produced during the software development process. Testing is the machine based activity of
executing tests againgt the code. The purpose of Software Evauation and Test is to validate
(i.e, is this what we want) and verify (i.e, is this correct) each of the software project
deliverables, identifying any defectsin those ddiverable in atimey manner.

Software Evauation and Test involves identifying the ddiverables to be evauated/tested,
determining the types of evauationstests to be performed; defining the success criteria for each
evauation/test; designing, building, and executing the necessary evauations/tests; verifying the
evauation/test results; verifying that the set of tests fully cover the defined evauation/test criteria;
creating and executing regression libraries to re-verify ddiverables that have been modified; and
logging, reporting, and tracking defects identified.

The initid deliverable to be evauated is the software requirements. Subsequently, the mgority
of the evaluation and test is based on the vaidated software requirements.

The software evaluation and test may be performed by the software engineering group and/or
an independent test organization(s), plus the end user and/or their representatives.

4.1 Goals

God 1 Quantitative and qualitative evauation/test criteria are established
for each of the software project deliverables.

God 2 Evauationgtests are executed in atimey manner to verify that the
success criteria has been met.

God 3 Evduation/teging is sufficiently effective to minimize the impact

of defects such as scrap and rework during development and
operationd disruptions after implementation.

God 4 Defects and other variances identified are logged and tracked
through to their successful closure.

Copyright 1995, 1996 - Bender & Associates Inc. 15

Proposed Software Evaluation & Test KPA - Bender & Associates

4.2 Commitment To Perform

Commitment 1 The project follows awritten organizationa policy for
evauding/testing the software project ddiverables.

Thispalicy typicaly specifies
1. The organization identifies a dandard set of software project

deliverables to be evauated/tested, the characteritics to be
evauated/tested, and the levds of verification criteriato be consdered.

|
Examples of deliverablesto be evaluated andtested indude:

- requirements specifications,

- design specifications,

- user manuds,

- training maerids,

- data conversion specifications and support systems, ad
- code.

Examples of characterigtics to evauate'test for are:
- functiond integrity,

- performance, and

- ussbility.

| |
Examples of levels of verification criteria are (using code based

testing as the example):

- 100% of dl statements and branch vectors;

- 100% of al predicate conditions,

- 100% of al first order smple set-use data flows; and
- 100% of al first order compound set- use data flows.

Copyright 1995, 1996 - Bender & Associates Inc. 16

Proposed Software Evaluation & Test KPA - Bender & Associates

Examples of levels of verification criteriaare (usng requirements
based testing as the example):
- 100% of dl equivalence classes,
- 100% of al functiond variations, and
- 100% of dl functiond variations, sendtized to guarantee the
observability of defects.

|

2. The organization has a andard set of methods and tools for use in
evauation/testing and defect tracking.

3. Each project identifies the deliverables to be evauated/tested, the
phas(s) in which they will be evduaeditested, and how they will be
evauated/tested in each phase.

4. Evauations and tests are performed by trained testers.
5. Evauations and testing focuses on the software project deliverables

and not on the producer.

Commitment 2 Senior Management supports and enforces that projects must meet
their pre-defined success criteria before ingtdlation into production in
the userscustomers environment.

1. Senior management reviews and gpproves the overal evauation and
testing objectives for the software system.

2. Senior management reviews and approves that the system has met
thet criteria prior to ingtalation.

I
Author note One of the biggest enemies of qudity is

unreasonable schedules. If the team is going to measured solely
on just meeting dates, then the test plan will be bypassed.
Management must measure functionality, resources, schedules,
and qudity in determining aproject success, not just dates.

|

Copyright 1995, 1996 - Bender & Associates Inc. 17

Proposed Software Evaluation & Test KPA - Bender & Associates

4.3 Ability To Perform

Ability 1 Adeguate resources and funding are provided for planning and
executing the evauation and testing tasks.

1. Sufficient numbers of killed individuas are available for performing
the evauation and testing activities, including:

- overdl evdudion/test planning,

- evauation/test coordination,

- evauation/test case design,

- evauation/test case implementation,

- evauation/test execution,

- evaluation/test results verification,

- evauation/test coverage analysis, and

- defect logging and tracking.

2. Tools to support the testing effort are made available, including:
- test case design toals,
- test data generators,
- test drivers, and
- test coverage monitors.

3. A test environment configuration is made available, including:
- hardware and software, dedicated to the testers, which
mirrors the intended production configuration.

Ability 2 Members of the software testing aff receive required training to
perform their technicd assgnments.

Examples of training for evaluation and test include:

- evduation and test planning;

- criteriafor evaluation/test readiness and completion;
- use of the evauation/testing methods and tools, and

- performing peer reviews.

Copyright 1995, 1996 - Bender & Associates Inc. 18

Ability 3

Ability 4

Ability 5

Proposed Software Evaluation & Test KPA - Bender & Associates

Members of the software engineering staff whose deliverables will

be evauated and tested receive training on how to produce testable
deliverables and orientation on the overdl evdudion and testing
disciplines to be gpplied to the project.

Refer to Ability 5 for an example of atestable deiverable.

The project manager and dl of the software managers receive
orientation in the technical aspects of the evauation/testing criteria and
disciplines to be gpplied to the project.

Examples of orientation include:

- the evauation/testing methods and tools to be used;

- the entry and exit criteria for the various levels of
evaudion/testing; and

- the defect resolution process.

The software engineers produce testable ddliverables.

An example of a testable ddiverable would be a requirements
specification that had the following characteridtics:

- the functiond rules are written a a determinitic level d detall
(i.e, given a st of inputs and an initid sysem date you should
be able to follows the rules in the specification and determine
the outputs and the find system date);

- the specification is non-redundant;

- the specification is unambiguous, and

- the various requirements follow a consstent sandard (e.g.,
dandards for user interface definitions are followed which
define function keys intrascreen navigdtion, inter-screen
navigetion).

Copyright 1995, 1996 - Bender & Associates Inc. 19

Proposed Software Evaluation & Test KPA - Bender & Associates

4.4 Activities Performed

Activity 1 The overdl evauation and testing effort is planned and the plans
are documented.

Thexe plans
1. Identify the risks and exposures if defects propagate through the

various project phases and into production. This information is used to
determine how much evauation and testing needs to be done.

|
Examples of risks to be evaluated are:

- the potentid scrap and rework and resulting cost and schedule
overruns which might be caused by defects in the requirements
specifications;

- the potentid cost per unit of time for sysem down time in
production;

- the potentid cost to customers and end users of inaccurate
processing; and

- the potentid risk to human livesin safety critica gpplications.

Note: The premise here isthat testing is essentidly an insurance
policy. The overdl evduation and test drategy and its
associated cogts should be proportiond to the potentia bottom
line risks which defects could cause.

Copyright 1995, 1996 - Bender & Associates Inc. 20

Proposed Software Evaluation & Test KPA - Bender & Associates

2. |dentify the software project deliverables to be eva uated/tested.

I
Examples of <oftware project ddiverables to be
evauated/tested are:
- requirements specifications;
- design specifications,
- code;
- user manuds and built in help facilities,
- training manuass, courseware, and training support systems,
- data converson procedures and data converson support
systems;
- hardware/software indallation procedures and support
systems;
- production cutover procedures and support systems (eg.,
code that creates a temporary bridge between an existing
system and its replacement, alowing some Stes to run on the
old and some on the new until full cutover is complete).
- production problem management procedures and support
systems (e.g., the production help desk).
- product distribution procedures and support systems (i.e,, the
mechanisms for didributing updates and new releases,
especidly to widdy distributed end users).
- publications procedures and support systems (eg., the
mechaniams for physcaly publishing dl of the copies of the
manuals needed to support the system in production).

|

3. For eaxch ddiverable to be evauateditested determine the
characteristics to be tested.

Copyright 1995, 1996 - Bender & Associates Inc. 21

Proposed Software Evaluation & Test KPA - Bender & Associates

Examples of characterigtics to be eva uated/tested are:
- functiond integrity;
- performance;
- usability;
- reliability, avalahility, serviceshility,
- portability (i.e., can this one code line be easly ported from
one platform to another);
- mantanadlity (i.e, can fixes and minor incrementd
improvements be easly made); and
- extendibility (i.e., can mgor additions be made to the system
without causing amgor rewrite).
|

4. Determine the quditative and quantitative success criteria for each
ddiverable and each characteristic evaluated and tested for the
deliverable.

An example of the functiona test criteriafor code could be:
- the code is tested to verify that 100% of al functiond
vaiations derived from the requirements, fully sendtized for the
observability of defects, have been run successfully; and
- 100% of the code datements and branch vectors have
been executed.

|

Copyright 1995, 1996 - Bender & Associates Inc. 22

Proposed Software Evaluation & Test KPA - Bender & Associates

5. Determine the methods and tools required to evduate/test each
deliverable for each of its desired characterigtics.

| |
An example of evauding a requirements specifications might
involve:
- performing an ambiguity review;
- waking use-case scenarios through the requirements to
vaidate completeness,
- building screen prototypes to vaidate the completeness,
- creating cause-effect graphs from the functiond requirements
to validate that the precedence rules are clear;
- doing a peer review with doman experts to vdidate
completeness and accuracy;
- doing a logica consgtency check of the rules via a CASE
tool; and
- reviewing the test cases desgned from the functiond
requirements with developers and end user / customers to
vaidate the completeness and accuracy of the specifications
from which they were derived.

|

Examples of testing tools include:
- test case design toals,

- test data generators,

- capture/playback tools,

- test drivers,

- test coverage monitors,

- test results compare utilities,

- memory lesk detection tools,

- debuggers, and

- defect tracking tools.

Copyright 1995, 1996 - Bender & Associates Inc. 23

Proposed Software Evaluation & Test KPA - Bender & Associates

6. Determine the stages (sometimes called levels) of testing and refine
the quantitative and quditative test criteriainto entry and exit criteriafor
each phase of testing.

I
Examples of stages of code based testing include:

- unit testing with primary emphasis on white box dructurd
testing, usudly done by the coder;
- component testing with primary emphass on black box
functiond testing and inter- unit interface tesing, with some initia
performance testing and initid usability testing;
- sysem tesing with primary emphass on inter-component
interface testing, full thread functiond tegting, full performance
tesing, full usability testing, and full rdigbility/recoverability
tedting;
- inter-system integration testing with primary emphasis on inter-
goplication interface testing and inter-gpplication performance
testing; and
- acceptance testing (ak.a beta testing) with emphasis on find
vdidation of functiona robustness, usability, and configuration
tegting.

|

An example of refining the success criteria by test Sageis

- the entry criteriainto unit testing is a peer review of the code;

- the exit criteria from unit test is correct execution of 100% of

the code statements and branch vectors;

- the entry criteriainto component test is 100% execution of the
o right” statements and branches,

- the exit criteria from component test is 100% execution of al

functiond variations derived from the requirements specification.

Note that the entry criteria into component test is less stringent
than the exit criteriafrom unit test. Thisdlowsthese activitiesto
overlgp in a controlled manner.

I

Copyright 1995, 1996 - Bender & Associates Inc. 24

Activity 2

Adtivity 3

Proposed Software Evaluation & Test KPA - Bender & Associates

plan.

7. For each deliverable, decompose it into units for evauation and test
and determine the optima sequence for evauating/testing the units.

I
For example, the unit testing of the code might be done in a
sequence which minimizes the need for building scaffolding code
to emulate interfaces to code not yet tested.

8. Define the methods and procedures for defect reporting and tracking
to be used by the project.

Reconcile the evduation/test plan with the overdl development
1. Veify the evauation and test resources and schedules againgt the
project schedules and congtraints.

2. Reconcile the desred sequencing of units for evaluaion and test
againg the availability of those units as defined in the devel opment plan.

3. Get concurrence on the defect reporting and tracking mechanism
from the developers.

Ingtal the evauation and testing infrastructure.
1. Acquire and ingtdl the testing tools needed for this project.

2. Acquire and inddl the test hardware and software configuration
required to create and execute the tests.

3. Train management and daff on the evauation and testing methods
and tools to used.

Copyright 1995, 1996 - Bender & Associates Inc. 25

Activity 4

Activity 5

Proposed Software Evaluation & Test KPA - Bender & Associates

Perform the eva uation/testing for each ddliverable, for each

characterigtic, at the designated test stages.

1. Dedgn the evauation/test cases usng the identified methods and
tools.

2. Physcdly implement the casesinthar find - xecutable” form.

3. Perform the evaluation / Execute the test cases.

4. Veify the evauation/test results againgt the expected results.,

5. Verify that the evauation/tests fully covered their target objectives.

6. Provide periodic reports as to the datus of the evauation/testing
effort againgt the test plan.

Defects detected are reported, tracked till closure, and analyzed for
trends according to the project defined software process.

Examples of the kinds of datato be collected include:
- defect description,
- defect category,
- Severity of defect,
- units causing/containing the defect,
- units affected by the defect,
- activity where the defect was introduced (i.e., root cause),
- evauation/test that identified the defect,
- description of the scenario being run that identified the defects,
and
- expected results and actua results that identified the defect.
|

Copyright 1995, 1996 - Bender & Associates Inc. 26

Proposed Software Evaluation & Test KPA - Bender & Associates

Activity 6 Perform regression testing as needed.

1. Create regresson test procedures and test libraries for use in
revaidating changesto ddiverables.

2. Execute the regression test procedures and test libraries anytime
modifications are made to aready tested ddliverables.

Activity 7 Revise the eva uation and test plan as needed.

1. Review the effectiveness and efficiency of the evauations and testing
to date and the defects reported to refine the evaluation and test plan as
needed.

4.5 Measurement And Analysis

Measurement 1 Measurements are made to determine the effectiveness of the
evauations and testing.

An example of the measurementsinclude;

- the defect removd rate by phase (i.e., the portion of defects
removed in an evauation/testing phase that were introduced in
the corresponding development phase).

Measurement 2 Measurements are made to determine the compl eteness of the
software evauations and testing.

Examples of the measurements include:
- udng a functiond coverage andyzer to determine what
percentage of the requirements have been vdidated;

Copyright 1995, 1996 - Bender & Associates Inc. 27

Proposed Software Evaluation & Test KPA - Bender & Associates

- using code coverage monitors to determine what percentage
of the software statements and branches were executed by the
test cases.

Copyright 1995, 1996 - Bender & Associates Inc. 28

Proposed Software Evaluation & Test KPA - Bender & Associates

Measurement 3Measurements are made to determine the qudity of the software
products.

Examples of the measurements include:
- an andysis of the mean time to failure and the mean time to fix
by severity of defect;
- an andlygs of the digribution of defects by unit;
- an andyss of the number and severity of the unresolved
defects; and
- an analysis of the closure rate for defects versus the rate new
ones are being reported.

I

4.6 Verifying Implementation

Verification 1 The activities for software testing are reviewed with senior
management on aperiodic basis.

I I
Refer to Veification 1 of the Software Project Tracking and

Oversight key process area for practices covering the typical
content of senior management oversght reviews.

Verification 2 The activities for software testing are reviewed with the project
manager on both a periodic and event-driven basis.

| |
Refer to Verification 2 of the Software Project Tracking and

Oversight key process area for practices covering the typica
content of project management oversight reviews.

Copyright 1995, 1996 - Bender & Associates Inc. 29

Proposed Software Evaluation & Test KPA - Bender & Associates

Veificaion 3 The software quality assurance group reviews and/or audits the
activities and work products for software evauaion and testing and
reportsthe results.

| |
Refer to the Software Quality Assurance key process area.

At minimum, the reviews and/or audits verify thet:

1. All parties are involved in the definition of the software evauation and
test gpproach and are committed to implementing it.

2. The tegt criteria and test methods are gppropriate in light of the
defect impact risk assessment.

3. The software project deliverables are testable as defined by the
project standards.

4. The entry and exit criteria for each stage of evdudion and test is
being adhered to.

5. The evauation/testing of dl of the software project ddiverables is
performed according to documented plans and procedures.

6. Evauations and tests are satisfactorily completed and recorded.

7. Problems and defects detected are documented, tracked, and
addressed.

8. Thetest cases are traceable to the software products they test.

Copyright 1995, 1996 - Bender & Associates Inc. 30

Proposed Software Evaluation & Test KPA - Bender & Associates

5. RECONCILING WITH THE EXISTING CMM KPA

The CMM has been in use for a number of years now in a growing number of organizations.
This makes modifying it problemdtic. If it changestoo dragticaly, what doesthat do to dl of the
organizations which have achieved certain certification levels based on the prior verson? How
do modifications to the CMM affect process improvement efforts aready underway? In this
section we will ded with two topics. The firg isleveling the Software Evauation and Test KPA
into the overdl CMM. The second is some repackaging suggestions to ease adding the
additional KPA without passing a pain threshold of having too many KPA

5.1 Leveling The Evaluation And Testing KPA Within The CMM

Currently, testing is part of the Software Product Engineering KPA which is a Levd 3.
However, many of the Level 2 KPA are dependent on having a disciplined approach to
evauation and test in place. As dated in the judtification section it is difficult to solve problems
until those problems are well understood. Evauation and test helps provide thisingght. Itis, in
fact, one of the key drivers of culturd change that positions an organization to aggressvely
address many of the other KPA

The CMM recognizes the criticality of good requirements to the whole process. The
Requirements Management KPA is gppropriately KPA number 1. However, experience over
the last two decades has shown it is difficult to get redly good requirements without
concurrently ingtaling requirements based evauation and testing. This provides the necessary
tight feedback loop on the qudity of the requirements as they are being written.

The Software Project Tracking and Oversight KPA, another Leve 2 item, aso requires the
Evauation and Tegting KPA. Tracking involves determining what tasks are actudly completed
versus what was planned to be completed. However, without verifying that the tasks have met
their completion criteriayou really do not know that the tasks are truly completed.

The Software Subcontract Management KPA, a Level 2 KPA, aso requires the Software
Evauation and Testing KPA to unambiguoudy define the success criteria contractualy and to
verify that that criteriahes been met. All of the legd disputesthat | have testified in as an expert
witness were the result of not having forma evauation and test defined and executed.

Given the above, the recommendation is made that the Software Evauation and Test KPA be
madealLevd 2 KPA.

Copyright 1995, 1996 - Bender & Associates Inc. 31

Proposed Software Evaluation & Test KPA - Bender & Associates

5.2 Repackaging Suggestions For The Existing KPA

The most obvious re-packaging is Solitting the Software Product Engineering KPA into two
KPA : Software Evduation and Test and Software Product Engineering with a reduced
scope. The name of the latter should probably stay the same unless the new scope causes
confusion.

The Peer Reviews KPA should be subsumed into the Evauation and Testing KPA. As
discussed, peer reviews are just one means of performing an evauation. Separating out asingle
evduation technique and making it a full KPA is a bit digproportionate. However, as an
admitted testing bigot, | would not argue very hard againgt keeping it. 1t adds emphasis to the
overdl importance of evaduation and test.

Some have suggested that the Software Evauation and Test KPA itsdf could be split into an
Evduation KPA and a Testing KPA. My own feding is the process loses some continuity if
that isdone. However, it is not something | would argue too vehemently abot.

In order to keep the number of KPA down, | would suggest that the Software Project
Planning and Software Project Tracking and Oversight KPA be merged into one KPA.
These are very tightly coupled activities. Xerox, for example, is treating them as essentialy one
item to ingdl in their CMM activities. | cannot bdieve they are done in this view. While this
does not have anything directly to do with testing, it does help make room for a Software
Tedting KPA.

Copyright 1995, 1996 - Bender & Associates Inc. 32

